

OS/390 IBM

TSO/E REXX Reference

 SC28-1975-03

OS/390 IBM

TSO/E REXX Reference

 SC28-1975-03

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix E, “Notices”
on page E-1.

Fourth Edition, September 1999

This edition applies to Version 2 Release 8 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

This is a major revision of SC28-1975-02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

 IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States and Canada): 1+914+432-9405
FAX (Other countries): Your International Access Code+1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1988, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xvii
Who Should Read This Book . xvii
How to Use This Book . xvii

How to Read the Syntax Diagrams . xviii
Where to Find More Information . xx

Summary of Changes . xxiii
Changes to This Book for OS/390 Version 2 Release 4 xxiv

Chapter 1. Introduction . 1-1
What the SAA Solution Is . 1-1

Supported Environments . 1-1
Common Programming Interface . 1-1

Benefits of Using a Compiler . 1-2
Improved Performance . 1-2
Reduced System Load . 1-2
Protection for Source Code and Programs 1-3
Improved Productivity and Quality . 1-3
Portability of Compiled Programs . 1-3
SAA Compliance Checking . 1-3

Chapter 2. REXX General Concepts . 2-1
Structure and General Syntax . 2-2

Characters . 2-3
Comments . 2-4
Tokens . 2-4
Implied Semicolons . 2-9
Continuations . 2-9

Expressions and Operators . 2-9
Expressions . 2-10
Operators . 2-10
Parentheses and Operator Precedence . 2-13

Clauses and Instructions . 2-15
Null Clauses . 2-15
Labels . 2-15
Instructions . 2-15
Assignments . 2-16
Keyword Instructions . 2-16
Commands . 2-16

Assignments and Symbols . 2-16
Constant Symbols . 2-17
Simple Symbols . 2-17
Compound Symbols . 2-18
Stems . 2-19

Commands to External Environments . 2-20
Environment . 2-21
Commands . 2-21
Host Commands and Host Command Environments 2-22
The TSO Host Command Environment . 2-23
The CONSOLE Host Command Environment 2-24

 Copyright IBM Corp. 1988, 1999 iii

The ISPEXEC and ISREDIT Host Command Environments 2-24
The CPICOMM, LU62, and APPCMVS Host Command Environments . . 2-25
The MVS Host Command Environment . 2-29
Host Command Environments for Linking to and Attaching Programs . . . 2-30

Chapter 3. Keyword Instructions . 3-1
ADDRESS . 3-1
ARG . 3-3
CALL . 3-4
DO . 3-7

Simple DO Group . 3-8
Repetitive DO Loops . 3-8
Conditional Phrases (WHILE and UNTIL) 3-10

DROP . 3-12
EXIT . 3-12
IF . 3-13
INTERPRET . 3-14
ITERATE . 3-16
LEAVE . 3-16
NOP . 3-17
NUMERIC . 3-17
OPTIONS . 3-19
PARSE . 3-20
PROCEDURE . 3-23
PULL . 3-25
PUSH . 3-26
QUEUE . 3-27
RETURN . 3-27
SAY . 3-28
SELECT . 3-28
SIGNAL . 3-29
TRACE . 3-31

Alphabetic Character (Word) Options . 3-32
Prefix Options . 3-33
Numeric Options . 3-34
A Typical Example . 3-34
Format of TRACE Output . 3-34

UPPER . 3-35

Chapter 4. Functions . 4-1
Syntax . 4-1
Functions and Subroutines . 4-2

Search Order . 4-3
Errors During Execution . 4-6

Built-in Functions . 4-7
ABBREV (Abbreviation) . 4-7
ABS (Absolute Value) . 4-8
ADDRESS . 4-8
ARG (Argument) . 4-8
BITAND (Bit by Bit AND) . 4-9
BITOR (Bit by Bit OR) . 4-10
BITXOR (Bit by Bit Exclusive OR) . 4-10
B2X (Binary to Hexadecimal) . 4-11
CENTER/CENTRE . 4-11

iv OS/390 V2R8.0 TSO/E REXX Reference

COMPARE . 4-12
CONDITION . 4-12
COPIES . 4-13
C2D (Character to Decimal) . 4-13
C2X (Character to Hexadecimal) . 4-14
DATATYPE . 4-14
DATE . 4-15
DBCS (Double-Byte Character Set Functions) 4-17
DELSTR (Delete String) . 4-18
DELWORD (Delete Word) . 4-18
DIGITS . 4-18
D2C (Decimal to Character) . 4-19
D2X (Decimal to Hexadecimal) . 4-19
ERRORTEXT . 4-20
EXTERNALS . 4-20
FIND . 4-21
FORM . 4-21
FORMAT . 4-21
FUZZ . 4-22
GETMSG . 4-23
INDEX . 4-23
INSERT . 4-23
JUSTIFY . 4-24
LASTPOS (Last Position) . 4-24
LEFT . 4-24
LENGTH . 4-25
LINESIZE . 4-25
LISTDSI . 4-25
MAX (Maximum) . 4-26
MIN (Minimum) . 4-26
MSG . 4-26
MVSVAR . 4-26
OUTTRAP . 4-26
OVERLAY . 4-26
POS (Position) . 4-27
PROMPT . 4-27
QUEUED . 4-27
RANDOM . 4-28
REVERSE . 4-28
RIGHT . 4-29
SETLANG . 4-29
SIGN . 4-29
SOURCELINE . 4-29
SPACE . 4-30
STORAGE . 4-30
STRIP . 4-30
SUBSTR (Substring) . 4-31
SUBWORD . 4-31
SYMBOL . 4-31
SYSCPUS . 4-32
SYSDSN . 4-32
SYSVAR . 4-32
TIME . 4-32
TRACE . 4-34

 Contents v

TRANSLATE . 4-34
TRUNC (Truncate) . 4-35
USERID . 4-35
VALUE . 4-36
VERIFY . 4-36
WORD . 4-37
WORDINDEX . 4-37
WORDLENGTH . 4-38
WORDPOS (Word Position) . 4-38
WORDS . 4-38
XRANGE (Hexadecimal Range) . 4-39
X2B (Hexadecimal to Binary) . 4-39
X2C (Hexadecimal to Character) . 4-40
X2D (Hexadecimal to Decimal) . 4-40

TSO/E External Functions . 4-41
GETMSG . 4-42
LISTDSI . 4-48
MSG . 4-57
MVSVAR . 4-58
OUTTRAP . 4-62
PROMPT . 4-67
SETLANG . 4-70
STORAGE . 4-72
SYSCPUS . 4-73
SYSDSN . 4-74
SYSVAR . 4-76

Chapter 5. Parsing . 5-1
Simple Templates for Parsing into Words . 5-1

The Period as a Placeholder . 5-3
Templates Containing String Patterns . 5-3
Templates Containing Positional (Numeric) Patterns 5-4

Parsing with Variable Patterns . 5-8
Using UPPER . 5-9
Parsing Instructions Summary . 5-9
Parsing Instructions Examples . 5-10
Advanced Topics in Parsing . 5-11

Parsing Multiple Strings . 5-11
Combining String and Positional Patterns: A Special Case 5-12
Parsing with DBCS Characters . 5-12
Details of Steps in Parsing . 5-12

Chapter 6. Numbers and Arithmetic . 6-1
Introduction . 6-1
Definition . 6-2

Numbers . 6-2
Precision . 6-3
Arithmetic Operators . 6-3
Arithmetic Operation Rules—Basic Operators 6-4
Arithmetic Operation Rules—Additional Operators 6-5
Numeric Comparisons . 6-7
Exponential Notation . 6-8
Numeric Information . 6-9
Whole Numbers . 6-10

vi OS/390 V2R8.0 TSO/E REXX Reference

Numbers Used Directly by REXX . 6-10
Errors . 6-10

Chapter 7. Conditions and Condition Traps 7-1
Action Taken When a Condition Is Not Trapped 7-2
Action Taken When a Condition Is Trapped . 7-3
Condition Information . 7-5

Descriptive Strings . 7-5
Special Variables . 7-5

The Special Variable RC . 7-5
The Special Variable SIGL . 7-6

Chapter 8. Using REXX in Different Address Spaces 8-1
Additional REXX Support . 8-2

TSO/E REXX Programming Services . 8-2
TSO/E REXX Customizing Services . 8-3

Writing Execs That Run in Non-TSO/E Address Spaces 8-4
Running an Exec in a Non-TSO/E Address Space 8-5
Writing Execs That Run in the TSO/E Address Space 8-6
Running an Exec in the TSO/E Address Space 8-8
Summary of Writing Execs for Different Address Spaces 8-9

Chapter 9. Reserved Keywords, Special Variables, and Command Names 9-1
Reserved Keywords . 9-1
Special Variables . 9-2
Reserved Command Names . 9-3

Chapter 10. TSO/E REXX Commands . 10-1
DELSTACK . 10-2
DROPBUF . 10-3
EXECIO . 10-4
EXECUTIL . 10-19
HE . 10-26
HI . 10-27
HT . 10-27
Immediate Commands . 10-28
MAKEBUF . 10-28
NEWSTACK . 10-30
QBUF . 10-31
QELEM . 10-33
QSTACK . 10-35
RT . 10-36
SUBCOM . 10-36
TE . 10-38
TS . 10-39

Chapter 11. Debug Aids . 11-1
Interactive Debugging of Programs . 11-1
Interrupting Execution and Controlling Tracing 11-3

Interrupting Exec Processing . 11-4
Starting and Stopping Tracing . 11-6

Chapter 12. TSO/E REXX Programming Services 12-1
General Considerations for Calling TSO/E REXX Routines 12-3

 Contents vii

Parameter Lists for TSO/E REXX Routines 12-5
Specifying the Address of the Environment Block 12-7
Return Codes for TSO/E REXX Routines 12-9

Exec Processing Routines – IRXJCL and IRXEXEC 12-9
The IRXJCL Routine . 12-10
The IRXEXEC Routine . 12-13

External Functions and Subroutines, and Function Packages 12-32
Interface for Writing External Function and Subroutine Code 12-33
Function Packages . 12-37

Variable Access Routine – IRXEXCOM . 12-46
Entry Specifications . 12-47
Parameters . 12-47
Return Specifications . 12-52
Return Codes . 12-52

Maintain Entries in the Host Command Environment Table – IRXSUBCM . 12-53
Entry Specifications . 12-54
Parameters . 12-54
Return Specifications . 12-57
Return Codes . 12-57

Trace and Execution Control Routine – IRXIC 12-57
Entry Specifications . 12-58
Parameters . 12-58
Return Specifications . 12-60
Return Codes . 12-60

Get Result Routine – IRXRLT . 12-60
Entry Specifications . 12-61
Parameters . 12-62
Functions . 12-64
Return Specifications . 12-66
Return Codes . 12-66

SAY Instruction Routine – IRXSAY . 12-68
Entry Specifications . 12-68
Parameters . 12-68
Functions . 12-70
Return Specifications . 12-70
Return Codes . 12-70

Halt Condition Routine – IRXHLT . 12-71
Entry Specifications . 12-71
Parameters . 12-71
Functions . 12-72
Return Specifications . 12-73
Return Codes . 12-73

Text Retrieval Routine – IRXTXT . 12-73
Entry Specifications . 12-74
Parameters . 12-74
Functions and Text Units . 12-76
Return Specifications . 12-78
Return Codes . 12-78

LINESIZE Function Routine – IRXLIN . 12-79
Entry Specifications . 12-79
Parameters . 12-80
Return Specifications . 12-81
Return Codes . 12-81

viii OS/390 V2R8.0 TSO/E REXX Reference

Chapter 13. TSO/E REXX Customizing Services 13-1
Flow of REXX Exec Processing . 13-2

Initialization and Termination of a Language Processor Environment . . . 13-3
Loading and Freeing a REXX Exec . 13-5
Processing of the REXX Exec . 13-6

Overview of Replaceable Routines . 13-6
Exit Routines . 13-7

Chapter 14. Language Processor Environments 14-1
Overview of Language Processor Environments 14-1
Using the Environment Block . 14-4
When Environments are Automatically Initialized in TSO/E 14-5

Initializing Environments for User-Written TMPs 14-6
When Environments are Automatically Initialized in MVS 14-7
Types of Environments – Integrated and Not Integrated Into TSO/E 14-8
Characteristics of a Language Processor Environment 14-9
Flags and Corresponding Masks . 14-15
Module Name Table . 14-20

Relationship of Fields in Module Name Table to Types of Environments 14-24
Host Command Environment Table . 14-25
Function Package Table . 14-28
Values Provided in the Three Default Parameters Modules 14-31
How IRXINIT Determines What Values to Use for the Environment 14-34

Values IRXINIT Uses to Initialize Environments 14-35
Chains of Environments and How Environments Are Located 14-36

Locating a Language Processor Environment 14-38
Changing the Default Values for Initializing an Environment 14-41

Providing Your Own Parameters Modules 14-42
Considerations for Providing Parameters Modules 14-45

Specifying Values for Different Environments 14-45
Parameters You Cannot Change . 14-46
Parameters You Can Use in Any Language Processor Environment . . 14-46
Parameters You Can Use for Environments That Are Integrated Into

TSO/E . 14-50
Parameters You Can Use for Environments That Are Not Integrated Into

TSO/E . 14-50
Flag Settings for Environments Initialized for TSO/E and ISPF 14-52
Using SYSPROC and SYSEXEC for REXX Execs 14-52

Control Blocks Created for a Language Processor Environment 14-58
Format of the Environment Block (ENVBLOCK) 14-58
Format of the Parameter Block (PARMBLOCK) 14-60
Format of the Work Block Extension . 14-61
Format of the REXX Vector of External Entry Points 14-64

Changing the Maximum Number of Environments in an Address Space . . 14-67
Using the Data Stack in Different Environments 14-69

Chapter 15. Initialization and Termination Routines 15-1
Initialization Routine – IRXINIT . 15-1

Entry Specifications . 15-2
Parameters . 15-2
Specifying How REXX Obtains Storage in the Environment 15-6
How IRXINIT Determines What Values to Use for the Environment 15-8
Parameters Module and In-Storage Parameter List 15-9
Specifying Values for the New Environment 15-10

 Contents ix

Return Specifications . 15-11
Output Parameters . 15-12
Return Codes . 15-15

Termination Routine – IRXTERM . 15-17
Entry Specifications . 15-18
Parameters . 15-18
Return Specifications . 15-18
Return Codes . 15-18

Chapter 16. Replaceable Routines and Exits 16-1
Replaceable Routines . 16-3

General Considerations . 16-4
Using the Environment Block Address . 16-4
Installing Replaceable Routines . 16-5

Exec Load Routine . 16-5
Entry Specifications . 16-7
Parameters . 16-7
Format of the Exec Block . 16-11
Format of the In-Storage Control Block 16-14
Return Specifications . 16-17
Return Codes . 16-17

Input/Output Routine . 16-18
Entry Specifications . 16-19
Parameters . 16-20
Functions Supported for the I/O Routine 16-21
Buffer and Buffer Length Parameters . 16-23
Line Number Parameter . 16-24
Data Set Information Block . 16-25
Return Specifications . 16-27
Return Codes . 16-27

Host Command Environment Routine . 16-28
Entry Specifications . 16-29
Parameters . 16-29
Error Recovery . 16-31
Return Specifications . 16-31
Return Codes . 16-31

Data Stack Routine . 16-32
Entry Specifications . 16-33
Parameters . 16-33
Functions Supported for the Data Stack Routine 16-35
Return Specifications . 16-37
Return Codes . 16-37

Storage Management Routine . 16-38
Entry Specifications . 16-38
Parameters . 16-38
Return Specifications . 16-40
Return Codes . 16-40

User ID Routine . 16-40
Entry Specifications . 16-40
Parameters . 16-40
Functions Supported for the User ID Routine 16-42
Return Specifications . 16-42
Return Codes . 16-42

Message Identifier Routine . 16-43

x OS/390 V2R8.0 TSO/E REXX Reference

Entry Specifications . 16-43
Parameters . 16-43
Return Specifications . 16-43
Return Codes . 16-43

REXX Exit Routines . 16-44
Exits for Language Processor Environment Initialization and Termination 16-44
Exec Initialization and Termination Exits 16-45
Exec Processing (IRXEXEC) Exit Routine 16-46
Attention Handling Exit Routine . 16-46

Appendix A. Double-Byte Character Set (DBCS) Support A-1
General Description . A-1

Enabling DBCS Data Operations and Symbol Use A-2
Symbols and Strings . A-2
Validation . A-3
Using DBCS Symbols as Variable Names or Labels A-4
Instruction Examples . A-5

DBCS Function Handling . A-6
Built-in Function Examples . A-8

DBCS Processing Functions . A-12
Counting Option . A-12

Function Descriptions . A-12
DBADJUST . A-12
DBBRACKET . A-12
DBCENTER . A-13
DBCJUSTIFY . A-13
DBLEFT . A-14
DBRIGHT . A-14
DBRLEFT . A-15
DBRRIGHT . A-15
DBTODBCS . A-16
DBTOSBCS . A-16
DBUNBRACKET . A-16
DBVALIDATE . A-16
DBWIDTH . A-17

Appendix B. IRXTERMA Routine . B-1
Entry Specifications . B-1
Parameters . B-2
Return Specifications . B-3
Return Codes . B-3

Appendix C. Writing REXX Execs to Perform MVS Operator Activities . C-1
Activating a Console Session and Issuing MVS Commands C-1
Using the CONSOLE Host Command Environment C-1
Processing Messages During a Console Session C-3
Using the CART to Associate Commands and Their Responses C-4

Considerations for Multiple Applications . C-5
Example of Determining Results From Commands in One Exec C-6

Appendix D. Additional Variables That GETMSG Sets D-1
Variables GETMSG Sets For the Entire Message D-1
Variables GETMSG Sets For Each Line of Message Text D-6

 Contents xi

Appendix E. Notices . E-1
Programming Interface Information . E-3
Trademarks . E-3

Bibliography . X-1
Related Publications . X-1

Index . X-3

xii OS/390 V2R8.0 TSO/E REXX Reference

 Figures

2-1. Example of Using the REXX Exec Identifier 2-2
2-2. Example JCL for TP Profile for a Non-TSO/E REXX Exec 2-28
2-3. Example JCL for TP Profile for a TSO/E REXX Exec 2-28
2-4. Sample APPC/MVS Transaction Programs in SYS1.SAMPLIB . . . 2-29
2-5. Parameters for LINK and ATTACH Environments 2-32
2-6. Parameters for LINKMVS and ATTCHMVS Environments 2-34
2-7. Parameters for LINKPGM and ATTCHPGM Environments 2-37
3-1. Concept of a DO Loop . 3-11
4-1. External Routine Resolution and Execution 4-5
4-2. Function Codes for GETMSG That Replace the Function Call . . . 4-43
4-3. Function Codes for LISTDSI That Replace the Function Call 4-48
4-4. Variables That LISTDSI Sets . 4-51
4-5. LISTDSI Reason Codes . 4-54
4-6. Different Ways Prompting is Affected 4-68
4-7. Language Codes for SETLANG Function That Replace the Function

Call . 4-70
4-8. SYSCPUS Function Codes . 4-73
5-1. Conceptual Overview of Parsing . 5-13
5-2. Conceptual View of Finding Next Pattern 5-14
5-3. Conceptual View of Word Parsing . 5-15
8-1. Summary of Using Instructions, Functions, Commands, and Services 8-9

10-1. Example of Closing Data Sets With EXECIO 10-11
12-1. Overview of Parameter Lists for TSO/E REXX Routines 12-6
12-2. Common Return Codes for TSO/E REXX Routines 12-9
12-3. Example of Invoking an Exec from a JCL EXEC Statement Using

IRXJCL . 12-10
12-4. Parameter for Calling the IRXJCL Routine 12-12
12-5. Example PL/I Version 2 Program Using IRXJCL 12-12
12-6. Return Codes for IRXJCL Routine 12-13
12-7. Parameters for IRXEXEC Routine 12-16
12-8. Format of the Exec Block (EXECBLK) 12-20
12-9. Format of the Argument List . 12-23

12-10. Format of the Header for the In-Storage Control Block 12-23
12-11. Vector of Records for the In-Storage Control Block 12-27
12-12. Format of the Evaluation Block . 12-28
12-13. IRXEXEC Return Codes . 12-31
12-14. External Function Parameter List 12-35
12-15. Format of the Argument List — Three Arguments 12-35
12-16. Format of the Evaluation Block . 12-36
12-17. Return Codes From Function or Subroutine Code (in Register 15) 12-37
12-18. Format of the Function Package Directory Header 12-40
12-19. Format of Entries in Function Package Directory 12-42
12-20. Example of a Function Package Directory 12-44
12-21. Parameters for IRXEXCOM . 12-48
12-22. Request Block (SHVBLOCK) . 12-49
12-23. Format of the SHVBLOCK . 12-50
12-24. Return Codes from IRXEXCOM (In Register 15) 12-53
12-25. Parameters for IRXSUBCM . 12-55
12-26. Format of an Entry in the Host Command Environment Table . . . 12-56
12-27. Return Codes for IRXSUBCM . 12-57

 Copyright IBM Corp. 1988, 1999 xiii

12-28. Parameters for IRXIC . 12-58
12-29. Return Codes for IRXIC . 12-60
12-30. Parameters for IRXRLT . 12-62
12-31. IRXRLT Return Codes for the GETBLOCK Function 12-66
12-32. IRXRLT Return Codes for the GETRLT and GETRLTE Functions 12-66
12-33. IRXRLT Return Codes for the GETEVAL Function 12-67
12-34. Parameters for IRXSAY . 12-69
12-35. Return Codes for IRXSAY . 12-70
12-36. Parameters for IRXHLT . 12-72
12-37. Return Codes for IRXHLT . 12-73
12-38. Parameters for IRXTXT . 12-75
12-39. Text Unit and Day Returned - DAY Function 12-76
12-40. Text Unit and Month Returned - MTHLONG Function 12-77
12-41. Text Unit and Abbreviated Month Returned - MTHSHORT Function 12-77
12-42. Return Codes for IRXTXT . 12-78
12-43. Parameters for IRXLIN . 12-80
12-44. Return Codes for IRXLIN . 12-81
13-1. Overview of REXX Exec Processing in Any Address Space 13-2
13-2. Overview of Replaceable Routines 13-6
14-1. Overview of Parameters Module . 14-10
14-2. Format of the Parameter Block (PARMBLOCK) 14-10
14-3. Summary of Each Flag Bit in the Parameters Module 14-13
14-4. Flag Settings for NOMSGWTO and NOMSGIO 14-19
14-5. Format of the Module Name Table 14-20
14-6. Summary of Fields in Module Name Table and Types of

Environments . 14-24
14-7. Format of the Host Command Environment Table Header 14-26
14-8. Format of Entries in Host Command Environment Table 14-27
14-9. Function Package Table Header . 14-29

14-10. Function Package Table Entries – Function Package Directories . 14-31
14-11. Values TSO/E Provides in the Three Default Parameters Modules 14-32
14-12. Three Language Processor Environments in a Chain 14-36
14-13. Separate Chains on Two Different Tasks 14-37
14-14. One Chain of Environments For Attached Tasks 14-38
14-15. Format of the Environment Block 14-59
14-16. Format of the Parameter Block (PARMBLOCK) 14-61
14-17. Format of the Work Block Extension 14-62
14-18. Format of REXX Vector of External Entry Points 14-65
14-19. Format of the Environment Table 14-68
14-20. Separate Data Stacks for Each Environment 14-70
14-21. Sharing of the Data Stack Between Environments 14-71
14-22. Separate Data Stack and Sharing of a Data Stack 14-72
14-23. Creating a New Data Stack with the NEWSTACK Command . . . 14-73
15-1. Parameters for IRXINIT . 15-3
15-2. Extended Parameter List – Parameter 8 15-7
15-3. Parameters Module and In-Storage Parameter List 15-9
15-4. Reason Codes for IRXINIT Processing 15-12
15-5. IRXINIT Return Codes for Finding an Environment 15-15
15-6. IRXINIT Return Codes for Checking an Environment 15-16
15-7. IRXINIT Return Codes for Initializing an Environment 15-16
15-8. Return Codes for IRXTERM . 15-18
16-1. Parameters for the Exec Load Routine 16-7
16-2. Format of the Exec Block . 16-11
16-3. Format of the In-Storage Control Block Header 16-14

xiv OS/390 V2R8.0 TSO/E REXX Reference

16-4. Vector of Records for the In-Storage Control Block 16-17
16-5. Return Codes for the Exec Load Replaceable Routine 16-18
16-6. Input Parameters for the I/O Replaceable Routine 16-20
16-7. Format of the Data Set Information Block 16-25
16-8. Return Codes for the I/O Replaceable Routine 16-28
16-9. Parameters for a Host Command Environment Routine 16-30

16-10. Return Codes for the Host Command Environment Routine 16-31
16-11. Parameters for the Data Stack Routine 16-34
16-12. Return Codes for the Data Stack Replaceable Routine 16-37
16-13. Parameters for the Storage Management Replaceable Routine . . 16-39
16-14. Return Codes for the Storage Management Replaceable Routine 16-40
16-15. Parameters for the User ID Replaceable Routine 16-41
16-16. Return Codes for the User ID Replaceable Routine 16-42
16-17. Return Codes for the Message Identifier Replaceable Routine . . 16-43

A-1. DBCS Ranges . A-1
B-1. Parameters for IRXTERMA . B-2
B-2. Return Codes for IRXTERMA . B-3
C-1. Example Exec (CHKPRT) to Check Start of Printers C-7
D-1. Variables GETMSG Sets For An Entire Message D-1
D-2. Variables GETMSG Sets For Each Line of Message Text D-7

 Figures xv

xvi OS/390 V2R8.0 TSO/E REXX Reference

About This Book

Who Should Read This Book
This book describes the OS/390 TSO/E REXX Interpreter (hereafter referred to as
the interpreter or language processor) and the REstructured eXtended eXecutor
(called REXX) language. Together, the language processor and the REXX
language are known as TSO/E REXX. This book is intended for experienced
programmers, particularly those who have used a block-structured, high-level
language (for example, PL/I, Algol, or Pascal).

TSO/E REXX is the implementation of SAA REXX on the MVS system. Although
TSO/E provides support for REXX, you can run REXX programs (called REXX
execs) in any MVS address space. That is, you can run a REXX exec in TSO/E
and non-TSO/E address spaces.

Descriptions include the use and syntax of the language and explain how the
language processor “interprets” the language as a program is running. The book
also describes TSO/E external functions and REXX commands you can use in a
REXX exec, programming services that let you interface with REXX and the
language processor, and customizing services that let you customize REXX
processing and how the language processor accesses and uses system services,
such as storage and I/O requests.

How to Use This Book
This book is a reference rather than a tutorial. It assumes you are already familiar
with REXX programming concepts. The material in this book is arranged in
chapters:

 1. Chapter 1, Introduction
2. Chapter 2, REXX General Concepts
3. Chapter 3, Keyword Instructions (in alphabetic order)
4. Chapter 4, Functions (in alphabetic order)
5. Chapter 5, Parsing (a method of dividing character strings, such as commands)
6. Chapter 6, Numbers and Arithmetic
7. Chapter 7, Conditions and Condition Traps
8. Chapter 8, Using REXX in Different Address Spaces
9. Chapter 9, Reserved Keywords, Special Variables, and Command Names

10. Chapter 10, TSO/E REXX Commands
11. Chapter 11, Debug Aids
12. Chapter 12, TSO/E REXX Programming Services
13. Chapter 13, TSO/E REXX Customizing Services
14. Chapter 14, Language Processor Environments
15. Chapter 15, Initialization and Termination Routines
16. Chapter 16, Replaceable Routines and Exits

There are several appendixes covering:

� Appendix A, Double-Byte Character Set (DBCS) Support
� Appendix B, IRXTERMA Routine
� Appendix C, Writing REXX Execs to Perform MVS Operator Activities

 Copyright IBM Corp. 1988, 1999 xvii

� Appendix D, Additional Variables That GETMSG Sets

This introduction and Chapter 2, REXX General Concepts provide general
information about the REXX programming language. The two chapters provide an
introduction to TSO/E REXX and describe the structure and syntax of the REXX
language; the different types of clauses and instructions; the use of expressions,
operators, assignments, and symbols; and issuing commands from a REXX
program.

Other chapters in the book provide reference information about the syntax of the
keyword instructions and built-in functions in the REXX language, and the external
functions TSO/E provides for REXX programming. The keyword instructions, built-in
functions, and TSO/E external functions are described in Chapter 3, Keyword
Instructions and Chapter 4, Functions.

Other chapters provide information to help you use the different features of REXX
and debug any problems in your REXX programs. These chapters include:

 � Chapter 5, Parsing
� Chapter 6, Numbers and Arithmetic
� Chapter 7, Conditions and Condition Traps
� Chapter 9, Reserved Keywords, Special Variables, and Command Names
� Chapter 11, Debug Aids.

TSO/E provides several REXX commands you can use for REXX processing. The
syntax of these commands is described in Chapter 10, TSO/E REXX Commands.

Although TSO/E provides support for the REXX language, you can run REXX
execs in any MVS address space (TSO/E and non-TSO/E). Chapter 8, Using
REXX in Different Address Spaces describes various aspects of using REXX in
TSO/E and non-TSO/E address spaces and any restrictions.

In addition to REXX language support, TSO/E provides programming services you
can use to interface with REXX and the language processor, and customizing
services that let you customize REXX processing and how the language processor
accesses and uses system services, such as I/O and storage. The programming
services are described in Chapter 12, TSO/E REXX Programming Services. The
customizing services are introduced in Chapter 13, TSO/E REXX Customizing
Services and are described in more detail in the following chapters:

� Chapter 14, Language Processor Environments
� Chapter 15, Initialization and Termination Routines
� Chapter 16, Replaceable Routines and Exits.

Throughout the book, examples are provided that include data set names. When
an example includes a data set name that is enclosed in single quotation marks,
the prefix is added to the data set name. In the examples, the user ID is the prefix.

How to Read the Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

� Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The 55─── symbol indicates the beginning of a statement.

xviii OS/390 V2R8.0 TSO/E REXX Reference

The ───5 symbol indicates that the statement syntax is continued on the next
line.

The 5─── symbol indicates that a statement is continued from the previous line.

The ───5% symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the 5───
symbol and end with the ───5 symbol.

� Required items appear on the horizontal line (the main path).

55─ ──STATEMENT ──required_item ──5%

� Optional items appear below the main path.

55─ ──STATEMENT ──┬ ┬─────────────── ────────────────────────────────────5%
 └ ┘─optional_item─

� If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

55─ ──STATEMENT ──┬ ┬─required_choice1─ ─────────────────────────────────5%
 └ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below the
main path.

55─ ──STATEMENT ──┬ ┬────────────────── ─────────────────────────────────5%
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

� If one of the items is the default, it appears above the main path and the
remaining choices are shown below.

 ┌ ┐─default_choice──
55─ ──STATEMENT ──┼ ┼───────────────── ──────────────────────────────────5%
 ├ ┤─optional_choice─
 └ ┘─optional_choice─

� An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐─────────────────
55─ ──STATEMENT ───6 ┴repeatable_item ────────────────────────────────────5%

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

� A set of vertical bars around an item indicates that the item is a fragment, a
part of the syntax diagram that appears in greater detail below the main
diagram.

55─ ──STATEMENT ─┤ fragment ├──5%

fragment:
├─ ──expansion_provides_greater_detail ─────────────────────────────────┤

� Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown but can be specified in any case. Variables appear in all

 About This Book xix

lowercase letters (for example, parmx). They represent user-supplied names or
values.

� If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

 ┌ ┐─,────
55─ ──MAX(───6 ┴number ──) ───5%

Where to Find More Information
Please see OS/390 Information Roadmap for an overview of the documentation
associated with OS/390.

The latest OS/390 documentation is available on CD ROM which is IBM Online
Library Omnibus Edition OS/390 Collection, SK2T-6700.

| The following OS/390 TSO/E documentation has been updated for Version 2
| Release 8 as a result of maintenance revisions and is available in printed form and
| on CD ROM.

| � OS/390 TSO/E Command Reference

| � OS/390 TSO/E Customization

| � OS/390 TSO/E General Information

| � OS/390 TSO/E Messages

| � OS/390 TSO/E Programming Services

| � OS/390 TSO/E REXX Reference

| The following OS/390 TSO/E documentation has been updated for Version 2
| Release 8 as a result of maintenance revisions and is available only on CD ROM .
| Printed versions of this document for a prior OS/390 release can still be ordered:

| � OS/390 TSO/E Programming Guide

The following OS/390 TSO/E documentation was updated for Version 2 Release 7
as a result of maintenance revisions and is available in printed form and on CD
ROM.

� OS/390 TSO/E CLISTs

� OS/390 TSO/E System Programming Command Reference

The following OS/390 TSO/E documentation was updated for Version 2 Release 7
as a result of maintenance revisions and is available only on CD ROM . Printed
versions of these documents for a prior OS/390 release can still be ordered:

� OS/390 TSO/E REXX User's Guide

� OS/390 TSO/E User's Guide

xx OS/390 V2R8.0 TSO/E REXX Reference

The following OS/390 TSO/E documentation was updated for Version 2 Release 4
as a result of maintenance revisions and is available only on CD ROM . Printed
versions of these documents for OS/390 Version 1 Release 2 can still be ordered:

� OS/390 TSO/E Guide to SRPI

� OS/390 TSO/E Primer

� OS/390 TSO/E VM/PC User's Guide

The following OS/390 TSO/E documentation was updated for Version 2 Release 4
and is available only on CD ROM :

� OS/390 TSO/E System Diagnosis: Data Areas

The following OS/390 TSO/E documentation was not updated for Version 2
Release 4 or for a subsequent maintenance release and is still available in a
printed version and on CD ROM:

� OS/390 TSO/E Administration

 About This Book xxi

xxii OS/390 V2R8.0 TSO/E REXX Reference

Summary of Changes

| Summary of Changes
| for SC28-1975-03
| OS/390 Version 2 Release 8

| This book contains information previously presented in OS/390 TSO/E REXX
| Reference, SC28-1975-02, which supports OS/390 TSO/E Version 2 Release 7.

| The following summarizes the changes to that information.

| New Information

| Enhancement to the REXX Replaceable Load routine interface allows a caller to
| specify an “extended execname,” which can be greater than eight characters in
| length, or can be case sensitive, or both. Previously, TSO/E REXX would only
| support a default name of eight characters or less. The enhancement is available
| for OS/390 V2R4 TSO/E and later.

| As part of this support, the TSO/E REXX function call interface and the MVS REXX
| host command interface have been enhanced to allow a Replaceable Load routine
| to load and return an In-storage Block for an “extended name” exec. The REXX
| PARSE SOURCE token has been expanded to support extended execnames, and
| new messages IRX0105I and IRX0106I have been created.

| To utilize this new support, the user must code a Replaceable Load routine that
| can handle loads of execs with names that are greater than eight characters in
| length; otherwise, TSO/E REXX will continue to behave as it did prior to this new
| function APAR support.

| Information has been added in support of the following APARs:

| � APAR OW28404, see “Loading Execs Using an Extended Exec Name” on
| page 16-13

| � APAR OW37909, see Figure 16-2 on page 16-11

| Changed Information

| This book includes terminology, maintenance, and editorial changes. Technical
| changes or additions to the text and illustrations are indicated by a vertical line to
| the left of the change.

Summary of Changes
for SC28-1975-02
OS/390 Version 2 Release 7

This revision reflects the deletion, addition or modification of information to support
miscellaneous maintenance items and the following APARs:

� APAR OW32669, see page 14-57

| � APAR OW33397, see page 4-48

� APAR OW35342, see “Programming Considerations” on page 12-46

 Copyright IBM Corp. 1988, 1999 xxiii

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for SC28-1975-01
as Updated March 1998

This revision reflects the deletion, addition or modification of information to support
miscellaneous maintenance items and the following APARs:

� APAR OW26230, see Figure 4-4 on page 4-51

� APAR OW27417, see “LISTDSI” on page 4-48

Changes to This Book for OS/390 Version 2 Release 4
The changes to the book are because of miscellaneous maintenance items and the
following APARs:

� APAR OW26340, see Figure 4-4 on page 4-51

� APAR OW26033, see page 4-61

� APAR OW11475, see “Exec Information” on page 4-76

� APAR OW25345, see “Parameters” on page 12-47

xxiv OS/390 V2R8.0 TSO/E REXX Reference

 Introduction

 Chapter 1. Introduction

This introduction gives a brief overview of the Systems Application Architecture
(SAA) solution.

What the SAA Solution Is
The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications.

The purpose of SAA REXX is to define a common subset of the language that can
be used on several environments. TSO/E REXX is the implementation of SAA
REXX on the MVS system. If you plan on running your REXX programs on other
environments, however, some restrictions may apply and you should review the
publication SAA Common Programming Interface REXX Level 2 Reference.

The SAA solution:

� Defines a Common Programming Interface that you can use to develop
consistent, integrated enterprise software

� Defines Common Communications Support that you can use to connect
applications, systems, networks, and devices

� Defines a Common User Access architecture that you can use to achieve
consistency in screen layout and user interaction techniques

� Offers some applications and application development tools written by IBM.

 Supported Environments
Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM manages the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

 � MVS

– Base system (TSO/E, APPC/MVS, batch)
 – CICS
 – IMS

 � VM CMS

� Operating System/400 (OS/400)

� Operating System/2 (OS/2).

Common Programming Interface
The Common Programming Interface (CPI) provides languages and services that
programmers can use to develop applications that take advantage of SAA
consistency.

The components of the interface currently fall into two general categories:

 � Languages

 Application Generator

 Copyright IBM Corp. 1988, 1999 1-1

 Introduction

 C
 COBOL
 FORTRAN
 PL/I

REXX (formerly called Procedures Language)
 RPG

 � Services

 Communications
 Database
 Dialog
 Language Environment
 Presentation
 PrintManager
 Query
 Repository
 Resource Recovery.

The CPI is not in itself a product or a piece of code. But—as a definition—it does
establish and control how IBM products are being implemented, and it establishes a
common base across the applicable SAA environments.

Benefits of Using a Compiler
The IBM Compiler for REXX/370 and the IBM Library for REXX/370 provide
significant benefits for programmers during program development and for users
when a program is run. The benefits are:

 � Improved performance
� Reduced system load
� Protection for source code and programs
� Improved productivity and quality
� Portability of compiled programs
� SAA compliance checking.

 Improved Performance
The performance improvements that you can expect when you run compiled REXX
programs depend on the type of program. A program that performs large numbers
of arithmetic operations of default precision shows the greatest improvement. A
program that mainly issues commands to the host shows minimal improvement
because REXX cannot decrease the time taken by the host to process the
commands.

Reduced System Load
Compiled REXX programs run faster than interpreted programs. Because a
program has to be compiled only one time, system load is reduced and response
time is improved when the program is run frequently.

For example, a REXX program that performs many arithmetic operations might take
12 seconds to run interpreted. If the program is run 60 times, it uses about 12
minutes of processor time. The same program when compiled might run six times
faster, using only about 2 minutes of processor time.

1-2 OS/390 V2R8.0 TSO/E REXX Reference

 Introduction

Protection for Source Code and Programs
Your REXX programs and algorithms are assets that you want to protect.

The Compiler produces object code, which helps you protect these assets by
discouraging other users from making unauthorized changes to your programs.
You can distribute your REXX programs in object code only.

Load modules can be further protected by using a security product, such as the
Resource Access Control Facility (RACF).

Improved Productivity and Quality
The Compiler can produce source listings, cross-reference listings, and messages,
which help you more easily develop and maintain your REXX programs.

The Compiler identifies syntax errors in a program before you start testing it. You
can then focus on correcting errors in logic during testing with the REXX interpreter.

Portability of Compiled Programs
A REXX program compiled under MVS/ESA can run under CMS. Similarly, a REXX
program compiled under CMS can run under MVS/ESA.

SAA Compliance Checking
The Systems Application Architecture (SAA) definitions of software interfaces,
conventions, and protocols provide a framework for designing and developing
applications that are consistent within and across several operating systems. SAA
REXX is a subset of the REXX language supported by the interpreter under TSO/E
and can be used in this operating environment.

To help you write programs for use in all SAA environments, the Compiler can
optionally check for SAA compliance. With this option in effect, an attention
message is issued for each non-SAA item found in a program.

For more information, see IBM Compiler for REXX/370: Introducing the Next Step
in REXX Programming.

 Chapter 1. Introduction 1-3

 Introduction

1-4 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

Chapter 2. REXX General Concepts

The REstructured eXtended eXecutor (REXX) language is particularly suitable for:

 � Command procedures
� Application front ends
� User-defined macros (such as editor subcommands)

 � Prototyping
� Personal computing. Individual users can write programs for their own needs.

REXX is a general purpose programming language like PL/I. REXX has the usual
structured-programming instructions — IF, SELECT, DO WHILE, LEAVE, and so
on — and a number of useful built-in functions.

The language imposes no restrictions on program format. There can be more than
one clause on a line, or a single clause can occupy more than one line. Indentation
is allowed. You can, therefore, code programs in a format that emphasizes their
structure, making them easier to read.

There is no limit to the length of the values of variables, as long as all variables fit
into the storage available.

Implementation maximum: No single request for storage can exceed the fixed
limit of 16MB. This limit applies to the size of a variable plus any control
information. It also applies to buffers obtained to hold numeric results.

The limit on the length of symbols (variable names) is 250 characters.

You can use compound symbols, such as

NAME.Y.Z

(where Y and Z can be the names of variables or can be constant symbols), for
constructing arrays and for other purposes.

Issuing host commands from within a REXX program is an integral part of the
REXX language. For example, in the TSO/E address space, you can use TSO/E
commands in a REXX exec. The exec can also use ISPF commands and services
if the exec runs in ISPF. In execs that run in both TSO/E and non-TSO/E address
spaces, you can use the TSO/E REXX commands, such as MAKEBUF, DROPBUF,
and NEWSTACK. You can also link to or attach programs. “Host Commands and
Host Command Environments” on page 2-22 describes the different environments
for using host services.

TSO/E REXX execs can reside in a sequential data set or in a member of a
partitioned data set (PDS). Partitioned data sets containing REXX execs can be
allocated to either the system file SYSPROC (TSO/E address space only) or
SYSEXEC. In the TSO/E address space, you can also use the TSO/E ALTLIB
command to define alternate exec libraries for storing REXX execs. For more
information about allocating exec data sets, see OS/390 TSO/E REXX User's
Guide.

In TSO/E, you can call an exec explicitly using the EXEC command followed by the
data set name and the “exec” keyword operand of the EXEC command. The

 Copyright IBM Corp. 1988, 1999 2-1

 REXX General Concepts

“exec” keyword operand distinguishes the REXX exec from a TSO/E CLIST, which
you also call using the EXEC command.

You can call an exec implicitly by entering the member name of the exec. You can
call an exec implicitly only if the PDS in which the exec is stored has been
allocated to a system file (SYSPROC or SYSEXEC). SYSEXEC is a system file
whose data sets can contain REXX execs only. SYSPROC is a system file whose
data sets can contain either CLISTs or REXX execs. If an exec is in a data set that
is allocated to SYSPROC, the exec must start with a comment containing the
characters “REXX” within the first line (line 1). This enables the TSO/E EXEC
command to distinguish a REXX exec from a CLIST. For more information, see
“Structure and General Syntax”.

SYSEXEC is the default load ddname from which REXX execs are loaded. If your
installation plans to use REXX, it is recommended that you store your REXX execs
in data sets that are allocated to SYSEXEC. This makes them easier to maintain.
For more information about the load ddname and searching SYSPROC or
SYSEXEC, see “Using SYSPROC and SYSEXEC for REXX Execs” on
page 14-52.

REXX programs are run by a language processor (interpreter). That is, the program
is run line-by-line and word-by-word, without first being translated to another form
(compiled). The advantage of this is you can fix the error and rerun the program
faster than you can with a compiler.

When an exec is loaded into storage, the load routine checks for sequence
numbers in the data set. The routine removes the sequence numbers during the
loading process. For information about how the load routine checks for sequence
numbers, see “Exec Load Routine” on page 16-5.

Structure and General Syntax
If you store a REXX exec in a data set that is allocated to SYSPROC, the exec
must start with a comment and the comment must contain the characters “REXX”
within the first line (line 1) of the exec. This is known as the REXX exec identifier
and is required in order for the TSO/E EXEC command to distinguish REXX execs
from TSO/E CLISTs, which are also stored in SYSPROC.

The characters “REXX” must be in the first line (line 1) even if the comment spans
multiple lines. In Figure 2-1, example A on the left is correct. The program starts
with a comment and the characters “REXX” are in the first line (line 1). Example B
on the right is incorrect. The program starts with a comment. However, although the
comment contains the characters “REXX”, they are not in the first line (line 1).

Example A (Correct) Example B (Incorrect)

/\ REXX program to check ... /\ This program checks ...
... The program then ... \/ ... in REXX and ... \/

ADDRESS CPICOMM ADDRESS CPICOMM

EXIT EXIT

Figure 2-1. Example of Using the REXX Exec Identifier

2-2 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

If the exec is in a data set that is allocated to a file containing REXX execs only,
not CLISTs (for example, SYSEXEC), the comment including the characters
“REXX” is not required. However, it is recommended that you start all REXX execs
with a comment in the first column of the first line and include the characters
“REXX” in the comment. In particular, this is recommended if you are writing REXX
execs for use in other SAA environments. Including “REXX” in the first comment
also helps users identify that the program is a REXX program and distinguishes a
REXX exec from a TSO/E CLIST. For more information about how the EXEC
command processor distinguishes REXX execs and CLISTs, see OS/390 TSO/E
Command Reference.

A REXX program is built from a series of clauses that are composed of:

� Zero or more blanks (which are ignored)
� A sequence of tokens (see “Tokens” on page 2-4)
� Zero or more blanks (again ignored)
� A semicolon (;) delimiter that may be implied by line-end, certain keywords, or

the colon (:).

Conceptually, each clause is scanned from left to right before processing, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to operator characters and special
characters (see page 2-8) are also removed.

 Characters
A character is a member of a defined set of elements that is used for the control or
representation of data. You can usually enter a character with a single keystroke.
The coded representation of a character is its representation in digital form. A
character, the letter A, for example, differs from its coded representation or
encoding. Various coded character sets (such as ASCII and EBCDIC) use different
encoding for the letter A (decimal values 65 and 193, respectively). This book uses
characters to convey meanings and not to imply a specific character code, except
where otherwise stated. The exceptions are certain built-in functions that convert
between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

A code page specifies the encoding for each character in a set. You should be
aware that:

� Some code pages do not contain all characters that REXX defines as valid (for
example, ¬, the logical NOT character).

� Some characters that REXX defines as valid have different encoding in
different code pages (for example, !, the exclamation point).

For information about Double-Byte Character Set characters, see Appendix A,
“Double-Byte Character Set (DBCS) Support” on page A-1.

 Chapter 2. REXX General Concepts 2-3

 REXX General Concepts

 Comments
A comment is a sequence of characters (on one or more lines) delimited by /\ and
\/. Within these delimiters any characters are allowed. Comments can contain
other comments, as long as each begins and ends with the necessary delimiters.
They are called nested comments . Comments can be anywhere and can be of
any length. They have no effect on the program, but they do act as separators.
(Two tokens with only a comment in between are not treated as a single token.)

/\ This is an example of a valid REXX comment \/

Take special care when commenting out lines of code containing /\ or \/ as part
of a literal string. Consider the following program segment:

ð1 parse pull input
ð2 if substr(input,1,5) = '/\123'
ð3 then call process
ð4 dept = substr(input,32,5)

To comment out lines 2 and 3, the following change would be incorrect:

ð1 parse pull input
ð2 /\ if substr(input,1,5) = '/\123'
ð3 then call process
ð4 \/ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /\ that is part
of the literal string /\123 as the start of a nested comment. It would not process the
rest of the program because it would be looking for a matching comment end (\/).

You can avoid this type of problem by using concatenation for literal strings
containing /\ or \/; line 2 would be:

if substr(input,1,5) = '/' || '\123'

You could comment out lines 2 and 3 correctly as follows:

ð1 parse pull input
ð2 /\ if substr(input,1,5) = '/' || '\123'
ð3 then call process
ð4 \/ dept = substr(input,32,5)

For information about Double-Byte Character Set characters, see Appendix A,
“Double-Byte Character Set (DBCS) Support” on page A-1 and the OPTIONS
instruction on page 3-19.

 Tokens
A token is the unit of low-level syntax from which clauses are built. Programs
written in REXX are composed of tokens. They are separated by blanks or
comments or by the nature of the tokens themselves. The classes of tokens are:

Literal Strings:
A literal string is a sequence including any characters and delimited
by the single quotation mark (') or the double quotation mark (").
Use two consecutive double quotation marks ("") to represent a "
character within a string delimited by double quotation marks.
Similarly, use two consecutive single quotation marks ('') to
represent a ' character within a string delimited by single quotation

2-4 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

marks. A literal string is a constant and its contents are never
modified when it is processed.

A literal string with no characters (that is, a string of length ð) is
called a null string .

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn''t' /\ Same as "You shouldn't" \/
'' /\ The null string \/

Note that a string followed immediately by a (is considered to be
the name of a function. If followed immediately by the symbol X or
x, it is considered to be a hexadecimal string. If followed
immediately by the symbol B or b, it is considered to be a binary
string. Descriptions of these forms follow.

Implementation maximum: A literal string can contain up to 250
characters. (But note that the length of computed results is limited
only by the amount of storage available.)

Hexadecimal Strings:
A hexadecimal string is a literal string, expressed using a
hexadecimal notation of its encoding. It is any sequence of zero or
more hexadecimal digits (ð–9, a–f, A–F), grouped in pairs. A single
leading 0 is assumed, if necessary, at the front of the string to
make an even number of hexadecimal digits. The groups of digits
are optionally separated by one or more blanks, and the whole
sequence is delimited by single or double quotation marks, and
immediately followed by the symbol X or x. (Neither x nor X can be
part of a longer symbol.) The blanks, which may be present only at
byte boundaries (and not at the beginning or end of the string), are
to aid readability. The language processor ignores them. A
hexadecimal string is a literal string formed by packing the
hexadecimal digits given. Packing the hexadecimal digits removes
blanks and converts each pair of hexadecimal digits into its
equivalent character, for example: 'C1'X to A.

Hexadecimal strings let you include characters in a program even if
you cannot directly enter the characters themselves. These are
valid hexadecimal strings:

'ABCD'x
"1d ec f8"X
"1 d8"x

Note: A hexadecimal string is not a representation of a number.
Rather, it is an escape mechanism that lets a user describe
a character in terms of its encoding (and, therefore, is
machine-dependent). In EBCDIC, '40'X is the encoding for
a blank. In every case, a string of the form '.....'x is simply
an alternative to a straightforward string. In EBCDIC 'C1'x
and 'A' are identical, as are '40'x and a blank, and must
be treated identically.

Implementation maximum: The packed length of a hexadecimal
string (the string with blanks removed) cannot exceed 250 bytes.

 Chapter 2. REXX General Concepts 2-5

 REXX General Concepts

Binary Strings:
A binary string is a literal string, expressed using a binary
representation of its encoding. It is any sequence of zero or more
binary digits (ð or 1) in groups of 8 (bytes) or 4 (nibbles). The first
group may have fewer than four digits; in this case, up to three 0
digits are assumed to the left of the first digit, making a total of four
digits. The groups of digits are optionally separated by one or more
blanks, and the whole sequence is delimited by matching single or
double quotation marks and immediately followed by the symbol b
or B. (Neither b nor B can be part of a longer symbol.) The blanks,
which may be present only at byte or nibble boundaries (and not at
the beginning or end of the string), are to aid readability. The
language processor ignores them.

A binary string is a literal string formed by packing the binary digits
given. If the number of binary digits is not a multiple of eight,
leading zeros are added on the left to make a multiple of eight
before packing. Binary strings allow you to specify characters
explicitly, bit by bit.

These are valid binary strings:

'1111ðððð'b /\ == 'fð'x \/
"1ð1 11ð1"b /\ == '5d'x \/
'1'b /\ == 'ððððððð1'b and 'ð1'x \/
'1ðððð 1ð1ð1ð1ð'b /\ == 'ððð1 ðððð 1ð1ð 1ð1ð'b \/
''b /\ == '' \/

A note on binary string interpretation in TSO/E: Binary string
support was introduced with TSO/E Version 2 Release 4. With this
release, and all following ones, a string in the form of 'string'B
causes string to be interpreted as binary string. Prior to TSO/E
2.4, the two parts of the expression 'string'B, string and B, were
concatenated after the value for the variable B was determined. For
example, if B='variable_value' were concatenated with string,
then 'string'B would be interpreted as stringvariable_value. If
this error is detected in REXX execs written before TSO/E 2.4, use
the concatenation operator (||) to eliminate the problem. For
example, code 'string'B as:

'string'|Lor.B

Symbols:
Symbols are groups of characters, selected from the:

� English alphabetic characters (A–Z and a–z1)
� Numeric characters (ð–9)
� Characters @ # $ ¢ . !2 ? and underscore.
� Double-Byte Character Set (DBCS) characters

(X'41'–X'FE')—ETMODE must be in effect for these
characters to be valid in symbols.

Any lowercase alphabetic character in a symbol is translated to
uppercase (that is, lowercase a–z to uppercase A–Z) before use.

1 Note that some code pages do not include lowercase English characters a–z.

2 The encoding of the exclamation point character depends on the code page in use.

2-6 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

These are valid symbols:

Fred
Albert.Hall
WHERE?

If a symbol does not begin with a digit or a period, you can use it
as a variable and can assign it a value. If you have not assigned it
a value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a–z to uppercase A–Z). Symbols that
begin with a number or a period are constant symbols and cannot
be assigned a value.

One other form of symbol is allowed to support the representation
of numbers in exponential format. The symbol starts with a digit
(ð–9) or a period, and it may end with the sequence E or e, followed
immediately by an optional sign (- or +), followed immediately by
one or more digits (which cannot be followed by any other symbol
characters). The sign in this context is part of the symbol and is not
an operator.

These are valid numbers in exponential notation:

17.3E-12
.ð3e+9

Implementation maximum: A symbol can consist of up to 250
characters. (But note that its value, if it is a variable, is limited only
by the amount of storage available.)

Numbers:
These are character strings consisting of one or more decimal
digits, with an optional prefix of a plus or minus sign, and optionally
including a single period (.) that represents a decimal point. A
number can also have a power of 10 suffixed in conventional
exponential notation: an E (uppercase or lowercase), followed
optionally by a plus or minus sign, then followed by one or more
decimal digits defining the power of 10. Whenever a character
string is used as a number, rounding may occur to a precision
specified by the NUMERIC DIGITS instruction (default nine digits).
See pages 6-1-6-10 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any)
and can have trailing blanks. Blanks may not be embedded among
the digits of a number or in the exponential part. Note that a
symbol (see preceding) or a literal string may be a number. A
number cannot be the name of a variable.

These are valid numbers:

12
'-17.9'
127.ð65ð
73e+128
' + 7.9E5 '

A whole number is a number that has a zero (or no) decimal part
and that the language processor would not usually express in
exponential notation. That is, it has no more digits before the

 Chapter 2. REXX General Concepts 2-7

 REXX General Concepts

decimal point than the current setting of NUMERIC DIGITS (the
default is 9).

Implementation maximum: The exponent of a number expressed
in exponential notation can have up to nine digits.

Operator Characters:
The characters: + - \ / % \ | & = ¬ > < and the
sequences >= <= \> \< \= >< <> == \== // && || \\
¬> ¬< ¬= ¬== >> << >>= \<< ¬<< \>> ¬>> <<= /= /==
indicate operations (see page 2-10). A few of these are also used
in parsing templates, and the equal sign is also used to indicate
assignment. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning:

345>=123
345 >=123
345 >= 123
345 > = 123

Some of these characters may not be available in all character
sets, and, if this is the case, appropriate translations may be used.
In particular, the vertical bar (|) or character is often shown as a
split vertical bar (¦).

Throughout the language, the not character, ¬, is synonymous
with the backslash (\). You can use the two characters
interchangeably according to availability and personal preference.

Special Characters:
The following characters, together with the individual characters
from the operators, have special significance when found outside of
literal strings:

, ; :) (

These characters constitute the set of special characters. They all
act as token delimiters, and blanks adjacent to any of these are
removed. There is an exception: a blank adjacent to the outside of
a parenthesis is deleted only if it is also adjacent to another special
character (unless the character is a parenthesis and the blank is
outside it, too). For example, the language processor does not
remove the blank in A (Z). This is a concatenation that is not
equivalent to A(Z), a function call. The language processor does
remove the blanks in (A) + (Z) because this is equivalent to
(A)+(Z).

The following example shows how a clause is composed of tokens.

'REPEAT' A + 3;

This is composed of six tokens—a literal string ('REPEAT'), a blank operator, a
symbol (A, which may have a value), an operator (+), a second symbol (3, which is
a number and a symbol), and the clause delimiter (;). The blanks between the A
and the + and between the + and the 3 are removed. However, one of the blanks
between the 'REPEAT' and the A remains as an operator. Thus, this clause is
treated as though written:

'REPEAT' A+3;

2-8 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

 Implied Semicolons
The last element in a clause is the semicolon delimiter. The language processor
implies the semicolon: at a line-end, after certain keywords, and after a colon if it
follows a single symbol. This means that you need to include semicolons only when
there is more than one clause on a line or to end an instruction whose last
character is a comma.

A line-end usually marks the end of a clause and, thus, REXX implies a semicolon
at most end of lines. However, there are the following exceptions:

� The line ends in the middle of a string.
� The line ends in the middle of a comment. The clause continues on to the next

line.
� The last token was the continuation character (a comma) and the line does not

end in the middle of a comment. (Note that a comment is not a token.)

REXX automatically implies semicolons after colons (when following a single
symbol, a label) and after certain keywords when they are in the correct context.
The keywords that have this effect are: ELSE, OTHERWISE, and THEN. These
special cases reduce typographical errors significantly.

Note: The two characters forming the comment delimiters, /\ and \/, must not be
split by a line-end (that is, / and \ should not appear on different lines)
because they could not then be recognized correctly; an implied semicolon
would be added. The two consecutive characters forming a literal quotation
mark within a string are also subject to this line-end ruling.

 Continuations
One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character . The comma is functionally replaced by
a blank, and, thus, no semicolon is implied. One or more comments can follow the
continuation character before the end of the line. The continuation character cannot
be used in the middle of a string or it will be processed as part of the string itself.
The same situation holds true for comments. Note that the comma remains in
execution traces.

The following example shows how to use the continuation character to continue a
clause.

say 'You can use a comma',
'to continue this clause.'

This displays:

You can use a comma to continue this clause.

Expressions and Operators
Expressions in REXX are a general mechanism for combining one or more pieces
of data in various ways to produce a result, usually different from the original data.

 Chapter 2. REXX General Concepts 2-9

 REXX General Concepts

 Expressions
Expressions consist of one or more terms (literal strings, symbols, function calls, or
subexpressions) interspersed with zero or more operators that denote operations to
be carried out on terms. A subexpression is a term in an expression bracketed
within a left and a right parenthesis.

Terms include:

� Literal Strings (delimited by quotation marks), which are constants

� Symbols (no quotation marks), which are translated to uppercase. A symbol
that does not begin with a digit or a period may be the name of a variable; in
this case the value of that variable is used. Otherwise a symbol is treated as a
constant string. A symbol can also be compound .

� Function calls (see page 4-1), which are of the form:

 ┌ ┐─,──────────────
55─ ──┬ ┬──symbol(──────── ───6 ┴──┬ ┬──────────── ──) ─5%

└ ┘──literal_string(└ ┘─expression─

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see “Parentheses and Operator
Precedence” on page 2-13). Expressions are wholly evaluated, unless an error
occurs during evaluation.

All data is in the form of “typeless” character strings (typeless because it is not—as
in some other languages—of a particular declared type, such as Binary,
Hexadecimal, Array, and so forth). Consequently, the result of evaluating any
expression is itself a character string. Terms and results (except arithmetic and
logical expressions) may be the null string (a string of length ð). Note that REXX
imposes no restriction on the maximum length of results. However, there is usually
some practical limitation dependent upon the amount of storage available to the
language processor.

 Operators
An operator is a representation of an operation, such as addition, to be carried out
on one or two terms. The following pages describe how each operator (except for
the prefix operators) acts on two terms, which may be symbols, strings, function
calls, intermediate results, or subexpressions. Each prefix operator acts on the term
or subexpression that follows it. Blanks (and comments) adjacent to operator
characters have no effect on the operator; thus, operators constructed from more
than one character can have embedded blanks and comments. In addition, one or
more blanks, where they occur in expressions but are not adjacent to another
operator, also act as an operator. There are four types of operators:

 � Concatenation
 � Arithmetic
 � Comparison
 � Logical.

2-10 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

 String Concatenation
The concatenation operators combine two strings to form one string by appending
the second string to the right-hand end of the first string. The concatenation may
occur with or without an intervening blank. The concatenation operators are:

(blank) Concatenate terms with one blank in between

|| Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the || operator.

The abuttal operator is assumed between two terms that are not separated by
another operator. This can occur when two terms are syntactically distinct, such as
a literal string and a symbol, or when they are separated only by a comment.

Examples:

An example of syntactically distinct terms is: if Fred has the value 37.4, then
Fred'%' evaluates to 37.4%.

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37.41.

In EBCDIC, the two adjoining strings, one hexadecimal and one literal,

'c1 c2'x'CDE'

evaluate to ABCDE.

In the case of:

Fred/\ The NOT operator precedes Peter. \/¬Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/\ The NOT operator precedes Peter. \/(¬Peter)

results in an abuttal, and evaluates to 37.4ð.

 Arithmetic
You can combine character strings that are valid numbers (see page 2-7) using the
arithmetic operators:

+ Add

− Subtract

* Multiply

/ Divide

% Integer divide (divide and return the integer part of the result)

// Remainder (divide and return the remainder—not modulo, because
the result may be negative)

** Power (raise a number to a whole-number power)

Prefix − Same as the subtraction: ð - number

Prefix + Same as the addition: ð + number.

See Chapter 6, “Numbers and Arithmetic” on page 6-1 for details about precision,
the format of valid numbers, and the operation rules for arithmetic. Note that if an

 Chapter 2. REXX General Concepts 2-11

 REXX General Concepts

arithmetic result is shown in exponential notation, it is likely that rounding has
occurred.

 Comparison
The comparison operators compare two terms and return the value 1 if the result of
the comparison is true, or ð otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The ==, \==, /==, and ¬== operators test for an exact match between two
strings. The two strings must be identical (character by character) and of the same
length to be considered strictly equal. Similarly, the strict comparison operators
such as >> or << carry out a simple character-by-character comparison, with no
padding of either of the strings being compared. The comparison of the two strings
is from left to right. If one string is shorter than and is a leading substring of
another, then it is smaller than (less than) the other. The strict comparison
operators also do not attempt to perform a numeric comparison on the two
operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, and so forth—see
“Numeric Comparisons” on page 6-7) is effected. Otherwise, both terms are treated
as character strings (leading and trailing blanks are ignored, and then the shorter
string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive,
and for both the exact collating order may depend on the character set used for the
implementation. For example, in an EBCDIC environment, lowercase alphabetics
precede uppercase, and the digits ð–9 are higher than all alphabetics. In an ASCII
environment, the digits are lower than the alphabetics, and lowercase alphabetics
are higher than uppercase alphabetics.

The comparison operators and operations are:

= True if the terms are equal (numerically or when padded, and so
forth)

\=, ¬=, /= True if the terms are not equal (inverse of =)

> Greater than

< Less than

>< Greater than or less than (same as not equal)

<> Greater than or less than (same as not equal)

>= Greater than or equal to

\<, ¬< Not less than

<= Less than or equal to

\>, ¬> Not greater than

== True if terms are strictly equal (identical)

\==, ¬==, /== True if the terms are NOT strictly equal (inverse of ==)

>> Strictly greater than

<< Strictly less than

2-12 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

>>= Strictly greater than or equal to

\<<, ¬<< Strictly NOT less than

<<= Strictly less than or equal to

\>>, ¬>> Strictly NOT greater than

Note: Throughout the language, the not character, ¬, is synonymous with the
backslash (\). You can use the two characters interchangeably, according
to availability and personal preference. The backslash can appear in the
following operators: \ (prefix not), \=, \==, \<, \>, \<<, and \>>.

 Logical (Boolean)
A character string is taken to have the value false if it is ð, and true if it is 1. The
logical operators take one or two such values (values other than ð or 1 are not
allowed) and return ð or 1 as appropriate:

& AND

Returns 1 if both terms are true.

| Inclusive OR

Returns 1 if either term is true.

&& Exclusive OR

Returns 1 if either (but not both) is true.

Prefix \, ¬ Logical NOT

Negates; 1 becomes ð, and ð becomes 1.

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence
modify this:

� When parentheses are encountered (other than those that identify function
calls) the entire subexpression between the parentheses is evaluated
immediately when the term is required.

� When the sequence:

term1 operator1 term2 operator2 term3

is encountered, and operator2 has a higher precedence than operator1, the
subexpression (term2 operator2 term3) is evaluated first. The same rule is
applied repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). The precedence rules
affect only the order of operations .

For example, \ (multiply) has a higher priority than + (add), so 3+2\5 evaluates to
13 (rather than the 25 that would result if strict left to right evaluation occurred). To
force the addition to occur before the multiplication, you could rewrite the
expression as (3+2)\5. Adding the parentheses makes the first three tokens a
subexpression. Similarly, the expression -3\\2 evaluates to 9 (instead of -9)
because the prefix minus operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

 Chapter 2. REXX General Concepts 2-13

 REXX General Concepts

+ - ¬ \ (prefix operators)

** (power)

* / % // (multiply and divide)

+ - (add and subtract)

(blank) || (abuttal) (concatenation with or without blank)

= > < (comparison operators)

== >> <<

\= ¬=

>< <>

\> ¬>

\< ¬<

\== ¬==

\>> ¬>>

\<< ¬<<

>= >>=

<= <<=

/= /==

& (and)

| && (or, exclusive or)

Examples :

Suppose the symbol A is a variable whose value is 3, DAY is a variable whose value
is Monday, and other variables are uninitialized. Then:

A+5 -> '8'
A-4\2 -> '-5'
A/2 -> '1.5'
ð.5\\2 -> 'ð.25'
(A+1)>7 -> 'ð' /\ that is, False \/
' '='' -> '1' /\ that is, True \/
' '=='' -> 'ð' /\ that is, False \/
' '¬=='' -> '1' /\ that is, True \/
(A+1)\3=12 -> '1' /\ that is, True \/
'ð77'>'11' -> '1' /\ that is, True \/
'ð77' >> '11' -> 'ð' /\ that is, False \/
'abc' >> 'ab' -> '1' /\ that is, True \/
'abc' << 'abd' -> '1' /\ that is, True \/
'ab ' << 'abd' -> '1' /\ that is, True \/
Today is Day -> 'TODAY IS Monday'
'If it is' day -> 'If it is Monday'
Substr(Day,2,3) -> 'ond' /\ Substr is a function \/
'!'xxx'!' -> '!XXX!'
'ðððððð' >> 'ðEðððð' -> '1' /\ that is, True \/

Note: The last example would give a different answer if the > operator had been
used rather than >>. Because '0E0000' is a valid number in exponential
notation, a numeric comparison is done; thus '0E0000' and '000000'

2-14 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

evaluate as equal. The REXX order of precedence usually causes no
difficulty because it is the same as in conventional algebra and other
computer languages. There are two differences from common notations:

� The prefix minus operator always has a higher priority than the power
operator.

� Power operators (like other operators) are evaluated left-to-right.

For example:

-3\\2 == 9 /\ not -9 \/
-(2+1)\\2 == 9 /\ not -9 \/
2\\2\\3 == 64 /\ not 256 \/

Clauses and Instructions
Clauses can be subdivided into the following types:

 Null Clauses
A clause consisting only of blanks or comments or both is a null clause . It is
completely ignored (except that if it includes a comment it is traced, if appropriate).

Note: A null clause is not an instruction; for example, putting an extra semicolon
after the THEN or ELSE in an IF instruction is not equivalent to using a
dummy instruction (as it would be in PL/I). The NOP instruction is provided
for this purpose.

 Labels
A clause that consists of a single symbol followed by a colon is a label . The colon
in this context implies a semicolon (clause separator), so no semicolon is required.
Labels identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. More than one label may precede any instruction. Labels are treated
as null clauses and can be traced selectively to aid debugging.

Any number of successive clauses may be labels. This permits multiple labels
before other clauses. Duplicate labels are permitted, but control passes only to the
first of any duplicates in a program. The duplicate labels occurring later can be
traced but cannot be used as a target of a CALL, SIGNAL, or function invocation.

You can use DBCS characters in labels. See Appendix A, “Double-Byte Character
Set (DBCS) Support” on page A-1 for more information.

 Instructions
An instruction consists of one or more clauses describing some course of action
for the language processor to take. Instructions can be: assignments, keyword
instructions, or commands.

 Chapter 2. REXX General Concepts 2-15

 REXX General Concepts

 Assignments
A single clause of the form symbol=expression is an instruction known as an
assignment . An assignment gives a variable a (new) value. See “Assignments and
Symbols”.

 Keyword Instructions
A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Keyword instructions control the external
interfaces, the flow of control, and so forth. Some keyword instructions can include
nested instructions. In the following example, the DO construct (DO, the group of
instructions that follow it, and its associated END keyword) is considered a single
keyword instruction.

DO
 instruction
 instruction
 instruction
END

A subkeyword is a keyword that is reserved within the context of some particular
instruction, for example, the symbols TO and WHILE in the DO instruction.

 Commands
A command is a clause consisting of only an expression. The expression is
evaluated and the result is passed as a command string to some external
environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a
new value to it. The value of a variable is a single character string, of any length,
that may contain any characters.

You can assign a new value to a variable with the ARG, PARSE, or PULL
instructions, the VALUE built-in function, or the Variable Access Routine
(IRXEXCOM), but the most common way of changing the value of a variable is the
assignment instruction itself. Any clause of the form:

symbol=expression;

is taken to be an assignment. The result of expression becomes the new value of
the variable named by the symbol to the left of the equal sign. On TSO/E, if you
omit expression, the variable is set to the null string. However, it is recommended
that you explicitly set a variable to the null string: symbol=''.

Variable names can contain DBCS characters. For information about DBCS
characters, see Appendix A, “Double-Byte Character Set (DBCS) Support” on
page A-1.

Example:

/\ Next line gives FRED the value "Frederic" \/
Fred='Frederic'

2-16 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

The symbol naming the variable cannot begin with a digit (ð–9) or a period.
(Without this restriction on the first character of a variable name, you could redefine
a number; for example 3=4; would give a variable called 3 the value 4.)

You can use a symbol in an expression even if you have not assigned it a value,
because a symbol has a defined value at all times. A variable you have not
assigned a value is uninitialized . Its value is the characters of the symbol itself,
translated to uppercase (that is, lowercase a–z to uppercase A–Z). However, if it is
a compound symbol (described under “Compound Symbols” on page 2-18), its
value is the derived name of the symbol.

Example:

/\ If Freda has not yet been assigned a value, \/
/\ then next line gives FRED the value "FREDA" \/
Fred=Freda

The meaning of a symbol in REXX varies according to its context. As a term in an
expression (rather than a keyword of some kind, for example), a symbol belongs to
one of four groups: constant symbols, simple symbols, compound symbols, and
stems. Constant symbols cannot be assigned new values. You can use simple
symbols for variables where the name corresponds to a single value. You can use
compound symbols and stems for more complex collections of variables, such as
arrays and lists.

 Constant Symbols
A constant symbol starts with a digit (ð–9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting
of the characters of the symbol (that is, with any lowercase alphabetic characters
translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5 /\ Same as 12E5 \/
3D
17E-3

 Simple Symbols
A simple symbol does not contain any periods and does not start with a digit
(ð–9).

By default, its value is the characters of the symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea? /\ Same as WHATAGOODIDEA? \/
?12

 Chapter 2. REXX General Concepts 2-17

 REXX General Concepts

 Compound Symbols
A compound symbol permits the substitution of variables within its name when
you refer to it. A compound symbol contains at least one period and at least two
other characters. It cannot start with a digit or a period, and if there is only one
period in the compound symbol, it cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period). This is followed by a tail , parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null. The derived name of a compound
symbol is the stem of the symbol, in uppercase, followed by the tail, in which all
simple symbols have been replaced with their values. A tail itself can be comprised
of the characters A–Z, a–z, ð–9, and @ # $ ¢ . ! ? and underscore. The value of a
tail can be any character string, including the null string and strings containing
blanks. For example:

taila='\ ('
tailb=''
stem.taila=99
stem.tailb=stem.taila
say stem.tailb /\ Displays: 99 \/
/\ But the following instruction would cause an error \/
/\ say stem.\ (\/

You cannot use constant symbols with embedded signs (for example, 12.3E+5)
after a stem; in this case, the whole symbol would not be a valid symbol.

These are compound symbols:

FRED.3
Array.I.J
AMESSY..One.2.

Before the symbol is used (that is, at the time of reference), the language
processor substitutes the values of any simple symbols in the tail (I, J, and One in
the examples), thus generating a new, derived name. This derived name is then
used just like a simple symbol. That is, its value is by default the derived name, or
(if it has been used as the target of an assignment) its value is the value of the
variable named by the derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods and blanks).
Substitution is done only one time.

To summarize: the derived name of a compound variable that is referred to by the
symbol

sð.s1.s2. --- .sn

is given by

dð.v1.v2. --- .vn

where dð is the uppercase form of the symbol sð, and v1 to vn are the values of the
constant or simple symbols s1 through sn. Any of the symbols s1-sn can be null.
The values v1-vn can also be null and can contain any characters (in particular,
lowercase characters are not translated to uppercase, blanks are not removed, and
periods have no special significance).

2-18 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

Some examples follow in the form of a small extract from a REXX program:

a=3 /\ assigns '3' to the variable A \/
z=4 /\ '4' to Z \/
c='Fred' /\ 'Fred' to C \/
a.z='Fred' /\ 'Fred' to A.4 \/
a.fred=5 /\ '5' to A.FRED \/
a.c='Bill' /\ 'Bill' to A.Fred \/
c.c=a.fred /\ '5' to C.Fred \/
y.a.z='Annie' /\ 'Annie' to Y.3.4 \/

say a z c a.a a.z a.c c.a a.fred y.a.4
/\ displays the string: \/
/\ "3 4 Fred A.3 Fred Bill C.3 5 Annie" \/

You can use compound symbols to set up arrays and lists of variables in which the
subscript is not necessarily numeric, thus offering great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, effecting a form of associative
memory (content addressable).

Implementation maximum: The length of a variable name, before and after
substitution, cannot exceed 250 characters.

 Stems
A stem is a symbol that contains just one period, which is the last character. It
cannot start with a digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the string consisting of the characters of its
symbol (that is, translated to uppercase). If the symbol has been assigned a value,
it names a variable and its value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible
compound variables whose names begin with that stem receive the new value,
whether they previously had a value or not. Following the assignment, a reference
to any compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

For example:

hole. = "empty"
hole.9 = "full"

say hole.1 hole.mouse hole.9

/\ says "empty empty full" \/

Thus, you can give a whole collection of variables the same value. For example:

 Chapter 2. REXX General Concepts 2-19

 REXX General Concepts

total. = ð
do forever

say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name = total.name + amount

 end

Note: You can always obtain the value that has been assigned to the whole
collection of variables by using the stem. However, this is not the same as
using a compound variable whose derived name is the same as the stem.
For example:

total. = ð
null = ""
total.null = total.null + 5
say total. total.null /\ says "ð 5" \/

You can manipulate collections of variables, referred to by their stem, with the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 3-12), and PROCEDURE EXPOSE FRED. exposes all possible variables
with that stem (see page 3-23).

Notes:

1. When the ARG, PARSE, or PULL instruction or the VALUE built-in function or
the Variable Access Routine (IRXEXCOM) changes a variable, the effect is
identical with an assignment. Anywhere a value can be assigned, using a stem
sets an entire collection of variables.

2. Because an expression can include the operator =, and an instruction may
consist purely of an expression (see “Commands to External Environments”), a
possible ambiguity is resolved by the following rule: any clause that starts with
a symbol and whose second token is (or starts with) an equal sign (=) is an
assignment , rather than an expression (or a keyword instruction). This is not a
restriction, because you can ensure the clause is processed as a command in
several ways, such as by putting a null string before the first name, or by
enclosing the first part of the expression in parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in an
assignment, this should not cause confusion. For example, the clause:

Address='1ð Downing Street';

is an assignment, not an ADDRESS instruction.

3. You can use the SYMBOL function (see page 4-31) to test whether a symbol
has been assigned a value. In addition, you can set SIGNAL ON NOVALUE to
trap the use of any uninitialized variables (except when they are tails in
compound variables—see page 7-2).

Commands to External Environments
Issuing commands to the surrounding environment is an integral part of REXX.

2-20 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

 Environment
The system under which REXX programs run is assumed to include at least one
host command environment for processing commands. An environment is selected
by default on entry to a REXX program. In TSO/E REXX, the environment for
processing host commands is known as the host command environment. TSO/E
provides different environments for TSO/E and non-TSO/E address spaces. You
can change the environment by using the ADDRESS instruction. You can find out
the name of the current environment by using the ADDRESS built-in function. The
underlying operating system defines environments external to the REXX program.

The host command environment selected depends on the caller. For example, if
you call a REXX program from a TSO/E address space, the default host command
environment that TSO/E provides for processing host commands is TSO. If you
call an exec from a non-TSO/E address space, the default host command
environment that TSO/E provides is MVS.

TSO/E provides several host command environments for a TSO/E address space
(TSO/E and ISPF) and for non-TSO/E address spaces. “Host Commands and Host
Command Environments” on page 2-22 explains the different types of host
commands you can use in a REXX exec and the different host command
environments TSO/E provides for the processing of host commands.

The environments are provided in the host command environment table, which
specifies the host command environment name and the routine that is called to
handle the command processing for that host command environment. You can
provide your own host command environment and corresponding routine and define
them to the host command environment table. “Host Command Environment Table”
on page 14-25 describes the table in more detail. “Changing the Default Values for
Initializing an Environment” on page 14-41 describes how to change the defaults
TSO/E provides in order to define your own host command environments. You can
also use the IRXSUBCM routine to maintain entries in the host command
environment table (see page 12-54).

 Commands
To send a command to the currently addressed host command environment, use a
clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string), which is then prepared as appropriate and submitted to the host command
environment. Any part of the expression not to be evaluated should be enclosed in
quotation marks.

The environment then processes the command, which may have side-effects. It
eventually returns control to the language processor, after setting a return code. A
return code is a string, typically a number, that returns some information about the
command that has been processed. A return code usually indicates if a command
was successful or not but can also represent other information. The language
processor places this return code in the REXX special variable RC. See “Special
Variables” on page 7-5.

In addition to setting a return code, the underlying system may also indicate to the
language processor if an error or failure occurred. An error is a condition raised by

 Chapter 2. REXX General Concepts 2-21

 REXX General Concepts

a command for which a program that uses that command would usually be
expected to be prepared. (For example, a locate command to an editing system
might report requested string not found as an error.) A failure is a condition
raised by a command for which a program that uses that command would not
usually be expected to recover (for example, a command that is not executable or
cannot be found).

Errors and failures in commands can affect REXX processing if a condition trap for
ERROR or FAILURE is ON (see Chapter 7, “Conditions and Condition Traps” on
page 7-1). They may also cause the command to be traced if TRACE E or TRACE F
is set. TRACE Normal is the same as TRACE F and is the default—see page 3-31.

Here is an example of submitting a command. If the host command environment
were TSO/E, the sequence:

mydata = "PROGA.LOAD"
"FREE DATASET("mydata")"

would result in the string FREE DATASET(PROGA.LOAD) being submitted to TSO/E. Of
course, the simpler expression:

"FREE DATASET(PROGA.LOAD)"

would have the same effect in this case.

Note: Whenever you use a host command in a REXX program, it is recommended
that you enclose the entire command in double quotation marks. See
OS/390 TSO/E REXX User’s Guide for a description of using single and
double quotation marks in commands.

On return, the return code from the FREE command is placed in the REXX special
variable RC. The return code in RC is ‘0’ if the FREE command processor
successfully freed the data set or ‘12’ if it did not. Whenever a host command is
processed, the return code from the command is placed in the REXX special
variable RC.

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression that is
not to be evaluated.

Host Commands and Host Command Environments
You can issue host commands from a REXX program. When the language
processor processes a clause that it does not recognize as a REXX instruction or
an assignment instruction, the language processor considers the clause to be a
host command and routes the command to the current host command environment.
The host command environment processes the command and then returns control
to the language processor.

For example, in REXX processing, a host command can be:

� A TSO/E command processor, such as ALLOCATE, FREE, or EXEC

� A TSO/E REXX command, such as NEWSTACK or QBUF

� A program that you link to or attach

� An MVS system or subsystem command that you invoke during an extended
MCS console session

2-22 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

� An ISPF command or service

� An SAA CPI Communications call or APPC/MVS call

If a REXX exec contains

FRED var1 var2

the language processor considers the clause to be a command and passes the
clause to the current host command environment for processing. The host
command environment processes the command, sets a return code in the REXX
special variable RC, and returns control to the language processor. The return code
set in RC is the return code from the host command you specified. For example,
the value in RC may be the return code from a TSO/E command processor, an
ISPF command or service, or a program you attached. The return code may also
be a -3, which indicates that the host command environment could not locate the
specified host command (TSO/E command, CLIST, exec, attached or linked
routine, ISPF command or service, and so on). A return code of -3 is always
returned if you issue a host command in an exec and the host command
environment cannot locate the command.

Note: If you issue a host command from a REXX exec that is running in an
authorized or isolated environment, a -3 return code may be returned.

If a system abend occurs during a host command, the REXX special variable RC is
set to the negative of the decimal value of the abend code. If a user abend occurs
during a host command, the REXX special variable RC is set to the decimal value
of the abend code. If no abend occurs during a host command, the REXX special
variable RC is set to the decimal value of the return code from the command.

Certain conditions may be raised depending on the value of the special variable
RC:

� If the RC value is negative, the FAILURE condition is raised.
� If the RC value is positive, the ERROR condition is raised.
� If the RC value is zero, neither the ERROR nor FAILURE conditions are raised.

See Chapter 7, Conditions and Condition Traps for more information.

If you issue a host command in a REXX exec, it is recommended that you enclose
the entire command in double quotation marks, for example:

"routine-name var1 var2"

TSO/E provides several host command environments that process different types of
host commands. The following topics describe the different host command
environments TSO/E provides for non-TSO/E address spaces and for the TSO/E
address space (TSO/E and ISPF).

The TSO Host Command Environment
The TSO host command environment is available only to REXX execs that run in
the TSO/E address space. Use the TSO host command environment to invoke
TSO/E commands and services. You can also invoke all of the TSO/E REXX
commands, such as MAKEBUF and NEWSTACK, and invoke other REXX execs
and CLISTs. When you invoke a REXX exec in the TSO/E address space, the
default initial host command environment is TSO.

 Chapter 2. REXX General Concepts 2-23

 REXX General Concepts

Note that the value that can be set in the REXX special variable RC for the TSO
environment is a signed 24-bit number in the range -8,388,608 to +8,388,607.

The CONSOLE Host Command Environment
The CONSOLE host command environment is available only to REXX execs that
run in the TSO/E address space. Use the CONSOLE environment to invoke MVS
system and subsystem commands during an extended MCS console session. To
use the CONSOLE environment, you must have CONSOLE command authority.

Before you can use the CONSOLE environment, you must first activate an
extended MCS console session using the TSO/E CONSOLE command. After the
console session is active, use ADDRESS CONSOLE to issue MVS system and
subsystem commands. The CONSOLE environment lets you issue MVS commands
from a REXX exec without having to repeatedly issue the CONSOLE command
with the SYSCMD keyword. For more information about the CONSOLE
environment and related TSO/E services, see Appendix C, “Writing REXX Execs to
Perform MVS Operator Activities” on page C-1.

If you use ADDRESS CONSOLE and issue an MVS system or subsystem
command before activating a console session, the CONSOLE environment will not
be able to locate the command you issued. In this case, the REXX special variable
RC is set to -3 and the FAILURE condition is raised. The -3 return code indicates
that the host command environment could not locate the command you issued. In
this case, the command could not be found because a console session is not
active.

Note that the value that can be set in the REXX special variable RC for the
CONSOLE environment is a signed 31-bit number in the range -2,147,483,648 to
+2,147,483,647.

The ISPEXEC and ISREDIT Host Command Environments
The ISPEXEC and ISREDIT host command environments are available only to
REXX execs that run in ISPF. Use the environments to invoke ISPF commands
and services, and ISPF edit macros.

When you invoke a REXX exec from ISPF, the default initial host command
environment is TSO. You can use the ADDRESS instruction to use an ISPF
service. For example, to use the ISPF SELECT service, use the following
instruction:

ADDRESS ISPEXEC 'SELECT service'

The ISREDIT environment lets you issue ISPF edit macros. To use ISREDIT, you
must be in an edit session.

Note that the value that can be set in the REXX special variable RC for the
ISPEXEC and ISREDIT environments is a signed 24-bit number in the range
-8,388,608 to +8,388,607.

2-24 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

The CPICOMM, LU62, and APPCMVS Host Command Environments
The CPICOMM, LU62, and APPCMVS host command environments are available
to REXX execs that run in any MVS address space. The CPICOMM environment
lets you use the SAA common programming interface (CPI) Communications calls.
The LU62 environment lets you use the APPC/MVS calls that are based on the
SNA LU 6.2 architecture. The APPCMVS environment allows APPC transaction
programs to invoke APPC/MVS server facilities callable services and callable
services related to the testing of transaction programs. Using these environments,
you can write APPC/MVS transaction programs (TPs) in the REXX programming
language. Using CPICOMM, you can write transaction programs in REXX that can
be used in different SAA environments.

The CPICOMM environment supports the starter set and advanced function set of
the following SAA CPI Communications calls. For more information about each call
and its parameters, see SAA Common Programming Interface Communications
Reference.

 � CMACCP (Accept_Conversation)
 � CMALLC (Allocate)
 � CMCFM (Confirm)
 � CMCFMD (Confirmed)
 � CMDEAL (Deallocate)
 � CMECS (Extract_Conversation_State)
 � CMECT (Extract_Conversation_Type)
 � CMEMN (Extract_Mode_Name)
 � CMEPLN (Extract_Partner_LU_Name)
 � CMESL (Extract_Sync_Level)
 � CMFLUS (Flush)
 � CMINIT (Initialize_Conversation)
 � CMPTR (Prepare_To_Receive)
 � CMRCV (Receive)
 � CMRTS (Request_To_Send)
 � CMSCT (Set_Conversation_Type)
 � CMSDT (Set_Deallocate_Type)
 � CMSED (Set_Error_Direction)
 � CMSEND (Send_Data)
 � CMSERR (Send_Error)
 � CMSF (Set_Fill)
 � CMSLD (Set_Log_Data)
 � CMSMN (Set_Mode_Name)
 � CMSPLN (Set_Partner_LU_Name)
 � CMSPTR (Set_Prepare_To_Receive_Type)
 � CMSRC (Set_Return_Control)
 � CMSRT (Set_Receive_Type)
 � CMSSL (Set_Sync_Level)
 � CMSST (Set_Send_Type)
 � CMSTPN (Set_TP_Name)
 � CMTRTS (Test_Request_To_Send_Received)

The LU62 environment supports the following APPC/MVS calls. These calls are
based on the SNA LU 6.2 architecture and are referred to as APPC/MVS calls in
this book. For more information about the calls and their parameters, see OS/390
MVS Programming: Writing TPs for APPC/MVS.

 Chapter 2. REXX General Concepts 2-25

 REXX General Concepts

 � ATBALLC (Allocate)
 � ATBCFM (Confirm)
 � ATBCFMD (Confirmed)
 � ATBDEAL (Deallocate)
 � ATBFLUS (Flush)
 � ATBGETA (Get_Attributes)
 � ATBGETC (Get_Conversation)
 � ATBGETP (Get_TP_Properties)
 � ATBGETT (Get_Type)
 � ATBPTR (Prepare_to_Receive)
 � ATBRCVI (Receive_Immediate)
 � ATBRCVW (Receive_and_Wait)
 � ATBRTS (Request_to_Send)
 � ATBSEND (Send_Data)
 � ATBSERR (Send_Error)

The LU62 host command environment supports the following callable services
which existed prior to MVS/SP 4.3.0, but have been updated:

 � ATBALC2 (Allocate)
 � ATBGTA2 (Get_Attributes)

The APPCMVS host command environment supports the following advanced
callable services:

 � ATBRFA2 (Register_for_Allocates)
 � ATBRAL2 (Receive_Allocate)
 � ATBRJC2 (Reject_Conversation)
 � ATBSTE2 (Set_Event_Notification)
 � ATBGTE2 (Get_Event)
 � ATBQAQ2 (Query_Allocate_Queue)
 � ATBSAQ2 (Set_Allocate_Queue_Attributes)
 � ATBSCA2 (Set_Conversation_Accounting_Information)
 � ATBURA2 (Unregister_for_Allocates)
 � ATBPOR2 (Post_on_Receipt)

The APPCMVS host command environment supports the following callable services
which existed prior to MVS SP 4.3.0. However, these callable services were not
supported prior to TSO/E 2.4. These services are used for testing transaction
programs.

 � ATBTER1 (Register_Test)
 � ATBTEA1 (Accept_Test)
 � ATBTEU1 (Unregister_Test)
� ATBCUC1 (Cleanup_TP (Unauthorized))

 � ATBVERS (APPC_Version_Service)

Note: If you use the APPC/MVS calls, be aware that TSO/E REXX does not
support data spaces. In addition, the buffer length limit for ATBRCVI,
ATBRCVW, and ATBSEND is 16 MB. You can request callable service
asynchronous processing on services that provide it. This is specified on the
parameter.

To use either an SAA CPI Communications call or an APPC/MVS call, specify the
name of the call followed by variable names for each of the parameters. Separate
each variable name by one or more blanks. For example:

2-26 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

ADDRESS LU62 'ATBCFMD conversation_ID notify_type return_code'

You must enclose the entire call in single or double quotation marks. You must also
pass a variable name for each parameter. Do not pass actual values for the
parameters. By enclosing the call in quotation marks, the language processor does
not evaluate any variables and simply passes the expression to the host command
environment for processing. The CPICOMM or LU62 environment itself evaluates
the variables and performs variable substitution. If you do not specify a variable for
each parameter and enclose the call in quotation marks, you may have problems
with variable substitution and receive unexpected results.

As an example, the SAA CPI Communications call, CMINIT, has three parameters;
conversation_id, sym_dest_name, and return_code. When you use CMINIT, specify
three variables for the three parameters; for example, convid for the
conversation_id parameter, symdest for the sym_dest_name parameter, and
retcode for the return_code parameter. Before you use CMINIT, you can assign the
value you want to use for the sym_dest_name parameter, such as CPINY17.

/\ REXX transaction program ... \/
...

symdest = 'CPINY17'
...

ADDRESS CPICOMM "CMINIT convid symdest retcode"
IF retcode ¬= CM_OK THEN
...

ADDRESS CPICOMM "CMALLC convid retcode"
IF retcode = CM_OK THEN
...

EXIT

In the example, you assign the variable symdest the value CPINY17. On the
CMINIT call, you use the variable names for the parameters. The CPICOMM host
command environment evaluates the variables and uses the value CPINY17 for the
sym_dest_name parameter.

When the call returns control to the language processor, the output variables whose
names were specified on the call contain the returned values. In this example, the
variable “convid” contains the value for the conversation_id parameter and “retcode”
contains the value for the return_code parameter.

On return, the REXX special variable RC is also set to one of the following:

� A zero if the service is invoked successfully.

� A -3 if the parameter list was incorrect or if the APPC/MVS call could not be
found.

Note that the value that can be set in the REXX special variable RC for the
CPICOMM and LU62 environments is a signed 31-bit number in the range
-2,147,483,648 to +2,147,483,647.

 Chapter 2. REXX General Concepts 2-27

 REXX General Concepts

 Pseudonym Files
Both the SAA CPI Communications calls and the APPC/MVS calls use
pseudonyms for actual calls, characteristics, variables, and so on. For example, the
return_code parameter for SAA CPI Communications calls can be the pseudonym
CM_OK. The integer value for the CM_OK pseudonym is 0.

APPC/MVS provides pseudonym files in SYS1.SAMPLIB that define the
pseudonyms and corresponding integer values. The pseudonym files APPC/MVS
provides are:

� ATBPBREX for APPC/MVS calls
� ATBCMREX for SAA CPI Communications calls.
� ATBCTREX for APPCMVS host command environment pseudonyms.

The sample pseudonym files contain REXX assignment statements that simplify
writing transaction programs in REXX. You can copy either the entire pseudonym
file or parts of the file into your transaction program.

Transaction Program Profiles
If you write a transaction program in REXX and you plan to run the program as an
inbound TP, you have to create a transaction program profile for the exec. The
profile is required for inbound or attached TPs. The transaction program profile
consists of a set of JCL statements that you store in a TP profile data set on MVS.
The following figures provide example JCL for transaction program profiles. For
more information about TP profiles, see OS/390 MVS Planning: APPC/MVS
Management.

Figure 2-2 shows example JCL for an exec that you write for non-TSO/E address
spaces.

//JOBNAME JOB parameters
//STEPNAME EXEC PGM=IRXJCL,PARM='exec_member_name argument'
//SYSPRINT DD SYSOUT=A
//SYSEXEC DD DSN=exec_data_set_name,DISP=SHR
//SYSTSIN DD DSN=input_data_set_name,DISP=SHR
//SYSTSPRT DD DSN=output_data_set_name,DISP=SHR

Figure 2-2. Example JCL for TP Profile for a Non-TSO/E REXX Exec

Figure 2-3 shows example JCL for an exec that you write for a TSO/E address
space.

//JOBNAME JOB parameters
//STEPNAME EXEC PGM=IKJEFTð1,PARM='exec_member_name argument'
//SYSPRINT DD SYSOUT=A
//SYSEXEC DD DSN=exec_data_set_name,DISP=SHR
//SYSTSPRT DD DSN=output_data_set_name,DISP=SHR
//SYSTSIN DD DUMMY

Figure 2-3. Example JCL for TP Profile for a TSO/E REXX Exec

2-28 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

Sample Transaction Programs
APPC/MVS provides sample transaction programs written in REXX and related
information in SYS1.SAMPLIB. Figure 2-4 lists the member names of the samples
and their description. For information about using the sample TPs, see the
comments at the beginning of the outbound transaction program for the particular
sample. For the SAA CPI Communications sample, the outbound TP is in member
ATBCAO. For the APPC/MVS sample (based on the SNA LU 6.2 architecture), the
outbound TP is in member ATBLAO.

Figure 2-4. Sample APPC/MVS Transaction Programs in SYS1.SAMPLIB

Samplib
Member

Description

ATBCAJ JCL to run REXX SAA CPI Communications sample program A

ATBCAP JCL to add a TP profile for REXX SAA CPI Communications sample
program A

ATBCAS JCL to add side information for REXX SAA CPI Communications
sample program A

ATBLAJ JCL to run REXX APPC/MVS sample program A

ATBLAP JCL to add a TP profile for REXX APPC/MVS sample program A

ATBCAI REXX SAA CPI Communications sample program A; inbound REXX
transaction program

ATBCAO REXX SAA CPI Communications sample program A; outbound REXX
transaction program

ATBCKRC REXX subroutine to check return codes; used by sample REXX
transaction programs

ATBLAI REXX APPC/MVS sample program A; inbound REXX transaction
program

ATBLAO REXX APPC/MVS sample program A; outbound REXX transaction
program

The MVS Host Command Environment
The MVS host command environment is available in any MVS address space.
When you run a REXX exec in a non-TSO/E address space, the default initial host
command environment is MVS.

Note: When you invoke an exec in a TSO/E address space, TSO is the initial host
command environment.

In ADDRESS MVS, you can use a subset of the TSO/E REXX commands as
follows:

 � DELSTACK
 � NEWSTACK
 � QSTACK
 � QBUF
 � QELEM
 � EXECIO
 � MAKEBUF
 � DROPBUF
 � SUBCOM
 � TS

 Chapter 2. REXX General Concepts 2-29

 REXX General Concepts

 � TE

Chapter 10, “TSO/E REXX Commands” on page 10-1 describes the commands.

In ADDRESS MVS, you can also invoke another REXX exec using the ADDRESS
MVS EXEC command. Note that this command is not the same as the TSO/E
EXEC command processor. You can use one of the following instructions to invoke
an exec. The instructions in the following example assume the current host
command environment is not MVS.

ADDRESS MVS "execname p1 p2 ..."

ADDRESS MVS "EX execname p1 p2 ..."

ADDRESS MVS "EXEC execname p1 p2 ..."

If you use the ADDRESS MVS EXEC command to invoke another REXX exec, the
system searches only the DD from which the calling exec was loaded. If the exec is
not found in that DD, the search for the exec ends and the REXX special variable
RC is set to -3. Note that the value that can be set in the REXX special variable
RC for the MVS environment is a signed 31-bit number in the range -2,147,483,648
to +2,147,483,647.

To invoke an unauthorized program from an exec, use one of the link or attach host
command environments that are described in “Host Command Environments for
Linking to and Attaching Programs”.

All of the services that are available in ADDRESS MVS are also available in
ADDRESS TSO. For example, if you run a REXX exec in TSO/E, you can use the
TSO/E REXX commands (for example, MAKEBUF, NEWSTACK, QSTACK) in
ADDRESS TSO.

Host Command Environments for Linking to and Attaching Programs
TSO/E provides the LINK, LINKMVS, and LINKPGM host command environments
that let you link to unauthorized programs on the same task level.

TSO/E also provides the ATTACH, ATTCHMVS, and ATTCHPGM host command
environments that let you attach unauthorized programs on a different task level.

These link and attach environments are available to REXX execs that run in any
address space.

To link to or attach a program, specify the name of the program followed by any
parameters you want to pass to the program. For example:

ADDRESS LINKMVS "program p1 p2 ... pn"

ADDRESS ATTCHPGM "program p1 p2 ... pn"

Enclose the name of the program and any parameters in either single or double
quotation marks.

The host command environment routines for the environments use the following
search order to locate the program:

� Job pack area

2-30 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

� ISPLLIB. If the user issued LIBDEF ISPLLIB ..., the system searches the new
alternate library defined by LIBDEF followed by the ISPLLIB library.

� Task library and all preceding task libraries

� Step library. If there is no step library, the job library is searched, if one exists.

� Link pack area (LPA)

 � Link library.

The differences between the environments are the format of the parameter list that
the program receives, the capability of passing multiple parameters, variable
substitution for the parameters, and the ability of the invoked program to update the
parameters.

� For the LINK and ATTACH environments, you can specify only a single
character string that gets passed to the program. The LINK and ATTACH
environments do not evaluate the character string and do not perform variable
substitution. The environments simply pass the string to the invoked program.
The program can use the character string it receives. However, the program
cannot return an updated string to the exec.

� For the LINKMVS, LINKPGM, ATTCHMVS, and ATTCHPGM environments,
you can pass multiple parameters to the program. The environments evaluate
the parameters you specify and perform variable substitution. That is, the
environment determines the value of each variable. When the environment
invokes the program, the environment passes the value of each variable to the
program. The program can update the parameters it receives and return the
updated values to the exec.

After you link to or attach the program, the host command environment sets a
return code in the REXX special variable RC. For all of the link and attach
environments, the return code may be:

� A -3 if the host command environment could not locate the program you
specified

� The return code that the linked or attached program set in register 15.

Additionally, for the LINKMVS, ATTCHMVS, LINKPGM, and ATTCHPGM
environments, the return code set in RC may be -2, which indicates that processing
of the variables was not successful. Variable processing may have been
unsuccessful because the host command environment could not:

� Perform variable substitution before linking to or attaching the program

� Update the variables after the program completed.

For LINKMVS and ATTCHMVS, you can also receive an RC value of -2 if the
length of the value of the variable was larger than the length that could be specified
in the signed halfword length field in the parameter list. The maximum value of the
halfword length field is 32,767.

Note that the value that can be set in the RC special variable for the LINK,
LINKMVS, and LINKPGM environments is a signed 31-bit number in the range
-2,147,483,648 to +2,147,483,647. The value that can be set in RC for the
ATTACH, ATTCHMVS, and ATTCHPGM environments is a signed 24-bit number in
the range -8,388,608 to +8,388,607.

 Chapter 2. REXX General Concepts 2-31

 REXX General Concepts

The following topics describe how to link to and attach programs using the different
host command environments.

The LINK and ATTACH Host Command Environments
For the LINK and ATTACH environments, you can pass only a single character
string to the program. Enclose the name of the program and the character string in
either single or double quotation marks to prevent the language processor from
performing variable substitution. For example:

ADDRESS ATTACH 'TESTPGMA varid'

If you want to pass the value of a variable, then it should not be enclosed in
quotation marks. In this case the interpreter will perform the variable substitution
prior to passing the string to the host command environment. The following excerpt
from a REXX program would have identical results as the previous example:

parm_value = 'varid'
ADDRESS ATTACH 'TESTPGMA' parm_value

The host command environment routines for LINK and ATTACH do not evaluate
the character string you specify. The routine simply passes the character string to
the program that it links to or attaches. The program can use the character string it
receives. However, the program cannot return an updated string to the exec.

Figure 2-5 shows how the LINK or ATTACH host command environment routine
passes a character string to a program. Register 0 points to the ENVBLOCK under
which the REXX exec issuing the ADDRESS LINK or ADDRESS ATTACH is
running. Register 1 points to a list that consists of two addresses. The first address
points to a fullword that contains the address of the character string. The second
address points to a fullword that contains the length of the character string. The
high- order bit of the last address in the parameter list is set to 1 to indicate the end
of the parameter list.

Parameter 1

R1

R0 ENVBLOCK

Address of character string

Length of character stringParameter 2*

* high order bit on

Figure 2-5. Parameters for LINK and ATTACH Environments

For example, suppose you use the following instruction:

ADDRESS LINK 'TESMODA numberid payid'

When the LINK host command environment routine links to the TESMODA
program, the address of the character string points to the string:

2-32 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

numberid payid

The length of the character string is 14. In this example, if numberid and payid
were REXX variables, no substitution is performed by the LINK host command
environment.

You can use the LINK or ATTACH environments and not specify a character string.
For example:

ADDRESS ATTACH "proga"

In this case, the address of the character string is 0 and the length of the string is
0.

The LINKMVS and ATTCHMVS Host Command Environments
For the LINKMVS and ATTCHMVS environments, you can pass multiple
parameters to the program. Specify the name of the program followed by variable
names for each of the parameters. Separate each variable name by one or more
blanks. For example:

ADDRESS ATTCHMVS 'TESTPGMA var1 var2 var3'

For the parameters, specify variable names instead of the actual values. Enclose
the name of the program and the variable names in either single or double
quotation marks. By using the quotation marks, the language processor does not
evaluate any variables. The language processor simply passes the expression to
the host command environment for processing. The LINKMVS or ATTCHMVS
environment itself evaluates the variables and performs variable substitution. If you
do not use a variable for each parameter and enclose the expression in quotation
marks, you may have problems with variable substitution and receive unexpected
results.

After the LINKMVS or ATTCHMVS environment routine evaluates the value of each
variable, it builds a parameter list pointing to the values. The routine then links to or
attaches the program and passes the parameter list to the program.

Figure 2-6 on page 2-34 shows how the LINKMVS or ATTCHMVS host command
environment routine passes the parameters to the program. Register 0 points to the
ENVBLOCK under which the REXX exec issuing the ADDRESS LINKMVS or
ADDRESS ATTCHMVS is running. Register 1 contains the address of a parameter
list, which consists of a list of addresses. Each address in the parameter list points
to a parameter. The high-order bit of the last address in the parameter list is set to
1 to indicate the end of the parameter list.

Each parameter consists of a halfword length field followed by the parameter, which
is the value of the variable you specified on the LINKMVS or ATTCHMVS
instruction. The halfword length field contains the length of the parameter, which is
the length of the value of the variable. The maximum value of the halfword length
field is 32,767.

 Chapter 2. REXX General Concepts 2-33

 REXX General Concepts

Parameter 1
Parameter 1

Parameter n

Parameter 2Parameter 2

.

.

.

.

.

Parameter List

R1

R0 ENVBLOCK

length 1

length n

length 2

Parameter n*

* high order bit on

Figure 2-6. Parameters for LINKMVS and ATTCHMVS Environments

As an example, suppose you want to attach the RTNWORK program and you want
to pass two parameters; an order number (43176) and a code (CDETT76). When
you use the ADDRESS ATTCHMVS instruction, specify variable names for the two
parameters; for example, ordernum for the order number, 43176, and codenum for
the code, CDETT76. Before you use ADDRESS ATTCHMVS, assign the values to
the variable names.
...

ordernum = 43176
codenum = "CDETT76"
...

ADDRESS ATTCHMVS "RTNWORK ordernum codenum"
...

EXIT

In the example, you assign to the variable ordernum the value 43176 and you
assign to the variable codenum the value CDETT76. On the ADDRESS
ATTCHMVS instruction, you use the variable names for the two parameters. The
ATTCHMVS host command environment evaluates the variables and passes the
values of the variables to the RTNWORK program. In the parameter list, the length
field for the first parameter (variable ordernum) is 5, followed by the character string
43176. The length field for the second parameter (variable codenum) is 7, followed
by the character string CDETT76.

On entry to the linked or attached program, the halfword length fields contain the
actual length of the parameters. The linked or attached program can update the
values of the parameters before it completes processing. The value that the
program returns in the halfword length field determines the type of processing that
LINKMVS or ATTCHMVS performs.

2-34 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

When the LINKMVS or ATTCHMVS environment routine regains control, it
determines whether to update the values of the REXX variables before returning to
the REXX exec. To determine whether to update the value of a variable for a
specific parameter, the LINKMVS or ATTCHMVS environment checks the value in
the halfword length field. Depending on the value in the length field, LINKMVS or
ATTCHMVS updates the variable, does not update the variable, or sets the variable
to the null string.

� If the value in the length field is less than 0, the LINKMVS or ATTCHMVS
environment does not update the variable for that parameter.

� If the value in the length field is 0, the LINKMVS or ATTCHMVS environment
sets the variable for that parameter to the null string.

� If the value in the length field is greater than 0, the LINKMVS or ATTCHMVS
environment updates the variable for that parameter with the value the program
returned in the parameter list. If the length field is a positive number, LINKMVS
or ATTCHMVS simply updates the variable using the length in the length field.

If the length specified in the length field is less than 500, TSO/E provides a
storage area of 500 bytes regardless of the length of the value of the variable.
For example, if the length of the value of the variable on entry to the program
were 8 bytes, the halfword length field would contain the value 8. However,
there are 500 bytes of storage available for the parameter itself. This allows
the program to increase the length of the variable without having to obtain
storage. If the invoked program changes the length of the variable, it must also
update the length field.

If the original length of the value is greater than 500 bytes, there is no
additional space. For example, suppose you specify a variable whose value
has a length of 620 bytes. The invoked program can return a value with a
maximum length of 620 bytes. TSO/E does not provide an additional buffer
area. In this case, if you expect that the linked or attached program may want
to return a larger value, pad the original value to the right with blanks.

As an example, suppose you link to a program called PGMCODES and pass a
variable pcode that has the value PC7177. The LINKMVS environment evaluates
the value of the variable pcode (PC7177) and builds a parameter list pointing to the
value. The halfword length field contains the length of the value, which is 6,
followed by the value itself. Suppose the PGMCODES program updates the
PC7177 value to the value PC7177ADC3. When the PGMCODES program returns
control to the LINKMVS environment, the program must update the length value in
the halfword length field to 10 to indicate the actual length of the value it is
returning to the exec.

You can use the LINKMVS or ATTCHMVS environments and not specify any
parameters. For example:

ADDRESS ATTCHMVS 'workpgm'

If you do not specify any parameters, register 1 contains an address that points to
a parameter list. The high-order bit is on in the first parameter address. The
parameter address points to a parameter that has a length of 0.

 Chapter 2. REXX General Concepts 2-35

 REXX General Concepts

An Example Using LINKMVS to Specify User-defined Ddnames: In this
example the user had the need to specify user-defined ddnames, instead of using
SYSUT1 and SYSUT2, for an invocation of IEBGENER, an MVS data set utility
program.

/\ Rexx - Invoke IEBGENER with alternate ddnames. \/
prog = 'IEBGENER'
parm = '' /\ Standard PARM, as from JCL \/
ddlist = copies('ðð'x,8) ||, /\ DDname 1 override: SYSLIN \/
 copies('ðð'x,8) ||, /\ DDname 2 override: n/a \/

copies('ðð'x,8) ||, /\ DDname 3 override: SYSLMOD \/
copies('ðð'x,8) ||, /\ DDname 4 override: SYSLIB \/
left('CTL', 8) ||, /\ DDname 5 override: SYSIN \/
left('REP', 8) ||, /\ DDname 6 override: SYSPRINT \/
copies('ðð'x,8) ||, /\ DDname 7 override: SYSPUNCH \/
left('INP', 8) ||, /\ DDname 8 override: SYSUT1 \/
left('OUT', 8) ||, /\ DDname 9 override: SYSUT2 \/
copies('ðð'x,8) ||, /\ DDname 1ð override: SYSUT3 \/
copies('ðð'x,8) ||, /\ DDname 11 override: SYSUT4 \/
copies('ðð'x,8) ||, /\ DDname 12 override: SYSTERM \/
copies('ðð'x,8) ||, /\ DDname 13 override: n/a \/
copies('ðð'x,8) /\ DDname 14 override: SYSCIN \/

address 'LINKMVS' prog 'PARM DDLIST'
exit rc

The program to be invoked is specified in variable PROG as IEBGENER, the
parameters for the IEBGENER program are specified in variables PARM and
DDLIST. CTL, REP, INP, and OUT are the replaced ddnames.

The LINKPGM and ATTCHPGM Host Command Environments
For the LINKPGM and ATTCHPGM environments, you can pass multiple
parameters to the program. Specify the name of the program followed by variable
names for each of the parameters. Separate each variable name by one or more
blanks. For example:

ADDRESS LINKPGM "WKSTATS var1 var2"

For the parameters, specify variable names instead of the actual values. Enclose
the name of the program and the variable names in either single or double
quotation marks. By using the quotation marks, the language processor does not
evaluate any variables and simply passes the expression to the host command
environment for processing. The LINKPGM or ATTCHPGM environment itself
evaluates the variables and performs variable substitution. If you do not use a
variable for each parameter and enclose the expression in quotation marks, you
may have problems with variable substitution and receive unexpected results.

After the LINKPGM or ATTCHPGM environment routine evaluates the value of
each variable, it builds a parameter list pointing to the values. The routine then links
to or attaches the program and passes the parameter list to the program.

Figure 2-7 on page 2-37 shows how the LINKPGM or ATTCHPGM host command
environment routine passes the parameters to the program. Register 0 points to the
ENVBLOCK under which the REXX exec issuing the ADDRESS LINKPGM or
ADDRESS ATTCHPGM is running. Register 1 contains the address of a parameter
list, which consists of a list of addresses. Each address in the parameter list points

2-36 OS/390 V2R8.0 TSO/E REXX Reference

 REXX General Concepts

to a parameter. The high-order bit of the last address in the parameter list is set to
1 to indicate the end of the parameter list.

Parameter 1 Parameter 1

Parameter n

Parameter 2Parameter 2

.

.

.

.

.

Parameter List

R1

R0 ENVBLOCK

Parameter n*

* high order bit on

Figure 2-7. Parameters for LINKPGM and ATTCHPGM Environments

Unlike the LINKMVS and ATTCHMVS host command environments, the
parameters for the LINKPGM and ATTCHPGM environments do not have a length
field. On output from the linked or attached routine, the value of the parameter is
updated and the length of each parameter is considered to be the same as when
the parameter list was created. The linked or attached routine cannot increase the
length of the value of a variable that it receives. However, you can pad the length
of the value of a variable with blanks to increase its length before you link to or
attach a program.

As an example, suppose you want to link to the RESLINE program and you want to
pass one parameter, a reservation code of WK007816. When you use the
ADDRESS LINKPGM instruction, specify a variable name for the parameter; for
example, revcode for the reservation code, WK007816. Before you use ADDRESS
LINKPGM, assign the value to the variable name.

/\ REXX program that links ... \/
...

revcode = 'WKðð7816'
...

ADDRESS LINKPGM 'RESLINE revcode'
...

EXIT

In the example, you assign the variable revcode the value WK007816. On the
ADDRESS LINKPGM instruction, you use the variable name for the parameter. The
LINKPGM host command environment evaluates the variable and passes the value

 Chapter 2. REXX General Concepts 2-37

 REXX General Concepts

of the variable to the RESLINE program. The length of the parameter (variable
revcode) is 8. If the RESLINE program wanted to update the value of the variable
and return the updated value to the REXX exec, the program could not return a
value that is greater than 8 bytes. To allow the linked program to return a larger
value, you could pad the value of the original variable to the right with blanks. For
example, in the exec you could add seven blanks and assign the value
“WK007816” to the revcode variable. The length would then be 15 and the linked
program could return an updated value that was up to 15 bytes.

You can use the LINKPGM or ATTCHPGM environments and not specify any
parameters. For example:

ADDRESS ATTCHPGM "monbill"

If you do not specify any parameters, register 1 contains an address that points to
a parameter list. The high-order bit is on in the first parameter address, but the
address itself is 0.

2-38 OS/390 V2R8.0 TSO/E REXX Reference

 ADDRESS

 Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a
keyword that identifies the instruction. Some keyword instructions affect the flow of
control, while others provide services to the programmer. Some keyword
instructions, like DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords or subkeywords; other words (such as expression) denote a collection of
tokens as defined previously. Note, however, that the keywords and subkeywords
are not case dependent; the symbols if, If, and iF all have the same effect. Note
also that you can usually omit most of the clause delimiters (;) shown because they
are implied by the end of a line.

As explained in “Keyword Instructions” on page 2-16, a keyword instruction is
recognized only if its keyword is the first token in a clause, and if the second token
does not start with an = character (implying an assignment) or a colon (implying a
label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword
defined by REXX cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG
built-in function. A syntax error results if the keywords are not in their correct
positions in a DO, IF, or SELECT instruction. (The keyword THEN is also
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are
not reserved and can be used as labels or as the names of variables (though this is
generally not recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
subkeywords in the ADDRESS and PARSE instructions, respectively. For details,
see the description of each instruction. For a general discussion on reserved
keywords, see page 9-1.

Blanks adjacent to keywords have no effect other than to separate the keyword
from the subsequent token. One or more blanks following VALUE are required to
separate the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following
example, although it would add to the readability:

ADDRESS VALUE'ENVIR'||number

 ADDRESS

55─ ──ADDRESS ──┬ ┬───────────────────────────── ──; ───────────────────5%
 ├ ┤──environment ──┬ ┬────────────
 │ │└ ┘─expression─
 └ ┘── ──┬ ┬─────── expression1 ─────
 └ ┘─VALUE─

 Copyright IBM Corp. 1988, 1999 3-1

 ADDRESS

ADDRESS temporarily or permanently changes the destination of commands.
Commands are strings sent to an external environment. You can send commands
by specifying clauses consisting of only an expression or by using the ADDRESS
instruction.

How to enter commands to the host and the different host command environments
TSO/E provides are described in “Commands to External Environments” on
page 2-20.

To send a single command to a specified environment, code an environment, a
literal string or a single symbol, which is taken to be a constant, followed by an
expression. (The environment name is the name of an external procedure or
process that can process commands.) The expression is evaluated, and the
resulting string is routed to the environment to be processed as a command.
(Enclose in quotation marks any part of the expression you do not want to be
evaluated.) After execution of the command, environment is set back to whatever it
was before, thus temporarily changing the destination for a single command. The
special variable RC is set, just as it would be for other commands. (See page
2-21.) Errors and failures in commands processed in this way are trapped or traced
as usual.

Example:

ADDRESS LINK "routine p1 p2" /\ TSO/E \/

If you specify only environment, a lasting change of destination occurs: all
commands that follow (clauses that are neither REXX instructions nor assignment
instructions) are routed to the specified command environment, until the next
ADDRESS instruction is processed. The previously selected environment is saved.

Example:

Address MVS
"QBUF"
"MAKEBUF"

Similarly, you can use the VALUE form to make a lasting change to the
environment. Here expression1 (which may be simply a variable name) is
evaluated, and the result forms the name of the environment. You can omit the
subkeyword VALUE if expression1 does not begin with a literal string or symbol
(that is, if it starts with a special character, such as an operator character or
parenthesis).

Example:

ADDRESS ('ENVIR'||number) /\ Same as ADDRESS VALUE 'ENVIR'||number \/

With no arguments, commands are routed back to the environment that was
selected before the previous lasting change of environment was made, and the
current environment name is saved. After changing the environment, repeated
execution of ADDRESS alone, therefore, switches the command destination
between two environments alternately.

The two environment names are automatically saved across internal and external
subroutine and function calls. See the CALL instruction (page 3-4) for more details.

3-2 OS/390 V2R8.0 TSO/E REXX Reference

 ARG

The address setting is the currently selected environment name. You can retrieve
the current address setting by using the ADDRESS built-in function (see page 4-8).

TSO/E REXX provides several host command environments that you can use with
the ADDRESS instruction. The environments allow you to use different TSO/E,
MVS, and ISPF services. see “Host Commands and Host Command Environments”
on page 2-22.

You can provide your own environments or routines that handle command
processing in each environment. For more information, see “Host Command
Environment Table” on page 14-25.

 ARG

55─ ──ARG ──┬ ┬─────────────── ; ───────────────────────────────────────5%
 └ ┘─template_list─

ARG retrieves the argument strings provided to a program or internal routine and
assigns them to variables. It is a short form of the instruction:

55─ ──PARSE UPPER ARG ──┬ ┬─────────────── ; ─5%
 └ ┘─template_list─

The template_list is often a single template but can be several templates separated
by commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Unless a subroutine or internal function is being processed, the strings passed as
parameters to the program are parsed into variables according to the rules
described in Chapter 5, “Parsing” on page 5-1.

If a subroutine or internal function is being processed, the data used will be the
argument strings that the caller passes to the routine.

In either case, the language processor translates the passed strings to uppercase
(that is, lowercase a–z to uppercase A–Z) before processing them. Use the PARSE
ARG instruction if you do not want uppercase translation.

You can use the ARG and PARSE ARG instructions repeatedly on the same
source string or strings (typically with different templates). The source string does
not change. The only restrictions on the length or content of the data parsed are
those the caller imposes.

Example:

/\ String passed is "Easy Rider" \/

Arg adjective noun .

/\ Now: ADJECTIVE contains 'EASY' \/
/\ NOUN contains 'RIDER' \/

If you expect more than one string to be available to the program or routine, you
can use a comma in the parsing template_list so each template is selected in turn.

 Chapter 3. Keyword Instructions 3-3

 CALL

Example:

/\ Function is called by FRED('data X',1,5) \/

Fred: Arg string, num1, num2

/\ Now: STRING contains 'DATA X' \/
/\ NUM1 contains '1' \/
/\ NUM2 contains '5' \/

Notes:

1. The ARG built-in function can also retrieve or check the argument strings to a
REXX program or internal routine. See page 4-8.

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 3-21 for
details.

 CALL

 ┌ ┐─,──────────────
55─ ──CALL ──┬ ┬──name ───6 ┴──┬ ┬──────────── ─────────── ──; ──────────────5%
 │ │└ ┘─expression─
 ├ ┤──OFF ──┬ ┬─ERROR─── ───────────────────
 │ │├ ┤─FAILURE─
 │ │└ ┘─HALT────
 └ ┘──ON ──┬ ┬─ERROR─── ──┬ ┬────────────────
 ├ ┤─FAILURE─ └ ┘ ─NAME──trapname─
 └ ┘─HALT────

CALL calls a routine (if you specify name) or controls the trapping of certain
conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.
OFF turns off the specified condition trap. ON turns on the specified condition trap.
All information on condition traps is contained in Chapter 7, “Conditions and
Condition Traps” on page 7-1.

To call a routine, specify name, a literal string or symbol that is taken as a
constant. The name must be a symbol, which is treated literally, or a literal string.
The routine called can be:

An internal routine A function or subroutine that is in the same
program as the CALL instruction or function call
that calls it.

A built-in routine A function (which may be called as a subroutine)
that is defined as part of the REXX language.

An external routine A function or subroutine that is neither built-in nor
in the same program as the CALL instruction or
function call that calls it.

If name is a string (that is, you specify name in quotation marks), the search for
internal routines is bypassed, and only a built-in function or an external routine is
called. Note that the names of built-in functions (and generally the names of

3-4 OS/390 V2R8.0 TSO/E REXX Reference

 CALL

external routines, too) are in uppercase; therefore, you should uppercase the name
in the literal string.

The called routine can optionally return a result, and when it does, the CALL
instruction is functionally identical with the clause:

 ┌ ┐─,──────────────
55─ ──result=name(───6 ┴──┬ ┬──────────── ──) ──; ─5%
 └ ┘─expression─

If the called routine does not return a result, then you will get an error if you call it
as a function (as previously shown).

If the subroutine returns a result, the result is stored in the REXX special variable
RESULT, not the special variable RC. The REXX special variable RC is set when
you enter host commands from a REXX program (see page 2-23), but RC is not
set when you use the CALL instruction. See Chapter 9, “Reserved Keywords,
Special Variables, and Command Names” on page 9-1 for descriptions of the three
REXX special variables RESULT, RC, and SIGL.

TSO/E supports specifying up to 20 expressions, separated by commas. The
expressions are evaluated in order from left to right and form the argument strings
during execution of the routine. Any ARG or PARSE ARG instruction or ARG
built-in function in the called routine accesses these strings rather than any
previously active in the calling program, until control returns to the CALL instruction.
You can omit expressions, if appropriate, by including extra commas.

The CALL then causes a branch to the routine called name, using exactly the same
mechanism as function calls. (See Chapter 4, “Functions” on page 4-1.) The
search order is in the section on functions (see “Search Order” on page 4-3) but
briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If you specify the
routine name in quotation marks, then an internal routine is not considered
for that search order. You can use SIGNAL and CALL together to call an
internal routine whose name is determined at the time of execution; this is

known as a multi-way call (see page 3-30). The RETURN instruction
completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various
functions. They always return a string that is the result of the routine (see
page 4-7).

External routines:
Users can write or use routines that are external to the language processor
and the calling program. You can code an external routine in REXX or in
any language that supports the system-dependent interfaces. For
information about using the system-dependent interfaces, see “External
Functions and Subroutines, and Function Packages” on page 12-32. For
information about the search order the system uses to locate external
routines, see “Search Order” on page 4-3. If the CALL instruction calls an
external routine written in REXX as a subroutine, you can retrieve any

 Chapter 3. Keyword Instructions 3-5

 CALL

argument strings with the ARG or PARSE ARG instructions or the ARG
built-in function.

During execution of an internal routine, all variables previously known are generally
accessible. However, the PROCEDURE instruction can set up a local variables
environment to protect the subroutine and caller from each other. The EXPOSE
option on the PROCEDURE instruction can expose selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden. The status of internal values (NUMERIC settings, and
so forth) start with their defaults (rather than inheriting those of the caller). In
addition, you can use EXIT to return from the routine.

When control reaches an internal routine the line number of the CALL instruction is
available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is, therefore, possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should process a RETURN instruction, and at that point
control returns to the clause following the original CALL. If the RETURN instruction
specified an expression, the variable RESULT is set to the value of that expression.
Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Example:

/\ Recursive subroutine execution... \/
arg z
call factorial z
say z'! =' result
exit

factorial: procedure /\ Calculate factorial by \/
 arg n /\ recursive invocation. \/
if n=ð then return 1
call factorial n-1

 return result \ n

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

� The status of DO loops and other structures : Executing a SIGNAL while
within a subroutine is safe because DO loops, and so forth, that were active
when the subroutine was called are not ended. (But those currently active
within the subroutine are ended.)

� Trace action : After a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this does not affect the tracing of the caller. Conversely,
if you simply wish to debug a subroutine, you can insert a TRACE Results at
the start and tracing is automatically restored to the conditions at entry (for
example, Off) upon return. Similarly, ? (interactive debug) and ! (command
inhibition) are saved across routines.

3-6 OS/390 V2R8.0 TSO/E REXX Reference

 DO

� NUMERIC settings : The DIGITS, FUZZ, and FORM of arithmetic operations (in
“NUMERIC” on page 3-17) are saved and are then restored on return. A
subroutine can, therefore, set the precision, and so forth, that it needs to use
without affecting the caller.

� ADDRESS settings : The current and previous destinations for commands (see
“ADDRESS” on page 3-1) are saved and are then restored on return.

� Condition traps : (CALL ON and SIGNAL ON) are saved and then restored on
return. This means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF
can be used in a subroutine without affecting the conditions the caller set up.

� Condition information : This information describes the state and origin of the
current trapped condition. The CONDITION built-in function returns this
information. See “CONDITION” on page 4-12.

� Elapsed-time clocks : A subroutine inherits the elapsed-time clock from its
caller (see “TIME” on page 4-32), but because the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started within
an internal routine is not available to the caller.

� OPTIONS settings : ETMODE and EXMODE are saved and are then restored
on return. For more information, see “OPTIONS” on page 3-19.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

 DO

55─ ──DO ──┬ ┬─────────────── ──┬ ┬───────────────── ──; ──────────────────5
└ ┘─┤ repetitor ├─ └ ┘─┤ conditional ├─

5─ ──┬ ┬───────────────── ──END ── ──┬ ┬────── ──; ────────────────────────5%
 │ │┌ ┐───────────── └ ┘─name─
 └ ┘── ───6 ┴instruction

 repetitor:
├─ ──┬ ┬──name=expri ──┬ ┬─────────── ──┬ ┬─────────── ──┬ ┬──────────── ────┤

 │ │└ ┘ ─TO──exprt─ └ ┘ ─BY──exprb─ └ ┘ ─FOR──exprf─
 ├ ┤ ─FOREVER──
 └ ┘ ─exprr──

conditional:
├─ ──┬ ┬ ─WHILE──exprw─ ──┤

 └ ┘ ─UNTIL──expru─

DO groups instructions together and optionally processes them repetitively. During
repetitive execution, a control variable (name) can be stepped through some range
of values.

Syntax Notes:

� The exprr, expri, exprb, exprt, and exprf options (if present) are any
expressions that evaluate to a number. The exprr and exprf options are further
restricted to result in a positive whole number or zero. If necessary, the
numbers are rounded according to the setting of NUMERIC DIGITS.

 Chapter 3. Keyword Instructions 3-7

 DO

� The exprw or expru options (if present) can be any expression that evaluates to
1 or ð.

� The TO, BY, and FOR phrases can be in any order, if used, and are evaluated
in the order in which they are written.

� The instruction can be any instruction, including assignments, commands, and
keyword instructions (including any of the more complex constructs such as IF,
SELECT, and the DO instruction itself).

� The subkeywords WHILE and UNTIL are reserved within a DO instruction, in
that they cannot be used as symbols in any of the expressions. Similarly, TO,
BY, and FOR cannot be used in expri, exprt, exprb, or exprf. FOREVER is also
reserved, but only if it immediately follows the keyword DO and an equal sign
does not follow it.

� The exprb option defaults to 1, if relevant.

Simple DO Group
If you specify neither repetitor nor conditional, the construct merely groups a
number of instructions together. These are processed one time.

In the following example, the instructions are processed one time.

Example:

/\ The two instructions between DO and END are both \/
/\ processed if A has the value "3". \/
If a=3 then Do
 a=a+2
 Say 'Smile!'
 End

Repetitive DO Loops
If a DO instruction has a repetitor phrase or a conditional phrase or both, the group
of instructions forms a repetitive DO loop . The instructions are processed
according to the repetitor phrase, optionally modified by the conditional phrase.
(See “Conditional Phrases (WHILE and UNTIL)” on page 3-10).

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an
expression that evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the
group of instructions is nominally processed “forever”, that is, until the condition is
satisfied or a REXX instruction is processed that ends the loop (for example,
LEAVE).

Note: For a discussion on conditional phrases, see “Conditional Phrases (WHILE
and UNTIL)” on page 3-10.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a positive whole number or zero), and the loop is then processed that
many times.

Example:

3-8 OS/390 V2R8.0 TSO/E REXX Reference

 DO

/\ This displays "Hello" five times \/
Do 5
 say 'Hello'
 end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is (or starts with) =, the
controlled form of repetitor is expected.

Controlled Repetitive Loops
The controlled form specifies name, a control variable that is assigned an initial
value (the result of expri, formatted as though ð had been added) before the first
execution of the instruction list. The variable is then stepped (by adding the result
of exprb) before the second and subsequent times that the instruction list is
processed.

The instruction list is processed repeatedly while the end condition (determined by
the result of exprt) is not met. If exprb is positive or ð, the loop is ended when
name is greater than exprt. If negative, the loop is ended when name is less than
exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
only one time, before the loop begins and before the control variable is set to its
initial value. The default value for exprb is 1. If exprt is omitted, the loop runs
indefinitely unless some other condition stops it.

Example:

Do I=3 to -2 by -1 /\ Displays: \/
say i /\ 3 \/
end /\ 2 \/

/\ 1 \/
/\ ð \/

 /\ -1 \/
 /\ -2 \/

The numbers do not have to be whole numbers:

Example:

I=ð.3 /\ Displays: \/
Do Y=I to I+4 by ð.7 /\ ð.3 \/
say Y /\ 1.ð \/
end /\ 1.7 \/

/\ 2.4 \/
/\ 3.1 \/
/\ 3.8 \/

The control variable can be altered within the loop, and this may affect the iteration
of the loop. Altering the value of the control variable is not usually considered good
programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). Therefore, if
the end condition is met immediately, the group of instructions can be skipped
entirely. Note also that the control variable is referred to by name. If (for example)

 Chapter 3. Keyword Instructions 3-9

 DO

the compound name A.I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, you must specify exprf, and it must evaluate to a positive whole number
or zero. This acts just like the repetition count in a simple repetitive loop, and sets a
limit to the number of iterations around the loop if no other condition stops it. Like
the TO and BY expressions, it is evaluated only one time—when the DO instruction
is first processed and before the control variable receives its initial value. Like the
TO condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=ð.3 to 4.3 by ð.7 for 3 /\ Displays: \/
 say Y /\ ð.3 \/
 end /\ 1.ð \/
 /\ 1.7 \/

In a controlled loop, the name describing the control variable can be specified on
the END clause. This name must match name in the DO clause in all respects
except case (note that no substitution for compound variables is carried out); a
syntax error results if it does not. This enables the nesting of loops to be checked
automatically, with minimal overhead.

Example:

Do K=1 to 1ð
 ...
 ...
End k /\ Checks that this is the END for K loop \/

Note: The NUMERIC settings may affect the successive values of the control
variable, because REXX arithmetic rules apply to the computation of
stepping the control variable.

Conditional Phrases (WHILE and UNTIL)
A conditional phrase can modify the iteration of a repetitive DO loop. It may cause
the termination of a loop. It can follow any of the forms of repetitor (none,
FOREVER, simple, or controlled). If you specify WHILE or UNTIL, exprw or expru,
respectively, is evaluated each time around the loop using the latest values of all
variables (and must evaluate to either ð or 1), and the loop is ended if exprw
evaluates to ð or expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of instructions.
For an UNTIL loop, the condition is evaluated at the bottom—before the control
variable has been stepped.

Example:

Do I=1 to 1ð by 2 until i>6
 say i
 end
/\ Displays: "1" "3" "5" "7" \/

Note: Using the LEAVE or ITERATE instructions can also modify the execution of
repetitive loops.

3-10 OS/390 V2R8.0 TSO/E REXX Reference

 DO

Discontinue execution of DO
group if TO value is exceeded.

Discontinue execution of DO
group if FOR value (number of
iterations through the loop) is
exceeded.

Discontinue execution of DO
group if WHILE condition is
not met.

Discontinue execution of DO
group if UNTIL condition is
met.

Discontinue execution of DO
group if number of iterations
is exceeded.

Assign start value to control
variable.

Use BY value () to
update control variable.

exprb

Use TO value () to test
control variable for termination.

exprt

Use count of iterations ()
to test for termination.

exprr

Use WHILE expression ()
to test for termination.

exprw

Use UNTIL expression ()
to test for termination.

expru

Execute instruction(s) in the
DO group.

exprfUse FOR value () to test
for termination.

Evaluate
evaluate

exprr
expri

exprt exprb
exprf

+ 0
+ 0

+ 0, + 0,
+ 0

or
and then
and

in order written.

Figure 3-1. Concept of a DO Loop

 Chapter 3. Keyword Instructions 3-11

 EXIT

 DROP

 ┌ ┐────────────
55─ ──DROP ───6 ┴┬ ┬──name ── ──; ───5%

└ ┘──(name)

DROP “unassigns” variables, that is, restores them to their original uninitialized
state. If name is not enclosed in parentheses, it identifies a variable you want to
drop and must be a symbol that is a valid variable name, separated from any other
name by one or more blanks or comments.

If parentheses enclose a single name, then its value is used as a subsidiary list of
variables to drop. (Blanks are not necessary either inside or outside the
parentheses, but you can add them if desired.) This subsidiary list must follow the
same rules as the original list (that is, be valid variable names, separated by
blanks) except that no parentheses are allowed.

Variables are dropped in sequence from left to right. It is not an error to specify a
name more than one time or to DROP a variable that is not known. If an exposed
variable is named, (see “PROCEDURE” on page 3-23), the variable in the older
generation is dropped.

Example:

j=4
Drop a z.3 z.j
/\ Drops the variables: A, Z.3, and Z.4 \/
/\ so that reference to them returns their names. \/

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='c d e'
drop (mylist) f
/\ Drops the variables C, D, E, and F \/
/\ Does not drop MYLIST \/

Specifying a stem (that is, a symbol that contains only one period, as the last
character), drops all variables starting with that stem.

Example:

Drop z.
/\ Drops all variables with names starting with Z. \/

 EXIT

55─ ──EXIT ──┬ ┬──────────── ; ───5%
 └ ┘─expression─

EXIT leaves a program unconditionally. Optionally EXIT returns a character string
to the caller. The program is stopped immediately, even if an internal routine is

3-12 OS/390 V2R8.0 TSO/E REXX Reference

 IF

currently being run. If no internal routine is active, RETURN (see page 3-27) and
EXIT are identical in their effect on the program that is being run.

If you specify expression, it is evaluated and the string resulting from the evaluation
is passed back to the caller when the program stops.

Example:

j=3
Exit j\4
/\ Would exit with the string '12' \/

If you do not specify expression, no data is passed back to the caller. If the
program was called as an external function, this is detected as an error—either
immediately (if RETURN was used), or on return to the caller (if EXIT was used).

“Running off the end” of the program is always equivalent to the instruction EXIT, in
that it stops the whole program and returns no result string.

Note: If the program was called through a command interface, an attempt is made
to convert the returned value to a return code acceptable by the host. If the
conversion fails, it is deemed to be a failure of the host interface and thus is
not subject to trapping with SIGNAL ON SYNTAX. The returned string must
be a whole number whose value fits in a general register (that is, must be in
the range -2**31 through 2**31-1).

 IF

55─ ──IF ──expression ── ──┬ ┬─── ──THEN ── ──┬ ┬─── ──instruction ────────────5
 └ ┘─;─ └ ┘─;─

5─ ──┬ ┬──────────────────────── ─────────────────────────────────────5%
 └ ┘──ELSE ──┬ ┬─── instruction

 └ ┘─;─

IF conditionally processes an instruction or group of instructions depending on the
evaluation of the expression. The expression is evaluated and must result in ð or 1.

The instruction after the THEN is processed only if the result is 1 (true). If you
specify an ELSE, the instruction after the ELSE is processed only if the result of the
evaluation is ð (false).

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon before the ELSE.

Example:

if answer='YES' then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP
instruction to eliminate errors and possible confusion when IF constructs are
nested, as in the following example.

 Chapter 3. Keyword Instructions 3-13

 INTERPRET

Example:

If answer = 'YES' Then
If name = 'FRED' Then

say 'OK, Fred.'
 Else
 nop
Else

say 'Why not?'

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF
instruction itself. A null clause is not an instruction, so putting an extra
semicolon (or label) after the THEN or ELSE is not equivalent to putting a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be ended by the THEN, without a ; being
required. If this were not so, people who are accustomed to other computer
languages would experience considerable difficulties.

 INTERPRET

55──INTERPRET─ ──expression; ──5%

INTERPRET processes instructions that have been built dynamically by evaluating
expression.

The expression is evaluated and is then processed (interpreted) just as though the
resulting string were a line inserted into the program (and bracketed by a DO; and
an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO...END and SELECT...END must be complete. For
example, a string of instructions being interpreted cannot contain a LEAVE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO...END construct.

A semicolon is implied at the end of the expression during execution, if one was not
supplied.

Example:

data='FRED'
interpret data '= 4'
/\ Builds the string "FRED = 4" and \/
/\ Processes: FRED = 4; \/
/\ Thus the variable FRED is set to "4" \/

Example:

3-14 OS/390 V2R8.0 TSO/E REXX Reference

 INTERPRET

data='do 3; say "Hello there!"; end'
interpret data /\ Displays: \/
 /\ Hello there! \/
 /\ Hello there! \/
 /\ Hello there! \/

Notes:

1. Label clauses are not permitted in an interpreted character string.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE R
or TRACE I in effect is helpful.

Example:

/\ Here is a small REXX program. \/
Trace Int
name='Kitty'
indirect='name'
interpret 'say "Hello"' indirect'"!"'

When this is run, it gives the trace:

kitty
3 \-\ name='Kitty'

 >L> "Kitty"
4 \-\ indirect='name'

 >L> "name"
5 \-\ interpret 'say "Hello"' indirect'"!"'

 >L> "say "Hello""
 >V> "name"

>O> "say "Hello" name"
 >L> ""!""

>O> "say "Hello" name"!""
\-\ say "Hello" name"!"

 >L> "Hello"
 >V> "Kitty"
 >O> "Hello Kitty"
 >L> "!"
 >O> "Hello Kitty!"
Hello Kitty!

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal string. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Because it is a new clause, it is traced as such (the second
\-\ trace flag under line 5) and is then processed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the final
result (Hello Kitty!) is then displayed.

3. For many purposes, you can use the VALUE function (see page 4-36) instead
of the INTERPRET instruction. The following line could, therefore, have
replaced line 5 in the last example:

say "Hello" value(indirect)"!"

INTERPRET is usually required only in special cases, such as when two or
more statements are to be interpreted together, or when an expression is to be
evaluated dynamically.

 Chapter 3. Keyword Instructions 3-15

 LEAVE

 ITERATE

55─ ──ITERATE ──┬ ┬────── ; ──5%
 └ ┘─name─

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct other
than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction. The control variable (if any) is incremented and tested, as usual, and
the group of instructions is processed again, unless the DO instruction ends the
loop.

The name is a symbol, taken as a constant. If name is not specified, ITERATE
steps the innermost active repetitive loop. If name is specified, it must be the name
of the control variable of a currently active loop (which may be the innermost), and
this is the loop that is stepped. Any active loops inside the one selected for iteration
are ended (as though by a LEAVE instruction).

Example:

do i=1 to 4
if i=2 then iterate

 say i
 end
/\ Displays the numbers: "1" "3" "4" \/

Notes:

1. If specified, name must match the symbol naming the control variable in the DO
clause in all respects except case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an
INTERPRET instruction is processed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects
the innermost loop.

 LEAVE

55─ ──LEAVE ──┬ ┬────── ; ──5%
 └ ┘─name─

LEAVE causes an immediate exit from one or more repetitive DO loops (that is,
any DO construct other than a simple DO).

Processing of the group of instructions is ended, and control is passed to the
instruction following the END clause. The control variable (if any) will contain the
value it had when the LEAVE instruction was processed.

3-16 OS/390 V2R8.0 TSO/E REXX Reference

 NUMERIC

The name is a symbol, taken as a constant. If name is not specified, LEAVE ends
the innermost active repetitive loop. If name is specified, it must be the name of the
control variable of a currently active loop (which may be the innermost), and that
loop (and any active loops inside it) is then ended. Control then passes to the
clause following the END that matches the DO clause of the selected loop.

Example:

do i=1 to 5
 say i
if i=3 then leave

 end
/\ Displays the numbers: "1" "2" "3" \/

Notes:

1. If specified, name must match the symbol naming the control variable in the DO
clause in all respects except case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being processed. If a subroutine is called (or an
INTERPRET instruction is processed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to end an inactive loop.

3. If more than one active loop uses the same control variable, LEAVE selects the
innermost loop.

 NOP

55─ ──NOP; ──5%

NOP is a dummy instruction that has no effect. It can be useful as the target of a
THEN or ELSE clause:

Example:

Select
when a=c then nop /\ Do nothing \/
when a>c then say 'A > C'
otherwise say 'A < C'

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would be seen
as the first instruction expected after the THEN, and would, therefore, be
treated as a syntax error. NOP is a true instruction, however, and is,
therefore, a valid target for the THEN clause.

 NUMERIC

 Chapter 3. Keyword Instructions 3-17

 NUMERIC

55─ ──NUMERIC ──┬ ┬──DIGITS ──┬ ┬───────────── ───────── ──; ──────────────5%
 │ │└ ┘─expression1─
 │ │┌ ┐─SCIENTIFIC─────────────
 ├ ┤──FORM ──┼ ┼────────────────────────
 │ │├ ┤─ENGINEERING────────────
 │ │└ ┘── ──┬ ┬─────── expression2
 │ │└ ┘─VALUE─
 └ ┘──FUZZ ──┬ ┬───────────── ───────────
 └ ┘─expression3─

NUMERIC changes the way in which a program carries out arithmetic operations.
The options of this instruction are described in detail on pages 6-1-6-10 , but in
summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in
functions are evaluated. If you omit expression1, the precision defaults to 9
digits. Otherwise, expression1 must evaluate to a positive whole number and
must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high precisions are likely to require a good deal of
processing time. It is recommended that you use the default value wherever
possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS built-in
function. See “DIGITS” on page 4-18.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of
arithmetic operations and arithmetic built-in functions. This may be either
SCIENTIFIC (in which case only one, nonzero digit appears before the decimal
point) or ENGINEERING (in which case the power of 10 is always a multiple of
3). The default is SCIENTIFIC. The subkeywords SCIENTIFIC or
ENGINEERING set the FORM directly, or it is taken from the result of
evaluating the expression (expression2) that follows VALUE. The result in this
case must be either SCIENTIFIC or ENGINEERING. You can omit the subkeyword
VALUE if expression2 does not begin with a symbol or a literal string (that is, if
it starts with a special character, such as an operator character or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in
function. See “FORM” on page 4-21.

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric
comparison operation. (See page 6-7.) If you omit expression3, the default is ð
digits. Otherwise, expression3 must evaluate to ð or a positive whole number,
rounded if necessary according to the current NUMERIC DIGITS setting, and
must be smaller than the current NUMERIC DIGITS setting.

NUMERIC FUZZ temporarily reduces the value of NUMERIC DIGITS by the
NUMERIC FUZZ value during every numeric comparison. The numbers are
subtracted under a precision of DIGITS minus FUZZ digits during the
comparison and are then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in
function. See “FUZZ” on page 4-22.

3-18 OS/390 V2R8.0 TSO/E REXX Reference

 OPTIONS

Note: The three numeric settings are automatically saved across internal and
external subroutine and function calls. See the CALL instruction (page 3-4)
for more details.

 OPTIONS

55──OPTIONS─ ──expression; ──5%

OPTIONS passes special requests or parameters to the language processor. For
example, these may be language processor options or perhaps define a special
character set.

The expression is evaluated, and the result is examined one word at a time. The
language processor converts the words to uppercase. If the language processor
recognizes the words, then they are obeyed. Words that are not recognized are
ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:

ETMODE specifies that literal strings and symbols and comments containing
DBCS characters are checked for being valid DBCS strings. If you
use this option, it must be the first instruction of the program.

If the expression is an external function call, for example OPTIONS
'GETETMOD'(), and the program contains DBCS literal strings,
enclose the name of the function in quotation marks to ensure that
the entire program is not scanned before the option takes effect. It
is not recommended to use internal function calls to set ETMODE
because of the possibility of errors in interpreting DBCS literal
strings in the program.

NOETMODE specifies that literal strings and symbols and comments containing
DBCS characters are not checked for being valid DBCS strings.
NOETMODE is the default. The language processor ignores this
option unless it is the first instruction in a program.

EXMODE specifies that instructions, operators, and functions handle DBCS
data in mixed strings on a logical character basis. DBCS data
integrity is maintained.

NOEXMODE specifies that any data in strings is handled on a byte basis. The
integrity of DBCS characters, if any, may be lost. NOEXMODE is
the default.

Notes:

1. Because of the language processor's scanning procedures, you must place an
OPTIONS 'ETMODE' instruction as the first instruction in a program containing
DBCS characters in literal strings, symbols, or comments. If you do not place
OPTIONS 'ETMODE' as the first instruction and you use it later in the program,
you receive error message IRX0033I. If you do place it as the first instruction of
your program, all subsequent uses are ignored. If the expression contains
anything that would start a label search, all clauses tokenized during the label
search process are tokenized within the current setting of ETMODE. Therefore,
if this is the first statement in the program, the default is NOETMODE.

 Chapter 3. Keyword Instructions 3-19

 PARSE

2. To ensure proper scanning of a program containing DBCS literals and DBCS
comments, enter the words ETMODE, NOETMODE, EXMODE, and
NOEXMODE as literal strings (that is, enclosed in quotation marks) in the
OPTIONS instruction.

3. The EXMODE setting is saved and restored across subroutine and function
calls.

4. To distinguish DBCS characters from 1-byte EBCDIC characters, sequences of
DBCS characters are enclosed with a shift-out (SO) character and a shift-in (SI)
character. The hexadecimal values of the SO and SI characters are X'0E' and
X'0F', respectively.

5. When you specify OPTIONS 'ETMODE', DBCS characters within a literal string are
excluded from the search for a closing quotation mark in literal strings.

6. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can appear
several times within the result. The one that takes effect is determined by the
last valid one specified between the pairs ETMODE-NOETMODE and
EXMODE-NOEXMODE.

 PARSE

55─ ──PARSE ──┬ ┬─────── ──┬ ┬─ARG─────────────────────── ── ──┬ ┬─────────────── ──; ────────5%
 └ ┘─UPPER─ ├ ┤─EXTERNAL────────────────── └ ┘─template_list─
 ├ ┤─NUMERIC───────────────────
 ├ ┤─PULL──────────────────────
 ├ ┤─SOURCE────────────────────
 ├ ┤──VALUE ──┬ ┬──────────── WITH
 │ │└ ┘─expression─
 ├ ┤─VAR──name─────────────────
 └ ┘─VERSION───────────────────

PARSE assigns data (from various sources) to one or more variables according to
the rules of parsing (see Chapter 5, “Parsing” on page 5-1).

The template_list is often a single template but may be several templates separated
by commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Each template is applied to a single source string. Specifying multiple templates is
never a syntax error, but only the PARSE ARG variant can supply more than one
non-null source string. See page 5-11 for information on parsing multiple source
strings.

If you do not specify a template, no variables are set but action is taken to prepare
the data for parsing, if necessary. Thus for PARSE PULL, a data string is removed
from the queue, and for PARSE VALUE, expression is evaluated. For PARSE VAR,
the specified variable is accessed. If it does not have a value, the NOVALUE
condition is raised, if it is enabled.

If you specify the UPPER option, the data to be parsed is first translated to
uppercase (that is, lowercase a–z to uppercase A–Z). Otherwise, no uppercase
translation takes place during the parsing.

The following list describes the data for each variant of the PARSE instruction.

3-20 OS/390 V2R8.0 TSO/E REXX Reference

 PARSE

PARSE ARG
parses the string or strings passed to a program or internal routine as input
arguments. See the ARG instruction on page 3-3 for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program
or internal routine with the ARG built-in function (page 4-8).

PARSE EXTERNAL
In TSO/E, PARSE EXTERNAL reads from the:

� Terminal (TSO/E foreground)
� Input stream, which is SYSTSIN (TSO/E background).

In non-TSO/E address spaces, PARSE EXTERNAL reads from the input
stream as defined by the file name in the INDD field in the module name table
(see page 14-21). The system default is SYSTSIN. PARSE EXTERNAL returns
a field based on the record that is read from the INDD file. If SYSTSIN has no
data, the PARSE EXTERNAL instruction returns a null string.

PARSE NUMERIC
The current numeric controls (as set by the NUMERIC instruction, see page
3-18) are available. These controls are in the order DIGITS FUZZ FORM.

Example :

Parse Numeric Var1

After this instruction, Var1 would be equal to: 9 0 SCIENTIFIC. See “NUMERIC”
on page 3-17 and the built-in functions “DIGITS” on page 4-18, “FORM” on
page 4-21, and “FUZZ” on page 4-22.

PARSE PULL
parses the next string from the external data queue. If the external data queue
is empty, PARSE PULL reads a line from the default input stream (the user's
terminal), and the program pauses, if necessary, until a line is complete. You
can add data to the head or tail of the queue by using the PUSH and QUEUE
instructions, respectively. You can find the number of lines currently in the
queue with the QUEUED built-in function. (See page 4-27.) Other programs in
the system can alter the queue and use it as a means of communication with
programs written in REXX. See also the PULL instruction on page 3-25.

PULL and PARSE PULL read from the data stack. In TSO/E, if the data stack
is empty, PULL and PARSE PULL read from the:

� Terminal (TSO/E foreground)
� Input stream, which is SYSTSIN (TSO/E background).

In non-TSO/E address spaces, if the data stack is empty, PULL and PARSE
PULL read from the input stream as defined by the file name in the INDD field
in the module name table (see page 14-21). The system default is SYSTSIN. If
SYSTSIN has no data, the PULL and PARSE PULL instructions return a null
string.

PARSE SOURCE
parses data describing the source of the program running. The language
processor returns a string that is fixed (does not change) while the program is
running.

The source string contains the following tokens:

 Chapter 3. Keyword Instructions 3-21

 PARSE

1. The characters TSO

2. The string COMMAND, FUNCTION, or SUBROUTINE depending on
whether the program was called as some kind of host command (for
example, as an exec from TSO/E READY mode), or from a function call in
an expression, or using the CALL instruction.

| 3. Usually, name of the exec in uppercase. If the name is not known, this
| token is a question mark (?). If the name is an extended execname, this
| field is the full name, possibly greater than 8-characters and not folded to
| uppercase.

| Notes:

| a. This field may contain an extended execname possibly longer than 8
| characters and not folded to uppercase if the name of the exec loaded
| by the LOAD routine is longer than 8 characters or is a case sensitive
| name. See page “Format of the Exec Block” on page 16-11 and page
| “Format of the In-Storage Control Block” on page 16-14 for more
| information about how the Exec LOAD routine can load an extended
| execname.

| b. Extended execname support requires the PTF for APAR OW28404.

4. Name of the DD from which the exec was loaded. If the name is not
known, this token is a question mark (?).

5. Name of the data set from which the exec was loaded. If the name is not
known, this token is a question mark (?).

6. Name of the exec as it was called, that is, the name is not folded to
uppercase. If the name is not known, this token is a question mark (?).

| If the name returned in token3 is an extended name, this token is a
| question mark (?).

7. Initial (default) host command environment in uppercase. For example, this
token may be TSO or MVS.

8. Name of the address space in uppercase. For example, the value may be
MVS (non-TSO/E) or TSO/E or ISPF. If the exec was called from ISPF, the
address space name is ISPF.

The value is taken from the parameter block (see page 14-14). Note that
the initialization exit routines may change the name specified in the
parameters module. If the name of the address space is not known, this
token is a question mark (?).

9. Eight character user token. This is the token that is specified in the
PARSETOK field in the parameters module (see page 14-12).

For example, the string parsed might look like one of the following:

TSO COMMAND PROGA SYSXRð7 EGGERS.ECE.EXEC ? TSO TSO/E ?

TSO SUBROUTINE PROGSUB SYSEXEC ? ? TSO ISPF ?

| TSO SUBROUTINE /u/cmddir/pgm.cmd PATH /u/cmddir/pgm.cmd
| ? SH OMVS OpenMVS

3-22 OS/390 V2R8.0 TSO/E REXX Reference

 PROCEDURE

PARSE VALUE
parses the data that is the result of evaluating expression. If you specify no
expression, then the null string is used. Note that WITH is a subkeyword in this
context and cannot be used as a symbol within expression.

Thus, for example:

PARSE VALUE time() WITH hours ':' mins ':' secs

gets the current time and splits it into its constituent parts.

PARSE VAR name
parses the value of the variable name. The name must be a symbol that is
valid as a variable name (that is, it cannot start with a period or a digit). Note
that the variable name is not changed unless it appears in the template, so that
for example:

PARSE VAR string word1 string

removes the first word from string, puts it in the variable word1, and assigns the
remainder back to string. Similarly

PARSE UPPER VAR string word1 string

in addition translates the data from string to uppercase before it is parsed.

PARSE VERSION
parses information describing the language level and the date of the language
processor. This information consists of five blank-delimited words:

1. A word describing the language, which is the string “REXX370”

2. The language level description, for example, “3.46”

3. Three tokens describing the language processor release date, for example,
“31 May 1993”.

 PROCEDURE

55─ ──PROCEDURE ──┬ ┬────────────────────── ──; ────────────────────────5%
 │ │┌ ┐────────────
 └ ┘──EXPOSE ───6 ┴┬ ┬──name ──

└ ┘──(name)

PROCEDURE, within an internal routine (subroutine or function), protects variables
by making them unknown to the instructions that follow it. After a RETURN
instruction is processed, the original variables environment is restored and any
variables used in the routine (that were not exposed) are dropped. (An exposed
variable is one belonging to a caller of a routine that the PROCEDURE instruction
has exposed. When the routine refers to or alters the variable, the original (caller's)
copy of the variable is used.) An internal routine need not include a PROCEDURE
instruction; in this case the variables it is manipulating are those the caller “owns.”
If used, the PROCEDURE instruction must be the first instruction processed after
the CALL or function invocation; that is, it must be the first instruction following the
label.

If you use the EXPOSE option, any variable specified by name is exposed. Any
reference to it (including setting and dropping) refers to the variables environment
the caller owns. Hence, the values of existing variables are accessible, and any

 Chapter 3. Keyword Instructions 3-23

 PROCEDURE

changes are persistent even on RETURN from the routine. If name is not enclosed
in parentheses, it identifies a variable you want to expose and must be a symbol
that is a valid variable name, separated from any other name with one or more
blanks.

If parentheses enclose a single name, then, after the variable name is exposed, the
value of name is immediately used as a subsidiary list of variables. (Blanks are not
necessary either inside or outside the parentheses, but you can add them if
desired.) This subsidiary list must follow the same rules as the original list (that is,
valid variable names, separated by blanks) except that no parentheses are allowed.

Variables are exposed in sequence from left to right. It is not an error to specify a
name more than one time, or to specify a name that the caller has not used as a
variable.

Any variables in the main program that are not exposed are still protected.
Therefore, some limited set of the caller's variables can be made accessible, and
these variables can be changed (or new variables in this set can be created). All
these changes are visible to the caller upon RETURN from the routine.

Example:

/\ This is the main REXX program \/
j=1; z.1='a'
call toft
say j k m /\ Displays "1 7 M" \/
exit

/\ This is a subroutine \/
toft: procedure expose j k z.j

say j k z.j /\ Displays "1 K a" \/
k=7; m=3 /\ Note: M is not exposed \/

 return

Note that if Z.J in the EXPOSE list had been placed before J, the caller's value of
J would not have been visible at that time, so Z.1 would not have been exposed.

The variables in a subsidiary list are also exposed from left to right.

Example:

/\ This is the main REXX program \/
j=1;k=6;m=9
a ='j k m'
call test
exit

/\ This is a subroutine \/
test: procedure expose (a) /\ Exposes A, J, K, and M \/
say a j k m /\ Displays "j k m 1 6 9" \/

 return

You can use subsidiary lists to more easily expose a number of variables at one
time or, with the VALUE built-in function, to manipulate dynamically named
variables.

Example:

3-24 OS/390 V2R8.0 TSO/E REXX Reference

 PULL

/\ This is the main REXX program \/
c=11; d=12; e=13
Showlist='c d' /\ but not E \/
call Playvars
say c d e f /\ Displays "11 New 13 9" \/
exit

/\ This is a subroutine \/
Playvars: procedure expose (showlist) f
 say word(showlist,2) /\ Displays "d" \/
 say value(word(showlist,2),'New') /\ Displays "12" and sets new value \/
 say value(word(showlist,2)) /\ Displays "New" \/
 e=8 /\ E is not exposed \/
 f=9 /\ F was explicitly exposed \/
 return

Specifying a stem as name exposes this stem and all possible compound variables
whose names begin with that stem. (See page 2-19 for information about stems.)

Example:

/\ This is the main REXX program \/
a.=11; i=13; j=15
i = i + 1
C.5 = 'FRED'
call lucky7
say a. a.1 i j c. c.5
say 'You should see 11 7 14 15 C. FRED'
exit
lucky7:Procedure Expose i j a. c.
/\ This exposes I, J, and all variables whose \/
/\ names start with A. or C. \/
A.1='7' /\ This sets A.1 in the caller's \/

/\ environment, even if it did not \/
/\ previously exist. \/

return

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

See the CALL instruction and function descriptions on pages 3-4 and 4-1 for details
and examples of how routines are called.

 PULL

55─ ──PULL ──┬ ┬─────────────── ; ──────────────────────────────────────5%
 └ ┘─template_list─

PULL reads a string from the head of the external data queue. It is just a short form
of the instruction:

55─ ──PARSE UPPER PULL ── ──┬ ┬─────────────── ──; ─5%
 └ ┘─template_list─

 Chapter 3. Keyword Instructions 3-25

 PUSH

The current head-of-queue is read as one string. Without a template_list specified,
no further action is taken (and the string is thus effectively discarded). If specified, a
template_list is usually a single template, which is a list of symbols separated by
blanks or patterns or both. (The template_list can be several templates separated
by commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are
assigned the null string.) The string is translated to uppercase (that is, lowercase
a–z to uppercase A–Z) and then parsed into variables according to the rules
described in the section on parsing (page 5-1). Use the PARSE PULL instruction if
you do not desire uppercase translation.

The TSO/E implementation of the external data queue is the data stack. REXX
execs that run in TSO/E and non-TSO/E address spaces can use the data stack.
In TSO/E, if the data stack is empty, PULL reads from the:

� Terminal (TSO/E foreground)
� Input stream, which is SYSTSIN (TSO/E background).

In non-TSO/E address spaces, if the data stack is empty, PULL reads from the
input stream as defined by the file name in the INDD field in the module name table
(see page 14-21). The system default is SYSTSIN. If SYSTSIN has no data, the
PULL instruction returns a null string.

Note: The length of each element you can place onto the data stack can be up to
one byte less than 16 megabytes.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer .
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (.), is used on the template to isolate the
first word the user enters.

The QUEUED built-in function (see page 4-27) returns the number of lines currently
in the external data queue.

 PUSH

55─ ──PUSH ──┬ ┬──────────── ; ───5%
 └ ┘─expression─

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In,
First Out) onto the external data queue.

If you do not specify expression, a null string is stacked.

Note: The TSO/E implementation of the external data queue is the data stack.
The length of an element in the data stack can be up to one byte less than
16 megabytes. The data stack contains one buffer initially, but you can
create additional buffers using the TSO/E REXX command MAKEBUF.

Example:

3-26 OS/390 V2R8.0 TSO/E REXX Reference

 RETURN

a='Fred'
push /\ Puts a null line onto the queue \/
push a 2 /\ Puts "Fred 2" onto the queue \/

The QUEUED built-in function (described on page 4-27) returns the number of lines
currently in the external data queue.

 QUEUE

55─ ──QUEUE ── ──┬ ┬──────────── ──; ────────────────────────────────────5%
 └ ┘─expression─

QUEUE appends the string resulting from expression to the tail of the external data
queue. That is, it is added FIFO (First In, First Out).

If you do not specify expression, a null string is queued.

Note: The TSO/E implementation of the external data queue is the data stack.
The length of an element in the data stack can be up to one byte less than
16 megabytes. The data stack contains one buffer initially, but you can
create additional buffers using the TSO/E REXX command MAKEBUF.

Example:

a='Toft'
queue a 2 /\ Enqueues "Toft 2" \/
queue /\ Enqueues a null line behind the last \/

The QUEUED built-in function (described on page 4-27) returns the number of lines
currently in the external data queue.

 RETURN

55─ ──RETURN ──┬ ┬──────────── ; ───────────────────────────────────────5%
 └ ┘─expression─

RETURN returns control (and possibly a result) from a REXX program or internal
routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is being run. (See page 3-12.)

If a subroutine is being run (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is omitted, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, and so forth) are also restored. (See
page 3-4.)

If a function is being processed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then

 Chapter 3. Keyword Instructions 3-27

 SELECT

used in the original expression at the point where the function was called. See the
description of functions on page 4-1 for more details.

If a PROCEDURE instruction was processed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

 SAY

55─ ──SAY ──┬ ┬──────────── ; ──5%
 └ ┘─expression─

SAY writes a line to the output stream. This typically displays it to the user, but the
output destination can depend on the implementation. The result of expression may
be of any length. If you omit expression, the null string is written.

If a REXX exec runs in TSO/E foreground, SAY displays the expression on the
terminal. The result from the SAY instruction is formatted to the current terminal line
width (as defined by the TSO/E TERMINAL command) minus 1 character. In
TSO/E background, SAY writes the expression to the output stream, which is
SYSTSPRT. In either case, when the length is undefined (LINESIZE() returns 0),
SAY uses a default line size of 80.

If an exec runs in a non-TSO/E address space, SAY writes the expression to the
output stream as defined by the OUTDD field in the module name table (see page
14-21). The system default is SYSTSPRT. The ddname may be changed on an
application basis or on a system basis.

Example:

data=1ðð
Say data 'divided by 4 =>' data/4
/\ Displays: "1ðð divided by 4 => 25" \/

 SELECT

55─ ──SELECT; ──5

 ┌ ┐───
5─ ───6 ┴─WHEN──expression─ ── ──┬ ┬─── ─THEN─ ── ──┬ ┬─── ─instruction─ ───────5
 └ ┘─;─ └ ┘─;─

5─ ──┬ ┬─────────────────────────────────────── ──END ──; ──────────────5%
 └ ┘──OTHERWISE ──┬ ┬─── ──┬ ┬─────────────────

 └ ┘─;─ │ │┌ ┐─────────────
 └ ┘── ───6 ┴instruction

SELECT conditionally calls one of several alternative instructions.

Each expression after a WHEN is evaluated in turn and must result in ð or 1. If the
result is 1, the instruction following the associated THEN (which may be a complex

3-28 OS/390 V2R8.0 TSO/E REXX Reference

 SIGNAL

instruction such as IF, DO, or SELECT) is processed and control then passes to
the END. If the result is ð, control passes to the next WHEN clause.

If none of the WHEN expressions evaluates to 1, control passes to the instructions,
if any, after OTHERWISE. In this situation, the absence of an OTHERWISE causes
an error (but note that you can omit the instruction list that follows OTHERWISE).

Example:

balance=1ðð
check=5ð
balance = balance - check
Select
when balance > ð then

say 'Congratulations! You still have' balance 'dollars left.'
when balance = ð then do

say 'Attention, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you do not have any"
say "checks left outstanding."

 end
 Otherwise

say "You have just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank does not close your account."

end /\ Select \/

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, IF, or the SELECT
instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon (or label) after
a THEN clause is not equivalent to putting a dummy instruction. The NOP
instruction is provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be ended by the THEN without a ;
(delimiter) being required.

 SIGNAL

55─ ──SIGNAL ──┬ ┬─labelname─────────────────────────── ──; ────────────5%
 ├ ┤── ──┬ ┬─────── expression ──────────────
 │ │└ ┘─VALUE─
 ├ ┤──OFF ──┬ ┬─ERROR─── ───────────────────
 │ │├ ┤─FAILURE─
 │ │├ ┤─HALT────
 │ │├ ┤─NOVALUE─
 │ │└ ┘─SYNTAX──
 └ ┘──ON ──┬ ┬─ERROR─── ──┬ ┬────────────────
 ├ ┤─FAILURE─ └ ┘ ─NAME──trapname─
 ├ ┤─HALT────
 ├ ┤─NOVALUE─
 └ ┘─SYNTAX──

 Chapter 3. Keyword Instructions 3-29

 SIGNAL

SIGNAL causes an unusual change in the flow of control (if you specify labelname
or VALUE expression), or controls the trapping of certain conditions (if you specify
ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.
OFF turns off the specified condition trap. ON turns on the specified condition trap.
All information on condition traps is contained in Chapter 7, “Conditions and
Condition Traps” on page 7-1.

To change the flow of control, a label name is derived from labelname or taken
from the result of evaluating the expression after VALUE. The labelname you
specify must be a literal string or symbol that is taken as a constant. If you use a
symbol for labelname, the search is independent of alphabetic case. If you use a
literal string, the characters should be in uppercase. This is because the language
processor translates all labels to uppercase, regardless of how you enter them in
the program. Similarly, for SIGNAL VALUE, the expression must evaluate to a
string in uppercase or the language processor does not find the label. You can omit
the subkeyword VALUE if expression does not begin with a symbol or literal string
(that is, if it starts with a special character, such as an operator character or
parenthesis). All active pending DO, IF, SELECT, and INTERPRET instructions in
the current routine are then ended (that is, they cannot be resumed). Control then
passes to the first label in the program that matches the given name, as though the
search had started from the top of the program.

Example:

Signal fred; /\ Transfer control to label FRED below \/

Fred: say 'Hi!'

Because the search effectively starts at the top of the program, if duplicates are
present, control always passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction
is assigned to the special variable SIGL. This can aid debugging because you can
use SIGL to determine the source of a transfer of control to a label.

Using SIGNAL VALUE

The VALUE form of the SIGNAL instruction allows a branch to a label whose name
is determined at the time of execution. This can safely effect a multi-way CALL (or
function call) to internal routines because any DO loops, and so forth, in the calling
routine are protected against termination by the call mechanism.

Example:

3-30 OS/390 V2R8.0 TSO/E REXX Reference

 TRACE

fred='PETE'
call multiway fred, 7

exit
Multiway: procedure

arg label . /\ One word, uppercase \/
/\ Can add checks for valid labels here \/

signal value label /\ Transfer control to wherever \/

Pete: say arg(1) '!' arg(2) /\ Displays: "PETE ! 7" \/
 return

 TRACE

55─ ──TRACE ──┬ ┬── ──┬ ┬──────── ──────────────────── ──; ────────────────5%
 │ │└ ┘─number─
 │ │┌ ┐─Normal────────
 └ ┘── ──┬ ┬───────── ──┼ ┼───────────────
 │ │┌ ┐─────── ├ ┤─All───────────
 └ ┘───6 ┴┬ ┬─?─ ├ ┤─Commands──────
 └ ┘─!─ ├ ┤─Error─────────
 ├ ┤─Failure───────
 ├ ┤─Intermediates─
 ├ ┤─Labels────────
 ├ ┤─Off───────────
 ├ ┤─Results───────
 └ ┘─Scan──────────

Or, alternatively:

55─ ──TRACE ──┬ ┬─────────────────────── ──; ───────────────────────────5%
 ├ ┤─string────────────────
 ├ ┤─symbol────────────────
 └ ┘── ──┬ ┬─────── expression
 └ ┘─VALUE─

TRACE controls the tracing action (that is, how much is displayed to the user)
during processing of a REXX program. (Tracing describes some or all of the
clauses in a program, producing descriptions of clauses as they are processed.)
TRACE is mainly used for debugging. Its syntax is more concise than that of other
REXX instructions because TRACE is usually entered manually during interactive
debugging. (This is a form of tracing in which the user can interact with the
language processor while the program is running.) For this use, economy of key
strokes is especially convenient.

If specified, the number must be a whole number.

The string or expression evaluates to:

� A numeric option
� One of the valid prefix or alphabetic character (word) options described later

 � Null.

The symbol is taken as a constant, and is, therefore:

 Chapter 3. Keyword Instructions 3-31

 TRACE

� A numeric option
� One of the valid prefix or alphabetic character (word) options described later.

The option that follows TRACE or the result of evaluating expression determines
the tracing action. You can omit the subkeyword VALUE if expression does not
begin with a symbol or a literal string (that is, if it starts with a special character,
such as an operator or parenthesis).

Alphabetic Character (Word) Options
Although you can enter the word in full, only the capitalized and highlighted letter is
needed; all characters following it are ignored. That is why these are referred to as
alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

All Traces (that is, displays) all clauses before execution.

Commands Traces all commands before execution. If the command results in
an error or failure,1 then tracing also displays the return code from
the command.

Error Traces any command resulting in an error or failure1 after
execution, together with the return code from the command.

Failure Traces any command resulting in a failure1 after execution, together
with the return code from the command. This is the same as the
Normal option.

Intermediates Traces all clauses before execution. Also traces intermediate
results during evaluation of expressions and substituted names.

Labels Traces only labels passed during execution. This is especially
useful with debug mode, when the language processor pauses
after each label. It also helps the user to note all internal subroutine
calls and transfers of control because of the SIGNAL instruction.

Normal Traces any command resulting in a negative return code after
execution, together with the return code from the command. This is
the default setting .

Off Traces nothing and resets the special prefix options (described
later) to OFF. Please consider the Note given with the description
of the MSG function on page 4-58.

Results Traces all clauses before execution. Displays final results (contrast
with Intermediates, preceding) of evaluating an expression. Also
displays values assigned during PULL, ARG, and PARSE
instructions. This setting is recommended for general
debugging.

Scan Traces all remaining clauses in the data without them being
processed. Basic checking (for missing ENDs and so forth) is
carried out, and the trace is formatted as usual. This is valid only if
the TRACE S clause itself is not nested in any other instruction

1 See page 2-21 for definitions of error and failure.

3-32 OS/390 V2R8.0 TSO/E REXX Reference

 TRACE

(including INTERPRET or interactive debug) or in an internal
routine.

 Prefix Options
The prefixes ! and ? are valid either alone or with one of the alphabetic character
options. You can specify both prefixes, in any order, on one TRACE instruction.
You can specify a prefix more than one time, if desired. Each occurrence of a prefix
on an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:

? Controls interactive debug. During usual execution, a TRACE option with a
prefix of ? causes interactive debug to be switched on. (See “Interactive
Debugging of Programs” on page 11-1 for full details of this facility.) While
interactive debug is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language
processor pause for input after executing any command that returns an
error (that is, a nonzero return code).

Any TRACE instructions in the program being traced are ignored. (This is
so that you are not taken out of interactive debug unexpectedly.)

You can switch off interactive debug in several ways:

� Entering TRACE O turns off all tracing.
� Entering TRACE with no options restores the defaults—it turns off

interactive debug but continues tracing with TRACE Normal (which
traces any failing command after execution) in effect.

� Entering TRACE ? turns off interactive debug and continues tracing with
the current option.

� Entering a TRACE instruction with a ? prefix before the option turns off
interactive debug and continues tracing with the new option.

Using the ? prefix, therefore, switches you alternately in or out of interactive
debug. (Because the language processor ignores any further TRACE
statements in your program after you are in interactive debug, use CALL
TRACE '?' to turn off interactive debug.)

Note: The TSO/E REXX immediate command TS and the EXECUTIL TS
command can also be used to enter interactive debug. See
Chapter 10, “TSO/E REXX Commands” on page 10-1.

! Inhibits host command execution. During regular execution, a TRACE
instruction with a prefix of ! suspends execution of all subsequent host
commands. For example, TRACE !C causes commands to be traced but not
processed. As each command is bypassed, the REXX special variable RC
is set to ð. You can use this action for debugging potentially destructive
programs. (Note that this does not inhibit any commands entered manually
while in interactive debug. These are always processed.)

You can switch off command inhibition, when it is in effect, by issuing a
TRACE instruction with a prefix !. Repeated use of the ! prefix, therefore,
switches you alternately in or out of command inhibition mode. Or, you can
turn off command inhibition at any time by issuing TRACE O or TRACE with no
options.

 Chapter 3. Keyword Instructions 3-33

 TRACE

 Numeric Options
If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section in
“Interactive Debugging of Programs” on page 11-1, for further information.)
However, if the option is a negative whole number (or an expression that evaluates
to a negative whole number), all tracing, including debug pauses, is temporarily
inhibited for the specified number of clauses. For example, TRACE -1ðð means that
the next 100 clauses that would usually be traced are not, in fact, displayed. After
that, tracing resumes as before.

 Tracing Tips
1. When a loop is being traced, the DO clause itself is traced on every iteration of

the loop.

2. You can retrieve the trace actions currently in effect by using the TRACE
built-in function (see “TRACE” on page 4-34).

3. If available at the time of execution, comments associated with a traced clause
are included in the trace, as are comments in a null clause, if you specify
TRACE A, R, I, or S.

4. Commands traced before execution always have the final value of the
command (that is, the string passed to the environment), and the clause
generating it produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See
the CALL instruction (page 3-4) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/\ Interactive debug is switched on if it was off, \/
/\ and tracing Results of expressions begins. \/

Note: Tracing may be switched on, without requiring modification to a program, by
using the EXECUTIL TS command. Tracing may also be turned on or off
asynchronously, (that is, while an exec is running) using the TS and TE
immediate commands from attention mode. See page 11-4 for the
description of these facilities.

Format of TRACE Output
Every clause traced appears with automatic formatting (indentation) according to its
logical depth of nesting and so forth. The language processor may replace any
control codes in the encoding of data (for example, EBCDIC values less than
'40'x) with a question mark (?) to avoid console interference. Results (if requested)
are indented an extra two spaces and are enclosed in double quotation marks so
that leading and trailing blanks are apparent.

A line number precedes the first clause traced on any line. If the line number is
greater than 99999, the language processor truncates it on the left, and the ? prefix
indicates the truncation. For example, the line number 100354 appears as ?ðð354.
All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

3-34 OS/390 V2R8.0 TSO/E REXX Reference

 UPPER

\-\ Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

>>> Identifies the result of an expression (for TRACE R) or the value assigned to
a variable during parsing, or the value returned from a subroutine call.

>.> Identifies the value “assigned” to a placeholder during parsing (see page
5-3).

The following prefixes are used only if TRACE Intermediates is in effect:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

If no option is specified on a TRACE instruction, or if the result of evaluating the
expression is null, the default tracing actions are restored. The defaults are
TRACE N, command inhibition (!) off, and interactive debug (?) off.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in
error is always traced. Any CALL or INTERPRET or function invocations active at
the time of the error are also traced. If an attempt to transfer control to a label that
could not be found caused the error, that label is also traced. The special trace
prefix +++ identifies these traceback lines.

 UPPER

 ┌ ┐──────────
55─ ──UPPER ───6 ┴variable ──; ──5%

UPPER translates the contents of one or more variables to uppercase. The
variables are translated in sequence from left to right.

The variable is a symbol, separated from any other variables by one or more
blanks or comments. Specify only simple symbols and compound symbols. (See
page 2-17.)

Using this instruction is more convenient than repeatedly invoking the TRANSLATE
built-in function.

Example:

 Chapter 3. Keyword Instructions 3-35

 UPPER

a1='Hello'; b1='there'
Upper a1 b1
say a1 b1 /\ Displays "HELLO THERE" \/

An error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it is trapped if
the NOVALUE condition (SIGNAL ON NOVALUE) is enabled.

3-36 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 Chapter 4. Functions

A function is an internal, built-in, or external routine that returns a single result
string. (A subroutine is a function that is an internal, built-in, or external routine
that may or may not return a result and that is called with the CALL instruction.)

 Syntax
A function call is a term in an expression that calls a routine that carries out some
procedures and returns a string. This string replaces the function call in the
continuing evaluation of the expression. You can include function calls to internal
and external routines in an expression anywhere that a data term (such as a string)
would be valid, using the notation:

 ┌ ┐─,──────────────
55─ ──function_name(───6 ┴──┬ ┬──────────── ──) ─5%
 └ ┘─expression─

The function_name is a literal string or a single symbol, which is taken to be a
constant.

There can be up to an implementation-defined maximum number of expressions,
separated by commas, between the parentheses. In TSO/E, the implementation
maximum is up to 20 expressions. These expressions are called the arguments to
the function. Each argument expression may include further function calls.

Note that the left parenthesis must be adjacent to the name of the function, with no
blank in between, or the construct is not recognized as a function call. (A blank
operator would be assumed at this point instead.) Only a comment (which has no
effect) can appear between the name and the left parenthesis.

The arguments are evaluated in turn from left to right and the resulting strings are
all then passed to the function. This then runs some operation (usually dependent
on the argument strings passed, though arguments are not mandatory) and
eventually returns a single character string. This string is then included in the
original expression just as though the entire function reference had been replaced
by the name of a variable whose value is that returned data.

For example, the function SUBSTR is built-in to the language processor (see page
4-31) and could be used as:

N1='abcdefghijk'
Z1='Part of N1 is: 'substr(N1,2,7)
/\ Sets Z1 to 'Part of N1 is: bcdefgh' \/

A function may have a variable number of arguments. You need to specify only
those that are required. For example, SUBSTR('ABCDEF',4) would return DEF.

 Copyright IBM Corp. 1988, 1999 4-1

 Functions

Functions and Subroutines
The function calling mechanism is identical with that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not.

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the current
processing status is saved, so that it is later possible to return to
the point of invocation to resume execution. Control is then passed
to the first label in the program that matches the name. As with a
routine called by the CALL instruction, various other status
information (TRACE and NUMERIC settings and so forth) is saved
too. See the CALL instruction (page 3-4) for details about this. You
can use SIGNAL and CALL together to call an internal routine
whose name is determined at the time of execution; this is known
as a multi-way call (see page 3-30).

If you are calling an internal routine as a function, you must specify
an expression in any RETURN instruction to return from it. This is
not necessary if it is called as a subroutine.

Example:

/\ Recursive internal function execution... \/
arg x
say x'! =' factorial(x)
exit

factorial: procedure /\ Calculate factorial by \/
 arg n /\ recursive invocation. \/
if n=ð then return 1

 return factorial(n-1) \ n

FACTORIAL is unusual in that it calls itself (this is recursive
invocation). The PROCEDURE instruction ensures that a new
variable n is created for each invocation.

Note: When there is a search for a routine, the language
processor currently scans the statements in the REXX
program to locate the internal label. During the search, the
language processor may encounter a syntax error. As a
result, a syntax error may be raised on a statement different
from the original line being processed.

Built-in These functions are always available and are defined in the next
section of this manual. (See pages 4-7 to 4-41.)

External You can write or use functions that are external to your program
and to the language processor. An external routine can be written
in any language (including REXX) that supports the
system-dependent interfaces the language processor uses to call it.
You can call a REXX program as a function and, in this case, pass
more than one argument string. The ARG or PARSE ARG
instructions or the ARG built-in function can retrieve these
argument strings. When called as a function, a program must return
data to the caller. For information about writing external functions
and subroutines and the system dependent interfaces, see

4-2 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

“External Functions and Subroutines, and Function Packages” on
page 12-32.

Notes:

1. Calling an external REXX program as a function is similar to
calling an internal routine. The external routine is, however, an
implicit PROCEDURE in that all the caller's variables are
always hidden and the status of internal values (NUMERIC
settings and so forth) start with their defaults (rather than
inheriting those of the caller).

2. Other REXX programs can be called as functions. You can use
either EXIT or RETURN to leave the called REXX program,
and in either case you must specify an expression.

3. With care, you can use the INTERPRET instruction to process
a function with a variable function name. However, you should
avoid this if possible because it reduces the clarity of the
program.

 Search Order
The search order for functions is: internal routines take precedence, then built-in
functions, and finally external functions.

Internal routines are not used if the function name is given as a literal string (that
is, specified in quotation marks); in this case the function must be built-in or
external. This lets you usurp the name of, say, a built-in function to extend its
capabilities, yet still be able to call the built-in function when needed.

Example:

/\ This internal DATE function modifies the \/
/\ default for the DATE function to standard date. \/
date: procedure
 arg in

if in='' then in='Standard'
 return 'DATE'(in)

Built-in functions have uppercase names, and so the name in the literal string
must be in uppercase for the search to succeed, as in the example. The same is
usually true of external functions. The search order for external functions and
subroutines follows.

1. Check the following function packages defined for the language processor
environment:

� User function packages
� Local function packages
� System function packages.

2. If a match to the function name is not found, the function search order flag
(FUNCSOFL) is checked. The FUNCSOFL flag (see page 14-15) indicates
whether load libraries are searched before the search for a REXX exec.

If the flag is off, check the load libraries. If a match to the function name is not
found, search for a REXX program.

 Chapter 4. Functions 4-3

 Functions

If the flag is on, search for a REXX program. If a match to the function name is
not found, check the load libraries.

Note: By default, the FUNCSOFL flag is off, which means that load libraries
are searched before the search for a REXX exec.

You can use TSO/E EXECUTIL RENAME to change functions in a function
package directory. For more information, see EXECUTIL RENAME on
page 10-23.

3. TSO/E uses the following order to search the load libraries:

� Job pack area

� ISPLLIB. If the user entered LIBDEF ISPLLIB ..., the system searches the
new alternate library defined by LIBDEF followed by the ISPLLIB library.

� Task library and all preceding task libraries

� Step library. If there is no step library, the job library is searched, if one
exists.

� Link pack area (LPA)

 � Link library.

4. The following list describes the steps used to search for a REXX exec for a
function or subroutine call:

Note: VLF is not searched for REXX execs called as functions or subroutines.

a. Search the ddname from which the exec that is calling the function or
subroutine was loaded. For example, if the calling exec was loaded from
the DD MYAPPL, the system searches MYAPPL for the function or
subroutine.

Note: If the calling exec is running in a non-TSO/E address space and the
exec (function or subroutine) being searched for was not found, the
search for an exec ends. Note that depending on the setting of the
FUNCSOFL flag, the load libraries may or may not have already
been searched at this point.

b. Search any exec libraries as defined by the TSO/E ALTLIB command

c. Check the setting of the NOLOADDD flag (see page 14-19).

� If the NOLOADDD flag is off, search any data sets that are allocated to
SYSEXEC. (SYSEXEC is the default system file in which you can store
REXX execs; it is the default ddname specified in the LOADDD field in
the module name table. See page 14-21).

If the function or subroutine is not found, search the data sets allocated
to SYSPROC. If the function or subroutine is not found, the search for
an exec ends. Note that depending on the setting of the FUNCSOFL
flag, the load libraries may or may not have already been searched at
this point.

� If the NOLOADDD flag is on, search any data sets that are allocated to
SYSPROC. If the function or subroutine is not found, the search for an
exec ends. Note that depending on the setting of the FUNCSOFL flag,
the load libraries may or may not have already been searched at this
point.

4-4 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Note: With the defaults that TSO/E provides, the NOLOADDD flag is off.
This means that SYSEXEC is searched before SYSPROC.

You can control the NOLOADDD flag using the TSO/E REXX EXECUTIL
command. For more information, see “EXECUTIL” on page 10-19.

Figure 4-1 illustrates how a call to an external function or subroutine is handled.
After the user, local, and system function packages, and optionally, the load
libraries are searched, if the function or subroutine was not found, the system
searches for a REXX exec. The search for an exec is shown in part 2 of the figure.

Was function found?

Was function found?

Search:

1. User packages
2. Local packages
3. System packages

Is FUNCSOFL flag
on or off?

Search load libraries.

Search for an exec.

Finish

Search for an exec.

If exec was not
found, search load
libraries.

Yes

Yes

Yes

No

On

Off

Error

START

No

No

Was a match to the
function name found?

Figure 4-1 (Part 1 of 2). External Routine Resolution and Execution

 Chapter 4. Functions 4-5

 Functions

SEARCH FOR AN EXEC

Search DD from which
calling exec was loaded.

Search any exec libraries
as defined by ALTLIB
(for example,
SYSUPROC).

Search library defined
in LOADDD field (for
example, SYSEXEC).

If exec was not
found, is NOLOADDD
flag on or off?

If exec was not found,
search SYSPROC.

Search for exec ends.
Exec not found.

Search SYSPROC.On

Off

If exec was not found,
is the calling exec
executing in a
TSO/E

No

Yes

address space?

Figure 4-1 (Part 2 of 2). External Routine Resolution and Execution

Errors During Execution
If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is, therefore, ended. Similarly, if an external function fails
to return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is ended.

4-6 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 Built-in Functions
REXX provides a rich set of built-in functions, including character manipulation,
conversion, and information functions.

There are six other built-in functions that TSO/E provides: EXTERNALS, FIND,
INDEX, JUSTIFY, LINESIZE, and USERID. If you plan to write REXX programs
that run on other SAA environments, note that these functions are not available to
all the environments. In this section, these six built-in functions are identified as
non-SAA functions.

In addition to the built-in functions, TSO/E also provides TSO/E external functions
that you can use to perform different tasks. These functions are described in
“TSO/E External Functions” on page 4-41. The following are general notes on the
built-in functions:

� The parentheses in a function are always needed, even if no arguments are
required. The first parenthesis must follow the name of the function with no
space in between.

� The built-in functions work internally with NUMERIC DIGITS 9 and NUMERIC
FUZZ 0 and are unaffected by changes to the NUMERIC settings, except
where stated. This is not true for RANDOM.

� Any argument named as a string may be a null string.

� If an argument specifies a length, it must be a positive whole number or zero. If
it specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

� Where the last argument is optional, you can always include a comma to
indicate you have omitted it; for example, DATATYPE(1,), like DATATYPE(1),
would return NUM.

� If you specify a pad character, it must be exactly one character long. (A pad
character extends a string, usually on the right. For an example, see the LEFT
built-in function on page 4-24.)

� If a function has an option you can select by specifying the first character of a
string, that character can be in upper- or lowercase.

� A number of the functions described in this chapter support DBCS. A complete
list and descriptions of these functions are in Appendix A, “Double-Byte
Character Set (DBCS) Support” on page A-1.

 ABBREV (Abbreviation)

55─ ──ABBREV(information,info ──┬ ┬───────── ──) ───────────────────────5%
└ ┘──,length

returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. Returns ð if either of these conditions is not met.

If you specify length, it must be a positive whole number or zero. The default for
length is the number of characters in info.

Here are some examples:

 Chapter 4. Functions 4-7

 Functions

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri') -> ð
ABBREV('PRINT','PRI',4) -> ð
ABBREV('PRINT','PRY') -> ð
ABBREV('PRINT','') -> 1
ABBREV('PRINT','',1) -> ð

Note: A null string always matches if a length of ð (or the default) is used. This
allows a default keyword to be selected automatically if desired; for
example:

say 'Enter option:'; pull option .
select /\ keyword1 is to be the default \/
when abbrev('keyword1',option) then ...
when abbrev('keyword2',option) then ...

 ...
 otherwise nop;
end;

ABS (Absolute Value)

55─ ──ABS(number) ───5%

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS('12.3') -> 12.3
ABS(' -ð.3ð7') -> ð.3ð7

 ADDRESS

55─ ──ADDRESS() ───5%

returns the name of the environment to which commands are currently being
submitted. See the ADDRESS instruction (page 3-2) for more information. Trailing
blanks are removed from the result. Here are some examples:

ADDRESS() -> 'TSO' /\ default under TSO/E \/
ADDRESS() -> 'MVS' /\ default under MVS \/

 ARG (Argument)

55─ ──ARG(──┬ ┬──────────────── ──) ───────────────────────────────────5%
 └ ┘──n ──┬ ┬─────────

└ ┘──,option

returns an argument string or information about the argument strings to a program
or internal routine.

If you do not specify n, the number of arguments passed to the program or internal
routine is returned.

4-8 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

If you specify only n, the nth argument string is returned. If the argument string
does not exist, the null string is returned. The n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The
following are valid options. (Only the capitalized and highlighted letter is needed; all
characters following it are ignored.)

Exists returns 1 if the nth argument exists; that is, if it was explicitly
specified when the routine was called. Returns ð otherwise.

Omitted returns 1 if the nth argument was omitted; that is, if it was not
explicitly specified when the routine was called. Returns ð
otherwise.

Here are some examples:

/\ following "Call name;" (no arguments) \/
ARG() -> ð
ARG(1) -> ''
ARG(2) -> ''
ARG(1,'e') -> ð
ARG(1,'O') -> 1

/\ following "Call name 'a',,'b';" \/
ARG() -> 3
ARG(1) -> 'a'
ARG(2) -> ''
ARG(3) -> 'b'
ARG(n) -> '' /\ for n>=4 \/
ARG(1,'e') -> 1
ARG(2,'E') -> ð
ARG(2,'O') -> 1
ARG(3,'o') -> ð
ARG(4,'o') -> 1

Notes:

1. The number of argument strings is the largest number n for which ARG(n,'e')
would return 1 or ð if there are no explicit argument strings. That is, it is the
position of the last explicitly specified argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The
program has 0 argument strings if it is called with the name only and has 1
argument string if anything else (including blanks) is included with the
command.

3. You can retrieve and directly parse the argument strings to a program or
internal routine with the ARG or PARSE ARG instructions. (See pages 3-3,
3-20, and 5-1.)

BITAND (Bit by Bit AND)

55─ ──BITAND(string1 ──┬ ┬────────────────────────── ──) ───────────────5%
 └ ┘──, ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically ANDed together, bit by
bit. (The encoding of the strings are used in the logical operation.) The length of the

 Chapter 4. Functions 4-9

 Functions

result is the length of the longer of the two strings. If no pad character is provided,
the AND operation stops when the shorter of the two strings is exhausted, and the
unprocessed portion of the longer string is appended to the partial result. If pad is
provided, it extends the shorter of the two strings on the right before carrying out
the logical operation. The default for string2 is the zero length (null) string.

Here are some examples:

BITAND('12'x) -> '12'x
BITAND('73'x,'27'x) -> '23'x
BITAND('13'x,'5555'x) -> '1155'x
BITAND('13'x,'5555'x,'74'x) -> '1154'x
BITAND('pQrS',,'BF'x) -> 'pqrs' /\ EBCDIC \/

BITOR (Bit by Bit OR)

55─ ──BITOR(string1 ──┬ ┬────────────────────────── ──) ────────────────5%
 └ ┘──, ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically inclusive-ORed together,
bit by bit. (The encoding of the strings are used in the logical operation.) The length
of the result is the length of the longer of the two strings. If no pad character is
provided, the OR operation stops when the shorter of the two strings is exhausted,
and the unprocessed portion of the longer string is appended to the partial result. If
pad is provided, it extends the shorter of the two strings on the right before carrying
out the logical operation. The default for string2 is the zero length (null) string.

Here are some examples:

BITOR('12'x) -> '12'x
BITOR('15'x,'24'x) -> '35'x
BITOR('15'x,'2456'x) -> '3556'x
BITOR('15'x,'2456'x,'Fð'x) -> '35F6'x
BITOR('1111'x,,'4D'x) -> '5D5D'x
BITOR('Fred',,'4ð'x) -> 'FRED' /\ EBCDIC \/

BITXOR (Bit by Bit Exclusive OR)

55─ ──BITXOR(string1 ──┬ ┬────────────────────────── ──) ───────────────5%
 └ ┘──, ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

returns a string composed of the two input strings logically eXclusive-ORed
together, bit by bit. (The encoding of the strings are used in the logical operation.)
The length of the result is the length of the longer of the two strings. If no pad
character is provided, the XOR operation stops when the shorter of the two strings
is exhausted, and the unprocessed portion of the longer string is appended to the
partial result. If pad is provided, it extends the shorter of the two strings on the right
before carrying out the logical operation. The default for string2 is the zero length
(null) string.

Here are some examples:

4-10 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

BITXOR('12'x) -> '12'x
BITXOR('12'x,'22'x) -> '3ð'x
BITXOR('1211'x,'22'x) -> '3ð11'x
BITXOR('1111'x,'444444'x) -> '555544'x
BITXOR('1111'x,'444444'x,'4ð'x) -> '5555ð4'x
BITXOR('1111'x,,'4D'x) -> '5C5C'x
BITXOR('C711'x,'222222'x,' ') -> 'E53362'x /\ EBCDIC \/

B2X (Binary to Hexadecimal)

55─ ──B2X(binary_string) ──5%

returns a string, in character format, that represents binary_string converted to
hexadecimal.

The binary_string is a string of binary (ð or 1) digits. It can be of any length. You
can optionally include blanks in binary_string (at four-digit boundaries only, not
leading or trailing) to aid readability; they are ignored.

The returned string uses uppercase alphabetics for the values A–F, and does not
include blanks.

If binary_string is the null string, B2X returns a null string. If the number of binary
digits in binary_string is not a multiple of four, then up to three ð digits are added
on the left before the conversion to make a total that is a multiple of four.

Here are some examples:

B2X('11ðððð11') -> 'C3'
B2X('1ð111') -> '17'
B2X('1ð1') -> '5'
B2X('1 1111 ðððð') -> '1Fð'

You can combine B2X with the functions X2D and X2C to convert a binary number
into other forms. For example:

X2D(B2X('1ð111')) -> '23' /\ decimal 23 \/

 CENTER/CENTRE

55─ ──┬ ┬──CENTER(──string,length ──┬ ┬────── ──) ───────────────────────5%
└ ┘──CENTRE(└ ┘──,pad

returns a string of length length with string centered in it, with pad characters added
as necessary to make up length. The length must be a positive whole number or
zero. The default pad character is blank. If the string is longer than length, it is
truncated at both ends to fit. If an odd number of characters are truncated or
added, the right-hand end loses or gains one more character than the left-hand
end.

Here are some examples:

 Chapter 4. Functions 4-11

 Functions

CENTER(abc,7) -> ' ABC '
CENTER(abc,8,'-') -> '--ABC---'
CENTRE('The blue sky',8) -> 'e blue s'
CENTRE('The blue sky',7) -> 'e blue '

Note: To avoid errors because of the difference between British and American
spellings, this function can be called either CENTRE or CENTER.

 COMPARE

55─ ──COMPARE(string1,string2 ──┬ ┬────── ──) ──────────────────────────5%
└ ┘──,pad

returns ð if the strings, string1 and string2, are identical. Otherwise, returns the
position of the first character that does not match. The shorter string is padded on
the right with pad if necessary. The default pad character is a blank.

Here are some examples:

COMPARE('abc','abc') -> ð
COMPARE('abc','ak') -> 2
COMPARE('ab ','ab') -> ð
COMPARE('ab ','ab',' ') -> ð
COMPARE('ab ','ab','x') -> 3
COMPARE('ab-- ','ab','-') -> 5

 CONDITION

55─ ──CONDITION(── ──┬ ┬──────── ──) ───────────────────────────────────5%
 └ ┘─option─

returns the condition information associated with the current trapped condition. (See
Chapter 7, “Conditions and Condition Traps” on page 7-1 for a description of
condition traps.) You can request the following pieces of information:

� The name of the current trapped condition
� Any descriptive string associated with that condition
� The instruction processed as a result of the condition trap (CALL or SIGNAL)
� The status of the trapped condition.

To select the information to return, use the following options. (Only the capitalized
and highlighted letter is needed; all characters following it are ignored.)

Condition name returns the name of the current trapped condition.

Description returns any descriptive string associated with the
current trapped condition. See page 7-5 for the list
of possible strings. If no description is available,
returns a null string.

Instruction returns either CALL or SIGNAL, the keyword for the
instruction processed when the current condition
was trapped. This is the default if you omit option.

4-12 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Status returns the status of the current trapped condition.
This can change during processing, and is either:

ON - the condition is enabled

OFF - the condition is disabled

DELAY - any new occurrence of the condition is
delayed or ignored.

If no condition has been trapped, then the CONDITION function returns a null string
in all four cases.

Here are some examples:

CONDITION() -> 'CALL' /\ perhaps \/
CONDITION('C') -> 'FAILURE'
CONDITION('I') -> 'CALL'
CONDITION('D') -> 'FailureTest'
CONDITION('S') -> 'OFF' /\ perhaps \/

Note: The CONDITION function returns condition information that is saved and
restored across subroutine calls (including those a CALL ON condition trap
causes). Therefore, after a subroutine called with CALL ON trapname has
returned, the current trapped condition reverts to the condition that was
current before the CALL took place (which may be none). CONDITION
returns the values it returned before the condition was trapped.

 COPIES

55─ ──COPIES(string,n) ──5%

returns n concatenated copies of string. The n must be a positive whole number or
zero.

Here are some examples:

COPIES('abc',3) -> 'abcabcabc'
COPIES('abc',ð) -> ''

C2D (Character to Decimal)

55─ ──C2D(string ──┬ ┬──── ──) ───5%
└ ┘──,n

returns the decimal value of the binary representation of string. If the result cannot
be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS. If you specify n, it is the
length of the returned result. If you do not specify n, string is processed as an
unsigned binary number.

If string is null, returns ð.

Here are some examples:

 Chapter 4. Functions 4-13

 Functions

C2D('ð9'X) -> 9
C2D('81'X) -> 129
C2D('FF81'X) -> 654ð9
C2D('') -> ð
C2D('a') -> 129 /\ EBCDIC \/

If you specify n, the string is taken as a signed number expressed in n characters.
The number is positive if the leftmost bit is off, and negative, in two's complement
notation, if the leftmost bit is on. In both cases, it is converted to a whole number,
which may, therefore, be negative. The string is padded on the left with '00'x
characters (note, not “sign-extended”), or truncated on the left to n characters. This
padding or truncation is as though RIGHT(string,n,'ðð'x) had been processed. If
n is ð, C2D always returns ð.

Here are some examples:

C2D('81'X,1) -> -127
C2D('81'X,2) -> 129
C2D('FF81'X,2) -> -127
C2D('FF81'X,1) -> -127
C2D('FF7F'X,1) -> 127
C2D('Fð81'X,2) -> -3967
C2D('Fð81'X,1) -> -127
C2D('ðð31'X,ð) -> ð

Implementation maximum: The input string cannot have more than 250
characters that are significant in forming the final result. Leading sign characters
('00'x and 'FF'x) do not count toward this total.

C2X (Character to Hexadecimal)

55─ ──C2X(string) ───5%

returns a string, in character format, that represents string converted to
hexadecimal. The returned string contains twice as many bytes as the input string.
For example, on an EBCDIC system, C2X(1) returns F1 because the EBCDIC
representation of the character 1 is 'F1'X.

The string returned uses uppercase alphabetics for the values A–F and does not
include blanks. The string can be of any length. If string is null, returns a null string.

Here are some examples:

C2X('72s') -> 'F7F2A2' /\ 'C6F7C6F2C1F2'X in EBCDIC \/
C2X('ð123'X) -> 'ð123' /\ 'FðF1F2F3'X in EBCDIC \/

 DATATYPE

55─ ──DATATYPE(string ──┬ ┬─────── ──) ─────────────────────────────────5%
└ ┘──,type

returns NUM if you specify only string and if string is a valid REXX number that can
be added to 0 without error; returns CHAR if string is not a valid number.

4-14 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

If you specify type, returns 1 if string matches the type; otherwise returns ð. If string
is null, the function returns ð (except when type is X, which returns 1 for a null
string). The following are valid types. (Only the capitalized and highlighted letter is
needed; all characters following it are ignored. Note that for the hexadecimal option,
you must start your string specifying the name of the option with x rather than h.)

Alphanumeric returns 1 if string contains only characters from the ranges a–z,
A–Z, and ð–9.

Binary returns 1 if string contains only the characters ð or 1 or both.

C returns 1 if string is a mixed SBCS/DBCS string.

Dbcs returns 1 if string is a DBCS-only string enclosed by SO and SI
bytes.

Lowercase returns 1 if string contains only characters from the range a–z.

Mixed case returns 1 if string contains only characters from the ranges a–z and
A–Z.

Number returns 1 if string is a valid REXX number.

Symbol returns 1 if string contains only characters that are valid in REXX
symbols. (See page 2-6.) Note that both uppercase and lowercase
alphabetics are permitted.

Uppercase returns 1 if string contains only characters from the range A–Z.

Whole number returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

heXadecimal returns 1 if string contains only characters from the ranges a–f,
A–F, ð–9, and blank (as long as blanks appear only between pairs
of hexadecimal characters). Also returns 1 if string is a null string,
which is a valid hexadecimal string.

Here are some examples:

DATATYPE(' 12 ') -> 'NUM'
DATATYPE('') -> 'CHAR'
DATATYPE('123\') -> 'CHAR'
DATATYPE('12.3','N') -> 1
DATATYPE('12.3','W') -> ð
DATATYPE('Fred','M') -> 1
DATATYPE('','M') -> ð
DATATYPE('Fred','L') -> ð
DATATYPE('?2ðK','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3','X') -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string,
independent of the encoding of those characters (for example, ASCII or
EBCDIC).

 DATE

 Chapter 4. Functions 4-15

 Functions

55─ ──DATE ──(──┬ ┬── ──5
 ├ ┤──date_format1 ──┬ ┬────────────────────────────────

│ │└ ┘──,input_date ──┬ ┬───────────────
│ │└ ┘──,date_format2
└ ┘──,input_date ──┬ ┬─────────────── ──────────────────

└ ┘──,date_format2

5─ ──) ──5%

returns, by default, the local date in the format: dd mon yyyy (day, month, year—for
example, 25 Dec 1996), with no leading zero or blank on the day. Otherwise, the
string input_date is converted to the format specified by date_format1. date_format2
can be specified to define the current format of input_date. The default for
date_format1 and date_format2 is Normal.

You can use the following options to obtain specific date formats. (Only the bold
character is needed; all other characters are ignored.)

Base the number of complete days (that is, not including the current day)
since and including the base date, 1 January 0001, in the format:
dddddd (no leading zeros or blanks). The expression DATE('B')//7
returns a number in the range ð–6 that corresponds to the current
day of the week, where ð is Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week
independent of the national language in which you are working.

Note: The base date of 1 January 0001 is determined by
extending the current Gregorian calendar backward (365
days each year, with an extra day every year that is
divisible by 4 except century years that are not divisible by
400). It does not take into account any errors in the
calendar system that created the Gregorian calendar
originally.

Century the number of days, including the current day, since and including
January 1 of the last year that is a multiple of 100 in the form:
ddddd (no leading zeros). Example: A call to DATE(C) on March 13
1992 returns 33675, the number of days from 1 January 1900 to 13
March 1992. Similarly, a call to DATE(C) on 2 January 2000
returns 2, the number of days from 1 January 2000 to 2 January
2000.

Note: When used for date_format1, this option is valid when
input_date is not specified.

Days the number of days, including the current day, so far in this year in
the format: ddd (no leading zeros or blanks).

European date in the format: dd/mm/yy

Julian date in the format: yyddd.

Note: When used for date_format1, this option is valid when
input_date is not specified.

Month full English name of the current month, for example, August. Only
valid for date_format1.

4-16 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Normal date in the format: dd mon yyyy. This is the default . If the active
language has an abbreviated form of the month name, then it is
used (for example, Jan, Feb, and so on). If Normal is specified (or
allowed to default) for date_format2, the input_date must have the
month (mon) specified in the English abbreviated form of the month
name.

Ordered date in the format: yy/mm/dd (suitable for sorting, and so forth).

Standard date in the format: yyyymmdd (suitable for sorting, and so forth).

Usa date in the format: mm/dd/yy.

Weekday the English name for the day of the week, in mixed case, for
example, Tuesday. Only valid for date_format1.

Here are some examples, assuming today is 13 March 1992:

DATE() -> '13 Mar 1992'
DATE(,'1996ð527','S') -> '27 May 1996'
DATE('B') -> '727269'
DATE('B','27 May 1996') -> '7288ð5'
DATE('C') -> '33675'
DATE('E') -> '13/ð3/92'
DATE('J') -> '92ð73'
DATE('M') -> 'March'
DATE('N') -> '13 Mar 1992'
DATE('N','35488','C') -> '28 Feb 1997'
DATE('O') -> '92/ð3/13'
DATE('S') -> '1992ð313'
DATE('U') -> 'ð3/13/92'
DATE('U','96/ð5/27','O') -> 'ð5/27/96'
DATE('U','97ð59','J') -> 'ð2/28/97'
DATE('W') -> 'Friday'

Notes:

1. The first call to DATE or TIME in one clause causes a time stamp to be made
that is then used for all calls to these functions in that clause. Therefore,
multiple calls to any of the DATE or TIME functions or both in a single
expression or clause are guaranteed to be consistent with each other.

2. Input dates given in 2-digit year formats (i.e. European, Julian, Ordered, Usa)
are interpreted as being within a 100 year window as calculated by:

(current_year − 50) = low end of window
(current_year + 49) = high end of window

DBCS (Double-Byte Character Set Functions)
The following are all part of DBCS processing functions. See page A-1.

DBADJUST DBRIGHT DBUNBRACKET
DBBRACKET DBRLEFT DBVALIDATE
DBCENTER DBRRIGHT DBWIDTH
DBCJUSTIFY DBTODBCS
DBLEFT DBTOSBCS

 Chapter 4. Functions 4-17

 Functions

DELSTR (Delete String)

55─ ──DELSTR(string,n ──┬ ┬───────── ──) ───────────────────────────────5%
└ ┘──,length

returns string after deleting the substring that begins at the nth character and is of
length characters. If you omit length, or if length is greater than the number of
characters from n to the end of string, the function deletes the rest of string
(including the nth character). The length must be a positive whole number or zero.
The n must be a positive whole number. If n is greater than the length of string, the
function returns string unchanged.

Here are some examples:

DELSTR('abcd',3) -> 'ab'
DELSTR('abcde',3,2) -> 'abe'
DELSTR('abcde',6) -> 'abcde'

DELWORD (Delete Word)

55─ ──DELWORD(string,n ──┬ ┬───────── ──) ──────────────────────────────5%
└ ┘──,length

returns string after deleting the substring that starts at the nth word and is of length
blank-delimited words. If you omit length, or if length is greater than the number of
words from n to the end of string, the function deletes the remaining words in string
(including the nth word). The length must be a positive whole number or zero. The
n must be a positive whole number. If n is greater than the number of words in
string, the function returns string unchanged. The string deleted includes any blanks
following the final word involved but none of the blanks preceding the first word
involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is '
DELWORD('Now is the time',5) -> 'Now is the time'
DELWORD('Now is the time',3,1) -> 'Now is time'

 DIGITS

55─ ──DIGITS() ──5%

returns the current setting of NUMERIC DIGITS. See the NUMERIC instruction on
page 3-18 for more information.

Here is an example:

DIGITS() -> 9 /\ by default \/

4-18 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

D2C (Decimal to Character)

55─ ──D2C(wholenumber ──┬ ┬──── ──) ────────────────────────────────────5%
└ ┘──,n

returns a string, in character format, that represents wholenumber, a decimal
number, converted to binary. If you specify n, it is the length of the final result in
characters; after conversion, the input string is sign-extended to the required length.
If the number is too big to fit into n characters, then the result is truncated on the
left. The n must be a positive whole number or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
result length is as needed. Therefore, the returned result has no leading '00'x
characters.

Here are some examples:

D2C(9) -> ' ' /\ 'ð9'x is unprintable in EBCDIC \/
D2C(129) -> 'a' /\ '81'x is an EBCDIC 'a' \/
D2C(129,1) -> 'a' /\ '81'x is an EBCDIC 'a' \/
D2C(129,2) -> ' a' /\ 'ðð81'x is EBCDIC ' a' \/
D2C(257,1) -> ' ' /\ 'ð1'x is unprintable in EBCDIC \/
D2C(-127,1) -> 'a' /\ '81'x is EBCDIC 'a' \/
D2C(-127,2) -> ' a' /\ 'FF'x is unprintable EBCDIC; \/

/\ '81'x is EBCDIC 'a' \/
D2C(-1,4) -> ' ' /\ 'FFFFFFFF'x is unprintable in EBCDIC \/
D2C(12,ð) -> '' /\ '' is a null string \/

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters ('00'x and 'FF'x).

D2X (Decimal to Hexadecimal)

55─ ──D2X(wholenumber ──┬ ┬──── ──) ────────────────────────────────────5%
└ ┘──,n

returns a string, in character format, that represents wholenumber, a decimal
number, converted to hexadecimal. The returned string uses uppercase alphabetics
for the values A–F and does not include blanks.

If you specify n, it is the length of the final result in characters; after conversion the
input string is sign-extended to the required length. If the number is too big to fit
into n characters, it is truncated on the left. The n must be a positive whole number
or zero.

If you omit n, wholenumber must be a positive whole number or zero, and the
returned result has no leading zeros.

Here are some examples:

 Chapter 4. Functions 4-19

 Functions

D2X(9) -> '9'
D2X(129) -> '81'
D2X(129,1) -> '1'
D2X(129,2) -> '81'
D2X(129,4) -> 'ðð81'
D2X(257,2) -> 'ð1'
D2X(-127,2) -> '81'
D2X(-127,4) -> 'FF81'
D2X(12,ð) -> ''

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

 ERRORTEXT

55─ ──ERRORTEXT(n) ──5%

returns the REXX error message associated with error number n. The n must be in
the range 0–99, and any other value is an error. Returns the null string if n is in
the allowed range but is not a defined REXX error number.

Error numbers produced by syntax errors during processing of REXX execs
correspond to TSO/E REXX messages (described in OS/390 TSO/E Messages.)
For example, error 26 corresponds to message number IRX0026I. The error
number is also the value that is placed in the REXX special variable RC when
SIGNAL ON SYNTAX event is trapped.

Here are some examples:

ERRORTEXT(16) -> 'Label not found'
ERRORTEXT(6ð) -> ''

 EXTERNALS
(Non-SAA Function)

EXTERNALS is a non-SAA built-in function provided only by TSO/E and VM.

55─ ──EXTERNALS() ───5%

always returns a 0. For example:

EXTERNALS() -> ð /\ Always \/

The EXTERNALS function returns the number of elements in the terminal input
buffer (system external event queue). In TSO/E, there is no equivalent buffer.
Therefore, in the TSO/E implementation of REXX, the EXTERNALS function always
returns a 0.

4-20 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 FIND
(Non-SAA Function)

FIND is a non-SAA built-in function provided only by TSO/E and VM.

WORDPOS is the preferred built-in function for this type of word search. See page
4-38 for a complete description.

55─ ──FIND(string,phrase) ───5%

returns the word number of the first word of phrase found in string or returns ð if
phrase is not found or if there are no words in phrase. The phrase is a sequence of
blank-delimited words. Multiple blanks between words in phrase or string are
treated as a single blank for the comparison.

Here are some examples:

FIND('now is the time','is the time') -> 2
FIND('now is the time','is the') -> 2
FIND('now is the time','is time ') -> ð

 FORM

55─ ──FORM() ──5%

returns the current setting of NUMERIC FORM. See the NUMERIC instruction on
page 3-18 for more information.

Here is an example:

FORM() -> 'SCIENTIFIC' /\ by default \/

 FORMAT

55─ ──FORMAT(number ──5

5─ ──┬ ┬─── ──) ─────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬──
 └ ┘─before─ └ ┘──, ──┬ ┬─────── ──┬ ┬────────────────────────
 └ ┘─after─ └ ┘──, ──┬ ┬────── ──┬ ┬───────

└ ┘─expp─ └ ┘──,expt

returns number, rounded and formatted.

The number is first rounded according to standard REXX rules, just as though the
operation number+ð had been carried out. The result is precisely that of this
operation if you specify only number. If you specify any other options, the number
is formatted as follows.

The before and after options describe how many characters are used for the
integer and decimal parts of the result, respectively. If you omit either or both of
these, the number of characters used for that part is as needed.

 Chapter 4. Functions 4-21

 Functions

If before is not large enough to contain the integer part of the number (plus the sign
for a negative number), an error results. If before is larger than needed for that
part, the number is padded on the left with blanks. If after is not the same size as
the decimal part of the number, the number is rounded (or extended with zeros) to
fit. Specifying ð causes the number to be rounded to an integer.

Here are some examples:

FORMAT('3',4) -> ' 3'
FORMAT('1.73',4,ð) -> ' 2'
FORMAT('1.73',4,3) -> ' 1.73ð'
FORMAT('-.76',4,1) -> ' -ð.8'
FORMAT('3.ð3',4) -> ' 3.ð3'
FORMAT(' - 12.73',,4) -> '-12.73ðð'
FORMAT(' - 12.73') -> '-12.73'
FORMAT('ð.ððð') -> 'ð'

The first three arguments are as described previously. In addition, expp and expt
control the exponent part of the result, which, by default, is formatted according to
the current NUMERIC settings of DIGITS and FORM. The expp sets the number of
places for the exponent part; the default is to use as many as needed (which may
be zero). The expt sets the trigger point for use of exponential notation. The default
is the current setting of NUMERIC DIGITS.

If expp is ð, no exponent is supplied, and the number is expressed in simple form
with added zeros as necessary. If expp is not large enough to contain the
exponent, an error results.

If the number of places needed for the integer or decimal part exceeds expt or
twice expt, respectively, exponential notation is used. If expt is ð, exponential
notation is always used unless the exponent would be ð. (If expp is ð, this overrides
a ð value of expt.) If the exponent would be ð when a nonzero expp is specified,
then expp+2 blanks are supplied for the exponent part of the result. If the exponent
would be ð and expp is not specified, simple form is used.

Here are some examples:

FORMAT('12345.73',,,2,2) -> '1.234573E+ð4'
FORMAT('12345.73',,3,,ð) -> '1.235E+4'
FORMAT('1.234573',,3,,ð) -> '1.235'
FORMAT('12345.73',,,3,6) -> '12345.73'
FORMAT('1234567e5',,3,ð) -> '1234567ððððð.ððð'

 FUZZ

55─ ──FUZZ() ──5%

returns the current setting of NUMERIC FUZZ. See the NUMERIC instruction on
page 3-18 for more information.

Here is an example:

FUZZ() -> ð /\ by default \/

4-22 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 GETMSG
GETMSG is a TSO/E external function. See page 4-42.

 INDEX
(Non-SAA Function)

INDEX is a non-SAA built-in function provided only by TSO/E and VM.

POS is the preferred built-in function for obtaining the position of one string in
another. See page 4-27 for a complete description.

55─ ──INDEX(haystack,needle ──┬ ┬──────── ──) ──────────────────────────5%
└ ┘──,start

returns the character position of one string, needle, in another, haystack, or returns
ð if the string needle is not found or is a null string. By default the search starts at
the first character of haystack (start has the value 1). You can override this by
specifying a different start point, which must be a positive whole number.

Here are some examples:

INDEX('abcdef','cd') -> 3
INDEX('abcdef','xd') -> ð
INDEX('abcdef','bc',3) -> ð
INDEX('abcabc','bc',3) -> 5
INDEX('abcabc','bc',6) -> ð

 INSERT

55─ ──INSERT(new,target ──┬ ┬─────────────────────────────────────── ──) ───────5%
 └ ┘──, ──┬ ┬─── ──┬ ┬─────────────────────────
 └ ┘─n─ └ ┘──, ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

inserts the string new, padded or truncated to length length, into the string target
after the nth character. The default value for n is ð, which means insert before the
beginning of the string. If specified, n and length must be positive whole numbers
or zero. If n is greater than the length of the target string, padding is added before
the string new also. The default value for length is the length of new. If length is
less than the length of the string new, then INSERT truncates new to length length.
The default pad character is a blank.

Here are some examples:

INSERT(' ','abcdef',3) -> 'abc def'
INSERT('123','abc',5,6) -> 'abc 123 '
INSERT('123','abc',5,6,'+') -> 'abc++123+++'
INSERT('123','abc') -> '123abc'
INSERT('123','abc',,5,'-') -> '123--abc'

 Chapter 4. Functions 4-23

 Functions

 JUSTIFY
(Non-SAA Function)

JUSTIFY is a non-SAA built-in function provided only by TSO/E and VM.

55─ ──JUSTIFY(string,length ──┬ ┬────── ──) ────────────────────────────5%
└ ┘──,pad

returns string formatted by adding pad characters between blank-delimited words to
justify to both margins. This is done to width length (length must be a positive
whole number or zero). The default pad character is a blank.

The first step is to remove extra blanks as though SPACE(string) had been run
(that is, multiple blanks are converted to single blanks, and leading and trailing
blanks are removed). If length is less than the width of the changed string, the
string is then truncated on the right and any trailing blank is removed. Extra pad
characters are then added evenly from left to right to provide the required length,
and the pad character replaces the blanks between words.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky',8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky',9,'+') -> 'The++blue'

LASTPOS (Last Position)

55─ ──LASTPOS(needle,haystack ──┬ ┬──────── ──) ────────────────────────5%
└ ┘──,start

returns the position of the last occurrence of one string, needle, in another,
haystack. (See also the POS function.) Returns ð if needle is the null string or is
not found. By default the search starts at the last character of haystack and scans
backward. You can override this by specifying start, the point at which the
backward scan starts. start must be a positive whole number and defaults to
LENGTH(haystack) if larger than that value or omitted.

Here are some examples:

LASTPOS(' ','abc def ghi') -> 8
LASTPOS(' ','abcdefghi') -> ð
LASTPOS('xy','efgxyz') -> 4
LASTPOS(' ','abc def ghi',7) -> 4

 LEFT

55─ ──LEFT(string,length ──┬ ┬────── ──) ───────────────────────────────5%
└ ┘──,pad

returns a string of length length, containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as

4-24 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

needed. The default pad character is a blank. length must be a positive whole
number or zero. The LEFT function is exactly equivalent to:

55─ ──SUBSTR(string,1,length ──┬ ┬────── ──) ─5%
└ ┘──,pad

Here are some examples:

LEFT('abc d',8) -> 'abc d '
LEFT('abc d',8,'.') -> 'abc d...'
LEFT('abc def',7) -> 'abc de'

 LENGTH

55─ ──LENGTH(string) ──5%

returns the length of string.

Here are some examples:

LENGTH('abcdefgh') -> 8
LENGTH('abc defg') -> 8
LENGTH('') -> ð

 LINESIZE
(Non-SAA Function)

LINESIZE is a non-SAA built-in function provided only by TSO/E and VM.

55─ ──LINESIZE() ──5%

returns the current terminal line width minus 1 (the point at which the language
processor breaks lines displayed using the SAY instruction).

If the REXX exec is running in TSO/E background (that is, on the JCL EXEC
statement PGM=IKJEFT01), LINESIZE always returns the value 131. If the REXX
exec is running in TSO/E foreground, the LINESIZE function always returns the
current terminal width (as defined by the TSO/E TERMINAL command) minus one
character.

If the exec is running in a non-TSO/E address space, LINESIZE returns the logical
record length of the OUTDD file (the default file is SYSTSPRT). The OUTDD file is
specified in the module name table (see page 14-21).

 LISTDSI
LISTDSI is a TSO/E external function. See page 4-48.

 Chapter 4. Functions 4-25

 Functions

 MAX (Maximum)

 ┌ ┐─,────
55─ ──MAX(───6 ┴number ──) ───5%

returns the largest number from the list specified, formatted according to the current
NUMERIC settings.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17.3,19,17.ð3) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(1,2,3,4,5,6,7,8,9,1ð,11,12,13,14,15,16,17,18,19,MAX(2ð,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls
to MAX if more arguments are needed.

 MIN (Minimum)

 ┌ ┐─,────
55─ ──MIN(───6 ┴number ──) ───5%

returns the smallest number from the list specified, formatted according to the
current NUMERIC settings.

Here are some examples:

MIN(12,6,7,9) -> 6
MIN(17.3,19,17.ð3) -> 17.ð3
MIN(-7,-3,-4.3) -> -7
MIN(21,2ð,19,18,17,16,15,14,13,12,11,1ð,9,8,7,6,5,4,3,MIN(2,1)) -> 1

Implementation maximum: You can specify up to 20 numbers, and can nest calls
to MIN if more arguments are needed.

 MSG
MSG is a TSO/E external function. See page 4-57.

 MVSVAR
MVSVAR is a TSO/E external function. See page 4-58.

 OUTTRAP
OUTTRAP is a TSO/E external function. See page 4-63.

 OVERLAY

55─ ──OVERLAY(new,target ──┬ ┬─────────────────────────────────────── ──) ──────5%
 └ ┘──, ──┬ ┬─── ──┬ ┬─────────────────────────
 └ ┘─n─ └ ┘──, ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

4-26 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

returns the string target, which, starting at the nth character, is overlaid with the
string new, padded or truncated to length length. (The overlay may extend beyond
the end of the original target string.) If you specify length, it must be a positive
whole number or zero. The default value for length is the length of new. If n is
greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for n is 1. If you specify
n, it must be a positive whole number.

Here are some examples:

OVERLAY(' ','abcdef',3) -> 'ab def'
OVERLAY('.','abcdef',3,2) -> 'ab. ef'
OVERLAY('qq','abcd') -> 'qqcd'
OVERLAY('qq','abcd',4) -> 'abcqq'
OVERLAY('123','abc',5,6,'+') -> 'abc+123+++'

 POS (Position)

55─ ──POS(needle,haystack ──┬ ┬──────── ──) ────────────────────────────5%
└ ┘──,start

returns the position of one string, needle, in another, haystack. (See also the
INDEX and LASTPOS functions.) Returns ð if needle is the null string or is not
found or if start is greater than the length of haystack. By default the search starts
at the first character of haystack (that is, the value of start is 1). You can override
this by specifying start (which must be a positive whole number), the point at which
the search starts.

Here are some examples:

POS('day','Saturday') -> 6
POS('x','abc def ghi') -> ð
POS(' ','abc def ghi') -> 4
POS(' ','abc def ghi',5) -> 8

 PROMPT
PROMPT is a TSO/E external function. See page 4-67.

 QUEUED

55─ ──QUEUED() ──5%

returns the number of lines remaining in the external data queue when the function
is called.

The TSO/E implementation of the external data queue is the data stack.

Here is an example:

QUEUED() -> 5 /\ Perhaps \/

 Chapter 4. Functions 4-27

 Functions

 RANDOM

55─ ──RANDOM(──┬ ┬──────────────────────────────── ──) ────────────────5%
 ├ ┤─max────────────────────────────

└ ┘── ──┬ ┬──min, ──┬ ┬───── ──┬ ┬───────
└ ┘─,──── └ ┘──max └ ┘──,seed

returns a quasi-random nonnegative whole number in the range min to max
inclusive. If you specify max or min or both, max minus min cannot exceed 100000.
The min and max default to ð and 999, respectively. To start a repeatable sequence
of results, use a specific seed as the third argument, as described in Note 1. This
seed must be a positive whole number ranging from 0 to 999999999.

Here are some examples:

RANDOM() -> 3ð5
RANDOM(5,8) -> 7
RANDOM(2) -> ð /\ ð to 2 \/
RANDOM(,,1983) -> 123 /\ reproducible \/

Notes:

1. To obtain a predictable sequence of quasi-random numbers, use RANDOM a
number of times, but specify a seed only the first time. For example, to simulate
40 throws of a 6-sided, unbiased die:

sequence = RANDOM(1,6,12345) /\ any number would \/
/\ do for a seed \/

do 39
sequence = sequence RANDOM(1,6)

 end
say sequence

The numbers are generated mathematically, using the initial seed, so that as
far as possible they appear to be random. Running the program again
produces the same sequence; using a different initial seed almost certainly
produces a different sequence. If you do not supply a seed, the first time
RANDOM is called, an arbitrary seed is used. Hence, your program usually
gives different results each time it is run.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

 REVERSE

55─ ──REVERSE(string) ───5%

returns string, swapped end for end.

Here are some examples:

REVERSE('ABc.') -> '.cBA'
REVERSE('XYZ ') -> ' ZYX'

4-28 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 RIGHT

55─ ──RIGHT(string,length ──┬ ┬────── ──) ──────────────────────────────5%
└ ┘──,pad

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank. The length must be a positive whole
number or zero.

Here are some examples:

RIGHT('abc d',8) -> ' abc d'
RIGHT('abc def',5) -> 'c def'
RIGHT('12',5,'ð') -> 'ððð12'

 SETLANG
SETLANG is a TSO/E external function. See page 4-70.

 SIGN

55─ ──SIGN(number) ──5%

returns a number that indicates the sign of number. The number is first rounded
according to standard REXX rules, just as though the operation number+ð had been
carried out. Returns -1 if number is less than ð; returns ð if it is ð; and returns 1 if
it is greater than ð.

Here are some examples:

SIGN('12.3') -> 1
SIGN(' -ð.3ð7') -> -1
SIGN(ð.ð) -> ð

 SOURCELINE

55─ ──SOURCELINE(── ──┬ ┬─── ──) ───────────────────────────────────────5%
 └ ┘─n─

returns the line number of the final line in the program if you omit n or ð if the
implementation does not allow access to the source lines. If you specify n, returns
the nth line in the program if available at the time of execution; otherwise, returns
the null string. If specified, n must be a positive whole number and must not exceed
the number that a call to SOURCELINE with no arguments returns.

Here are some examples:

SOURCELINE() -> 1ð
SOURCELINE(1) -> '/\ This is a 1ð-line REXX program \/'

 Chapter 4. Functions 4-29

 Functions

 SPACE

55─ ──SPACE(string ──┬ ┬──────────────────── ──) ───────────────────────5%
 └ ┘──, ──┬ ┬─── ──┬ ┬──────

└ ┘─n─ └ ┘──,pad

returns the blank-delimited words in string with n pad characters between each
word. If you specify n, it must be a positive whole number or zero. If it is ð, all
blanks are removed. Leading and trailing blanks are always removed. The default
for n is 1, and the default pad character is a blank.

Here are some examples:

SPACE('abc def ') -> 'abc def'
SPACE(' abc def',3) -> 'abc def'
SPACE('abc def ',1) -> 'abc def'
SPACE('abc def ',ð) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

 STORAGE
STORAGE is a TSO/E external function. See page 4-72.

 STRIP

55─ ──STRIP(string ──┬ ┬────────────────────────── ──) ─────────────────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬───────

└ ┘─option─ └ ┘──,char

returns string with leading or trailing characters or both removed, based on the
option you specify. The following are valid options. (Only the capitalized and
highlighted letter is needed; all characters following it are ignored.)

Both removes both leading and trailing characters from string. This is the
default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is
a blank. If you specify char, it must be exactly one character long.

Here are some examples:

STRIP(' ab c ') -> 'ab c'
STRIP(' ab c ','L') -> 'ab c '
STRIP(' ab c ','t') -> ' ab c'
STRIP('12.7ððð',,ð) -> '12.7'
STRIP('ðð12.7ðð',,ð) -> '12.7'

4-30 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

 SUBSTR (Substring)

55─ ──SUBSTR(string,n ──┬ ┬───────────────────────── ──) ───────────────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

returns the substring of string that begins at the nth character and is of length
length, padded with pad if necessary. The n must be a positive whole number. If n
is greater than LENGTH(string), then only pad characters are returned.

If you omit length, the rest of the string is returned. The default pad character is a
blank.

Here are some examples:

SUBSTR('abc',2) -> 'bc'
SUBSTR('abc',2,4) -> 'bc '
SUBSTR('abc',2,6,'.') -> 'bc....'

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one
substring is to be extracted from a string. See also the LEFT and RIGHT
functions.

 SUBWORD

55─ ──SUBWORD(string,n ──┬ ┬───────── ──) ──────────────────────────────5%
└ ┘──,length

returns the substring of string that starts at the nth word, and is up to length
blank-delimited words. The n must be a positive whole number. If you omit length, it
defaults to the number of remaining words in string. The returned string never has
leading or trailing blanks, but includes all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time',2,2) -> 'is the'
SUBWORD('Now is the time',3) -> 'the time'
SUBWORD('Now is the time',5) -> ''

 SYMBOL

55─ ──SYMBOL(name) ──5%

returns the state of the symbol named by name. Returns BAD if name is not a valid
REXX symbol. Returns VAR if it is the name of a variable (that is, a symbol that has
been assigned a value). Otherwise returns LIT, indicating that it is either a constant
symbol or a symbol that has not yet been assigned a value (that is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated
to uppercase and substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an
expression) to prevent substitution before it is passed to the function.

 Chapter 4. Functions 4-31

 Functions

Here are some examples:

/\ following: Drop A.3; J=3 \/
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /\ has tested "3" \/
SYMBOL('a.j') -> 'LIT' /\ has tested A.3 \/
SYMBOL(2) -> 'LIT' /\ a constant symbol \/
SYMBOL('\') -> 'BAD' /\ not a valid symbol \/

 SYSCPUS
SYSCPUS is a TSO/E external function. See page 4-73.

 SYSDSN
SYSDSN is a TSO/E external function. See page 4-74.

 SYSVAR
SYSVAR is a TSO/E external function. See page 4-76.

 TIME

55─ ──TIME(── ──┬ ┬──────── ──) ──5%
 └ ┘─option─

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and
seconds) by default, for example, ð4:41:37.

You can use the following options to obtain alternative formats, or to gain access to
the elapsed-time clock. (Only the capitalized and highlighted letter is needed; all
characters following it are ignored.)

Civil returns the time in Civil format: hh:mmxx. The hours may take the
values 1 through 12, and the minutes the values ðð through 59. The
minutes are followed immediately by the letters am or pm. This
distinguishes times in the morning (12 midnight through 11:59
a.m.—appearing as 12:ððam through 11:59am) from noon and
afternoon (12 noon through 11:59 p.m.—appearing as 12:ððpm
through 11:59pm). The hour has no leading zero. The minute field
shows the current minute (rather than the nearest minute) for
consistency with other TIME results.

Elapsed returns sssssssss.uuuuuu, the number of seconds.microseconds
since the elapsed-time clock (described later) was started or reset.
The number has no leading zeros or blanks, and the setting of
NUMERIC DIGITS does not affect the number. The fractional part
always has six digits.

Hours returns up to two characters giving the number of hours since
midnight in the format: hh (no leading zeros or blanks, except for a
result of ð).

Long returns time in the format: hh:mm:ss.uuuuuu (uuuuuu is the fraction
of seconds, in microseconds). The first eight characters of the
result follow the same rules as for the Normal form, and the
fractional part is always six digits.

4-32 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Minutes returns up to four characters giving the number of minutes since
midnight in the format: mmmm (no leading zeros or blanks, except
for a result of ð).

Normal returns the time in the default format hh:mm:ss, as described
previously. The hours can have the values ðð through 23, and
minutes and seconds, ðð through 59. All these are always two
digits. Any fractions of seconds are ignored (times are never
rounded up). This is the default .

Reset returns sssssssss.uuuuuu, the number of seconds.microseconds
since the elapsed-time clock (described later) was started or reset
and also resets the elapsed-time clock to zero. The number has no
leading zeros or blanks, and the setting of NUMERIC DIGITS does
not affect the number. The fractional part always has six digits.

Seconds returns up to five characters giving the number of seconds since
midnight in the format: sssss (no leading zeros or blanks, except
for a result of ð).

Here are some examples, assuming that the time is 4:54 p.m.:

TIME() -> '16:54:22'
TIME('C') -> '4:54pm'
TIME('H') -> '16'
TIME('L') -> '16:54:22.123456' /\ Perhaps \/
TIME('M') -> '1ð14' /\ 54 + 6ð\16 \/
TIME('N') -> '16:54:22'
TIME('S') -> '6ð862' /\ 22 + 6ð\(54+6ð\16) \/

The elapsed-time clock: You can use the TIME function to measure real (elapsed)
time intervals. On the first call in a program to TIME('E') or TIME('R'), the
elapsed-time clock is started, and either call returns ð. From then on, calls to
TIME('E') and to TIME('R') return the elapsed time since that first call or since the
last call to TIME('R').

The clock is saved across internal routine calls, which is to say that an internal
routine inherits the time clock its caller started. Any timing the caller is doing is not
affected, even if an internal routine resets the clock. An example of the
elapsed-time clock:

time('E') -> ð /\ The first call \/
/\ pause of one second here \/
time('E') -> 1.ðð2345 /\ or thereabouts \/
/\ pause of one second here \/
time('R') -> 2.ðð469ð /\ or thereabouts \/
/\ pause of one second here \/
time('R') -> 1.ðð2345 /\ or thereabouts \/

Note: See the note under DATE about consistency of times within a single clause.
The elapsed-time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed-time clock in a single clause always
return the same result. For the same reason, the interval between two usual
TIME/DATE results may be calculated exactly using the elapsed-time clock.

Implementation maximum: If the number of seconds in the elapsed time exceeds
nine digits (equivalent to over 31.6 years), an error results.

 Chapter 4. Functions 4-33

 Functions

 TRACE

55─ ──TRACE(── ──┬ ┬──────── ──) ───────────────────────────────────────5%
 └ ┘─option─

returns trace actions currently in effect and, optionally, alters the setting.

If you specify option, it selects the trace setting. It must be one of the valid prefixes
? or ! or one of the alphabetic character options associated with the TRACE
instruction (that is, starting with A, C, E, F, I, L, N, O, R, or S) or both. (See the
TRACE instruction on page 3-32 for full details.)

Unlike the TRACE instruction, the TRACE function alters the trace action even if
interactive debug is active. Also unlike the TRACE instruction, option cannot be a
number.

Here are some examples:

TRACE() -> '?R' /\ maybe \/
TRACE('O') -> '?R' /\ also sets tracing off \/
TRACE('?I') -> 'O' /\ now in interactive debug \/

 TRANSLATE

55─ ──TRANSLATE(string ───5

5─ ──┬ ┬── ──) ──────────────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬─────────────────────────

 └ ┘─tableo─ └ ┘──, ──┬ ┬──────── ──┬ ┬──────
└ ┘─tablei─ └ ┘──,pad

returns string with each character translated to another character or unchanged.
You can also use this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in string. If the character is found, then the
corresponding character in tableo is used in the result string; if there are duplicates
in tablei, the first (leftmost) occurrence is used. If the character is not found, the
original character in string is used. The result string is always the same length as
string.

The tables can be of any length. If you specify neither translation table and omit
pad, string is simply translated to uppercase (that is, lowercase a–z to uppercase
A–Z), but, if you include pad, the language processor translates the entire string to
pad characters. tablei defaults to XRANGE('ðð'x,'FF'x), and tableo defaults to the
null string and is padded with pad or truncated as necessary. The default pad is a
blank.

Here are some examples:

4-34 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

TRANSLATE('abcdef') -> 'ABCDEF'
TRANSLATE('abbc','&','b') -> 'a&&c'
TRANSLATE('abcdef','12','ec') -> 'ab2d1f'
TRANSLATE('abcdef','12','abcd','.') -> '12..ef'
TRANSLATE('APQRV',,'PR') -> 'A Q V'
TRANSLATE('APQRV',XRANGE('ðð'X,'Q')) -> 'APQ '
TRANSLATE('4123','abcd','1234') -> 'dabc'

Note: The last example shows how to use the TRANSLATE function to reorder
the characters in a string. In the example, the last character of any
four-character string specified as the second argument would be moved to
the beginning of the string.

 TRUNC (Truncate)

55─ ──TRUNC(number ──┬ ┬──── ──) ───────────────────────────────────────5%
└ ┘──,n

returns the integer part of number and n decimal places. The default n is ð and
returns an integer with no decimal point. If you specify n, it must be a positive
whole number or zero. The number is first rounded according to standard REXX
rules, just as though the operation number+ð had been carried out. The number is
then truncated to n decimal places (or trailing zeros are added if needed to make
up the specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3) -> 12
TRUNC(127.ð9782,3) -> 127.ð97
TRUNC(127.1,3) -> 127.1ðð
TRUNC(127,2) -> 127.ðð

Note: The number is rounded according to the current setting of NUMERIC
DIGITS if necessary before the function processes it.

 USERID
(Non-SAA Function)

USERID is a non-SAA built-in function provided only by TSO/E and VM.

55─ ──USERID() ──5%

returns the TSO/E user ID, if the REXX exec is running in the TSO/E address
space. For example:

USERID() -> 'ARTHUR' /\ Maybe \/

If the exec is running in a non-TSO/E address space, USERID returns one of the
following values:

� User ID specified (provided that the value specified is between one and seven
characters in length)

 � Stepname specified
 � Jobname specified

 Chapter 4. Functions 4-35

 Functions

The value that USERID returns is the first one that does not have a null value. For
example, if the user ID is null but the stepname is specified, USERID returns the
value of the stepname.

TSO/E lets you replace the routine (module) that is called to determine the value
the USERID function returns. This is known as the user ID replaceable routine and
is described in “User ID Routine” on page 16-40. You can replace the routine only
in non-TSO/E address spaces. Chapter 16, Replaceable Routines and Exits
describes replaceable routines in detail and any exceptions to this rule.

 VALUE

55─ ──VALUE(name ──┬ ┬───────────── ──) ────────────────────────────────5%
 └ ┘ ─,──newvalue─

returns the value of the symbol that name (often constructed dynamically)
represents and optionally assigns it a new value. By default, VALUE refers to the
current REXX-variables environment. If you use the function to refer to REXX
variables, then name must be a valid REXX symbol. (You can confirm this by using
the SYMBOL function.) Lowercase characters in name are translated to uppercase.
Substitution in a compound name (see “Compound Symbols” on page 2-18) occurs
if possible.

If you specify newvalue, then the named variable is assigned this new value. This
does not affect the result returned; that is, the function returns the value of name as
it was before the new assignment.

Here are some examples:

/\ After: Drop A3; A33=7; K=3; fred='K'; list.5='Hi' \/
VALUE('a'k) -> 'A3' /\ looks up A3 \/
VALUE('fred') -> 'K' /\ looks up FRED \/
VALUE(fred) -> '3' /\ looks up K \/
VALUE(fred,5) -> '3' /\ looks up K and \/

/\ then sets K=5 \/
VALUE(fred) -> '5' /\ looks up K \/
VALUE('LIST.'k) -> 'Hi' /\ looks up LIST.5 \/

Note: If the VALUE function refers to an uninitialized REXX variable then the
default value of the variable is always returned; the NOVALUE condition is
not raised. If you specify the name as a single literal the symbol is a
constant and so the string between the quotation marks can usually replace
the whole function call. (For example, fred=VALUE('k'); is identical with the
assignment fred=k;, unless the NOVALUE condition is being trapped. See
Chapter 7, “Conditions and Condition Traps” on page 7-1.)

 VERIFY

55─ ──VERIFY(string,reference ──┬ ┬─────────────────────────── ──) ─────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬────────

└ ┘─option─ └ ┘──,start

4-36 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

returns a number that, by default, indicates whether string is composed only of
characters from reference; returns ð if all characters in string are in reference, or
returns the position of the first character in string not in reference.

The option can be either Nomatch (the default) or Match. (Only the capitalized and
highlighted letter is needed. All characters following it are ignored, and it can be in
upper- or lowercase, as usual.) If you specify Match, the function returns the
position of the first character in string that is in reference, or returns ð if none of the
characters are found.

The default for start is 1; thus, the search starts at the first character of string. You
can override this by specifying a different start point, which must be a positive
whole number.

If string is null, the function returns ð, regardless of the value of the third argument.
Similarly, if start is greater than LENGTH(string), the function returns ð. If reference
is null, the function returns ð if you specify Match; otherwise the function returns the
start value.

Here are some examples:

VERIFY('123','123456789ð') -> ð
VERIFY('1Z3','123456789ð') -> 2
VERIFY('AB4T','123456789ð') -> 1
VERIFY('AB4T','123456789ð','M') -> 3
VERIFY('AB4T','123456789ð','N') -> 1
VERIFY('1P3Q4','123456789ð',,3) -> 4
VERIFY('123','',N,2) -> 2
VERIFY('ABCDE','',,3) -> 3
VERIFY('AB3CD5','123456789ð','M',4) -> 6

 WORD

55─ ──WORD(string,n) ──5%

returns the nth blank-delimited word in string or returns the null string if fewer than
n words are in string. The n must be a positive whole number. This function is
exactly equivalent to SUBWORD(string,n,1).

Here are some examples:

WORD('Now is the time',3) -> 'the'
WORD('Now is the time',5) -> ''

 WORDINDEX

55─ ──WORDINDEX(string,n) ───5%

returns the position of the first character in the nth blank-delimited word in string or
returns ð if fewer than n words are in string. The n must be a positive whole
number.

Here are some examples:

 Chapter 4. Functions 4-37

 Functions

WORDINDEX('Now is the time',3) -> 8
WORDINDEX('Now is the time',6) -> ð

 WORDLENGTH

55─ ──WORDLENGTH(string,n) ──5%

returns the length of the nth blank-delimited word in string or returns ð if fewer than
n words are in string. The n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2) -> 2
WORDLENGTH('Now comes the time',2) -> 5
WORDLENGTH('Now is the time',6) -> ð

WORDPOS (Word Position)

55─ ──WORDPOS(phrase,string ──┬ ┬──────── ──) ──────────────────────────5%
└ ┘──,start

returns the word number of the first word of phrase found in string or returns ð if
phrase contains no words or if phrase is not found. Multiple blanks between words
in either phrase or string are treated as a single blank for the comparison, but
otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by
specifying start (which must be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> ð
WORDPOS('is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> ð
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

 WORDS

55─ ──WORDS(string) ───5%

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time') -> 4
WORDS(' ') -> ð

4-38 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

XRANGE (Hexadecimal Range)

55─ ──XRANGE(── ──┬ ┬─────── ──┬ ┬────── ──) ─────────────────────────────5%
└ ┘─start─ └ ┘──,end

returns a string of all valid 1-byte encodings (in ascending order) between and
including the values start and end. The default value for start is 'ðð'x, and the
default value for end is 'FF'x. If start is greater than end, the values wrap from
'FF'x to 'ðð'x. If specified, start and end must be single characters.

Here are some examples:

XRANGE('a','f') -> 'abcdef'
XRANGE('ð3'x,'ð7'x) -> 'ð3ð4ð5ð6ð7'x
XRANGE(,'ð4'x) -> 'ððð1ð2ð3ð4'x
XRANGE('i','j') -> '898A8B8C8D8E8F9ð91'x /\ EBCDIC \/
XRANGE('FE'x,'ð2'x) -> 'FEFFððð1ð2'x
XRANGE('i','j') -> 'ij' /\ ASCII \/

X2B (Hexadecimal to Binary)

55─ ──X2B(hexstring) ──5%

returns a string, in character format, that represents hexstring converted to binary.
The hexstring is a string of hexadecimal characters. It can be of any length. Each
hexadecimal character is converted to a string of four binary digits. You can
optionally include blanks in hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any
blanks.

If hexstring is null, the function returns a null string.

Here are some examples:

X2B('C3') -> '11ðððð11'
X2B('7') -> 'ð111'
X2B('1 C1') -> 'ððð111ððððð1'

You can combine X2B with the functions D2X and C2X to convert numbers or
character strings into binary form.

Here are some examples:

X2B(C2X('C3'x)) -> '11ðððð11'
X2B(D2X('129')) -> '1ðððððð1'
X2B(D2X('12')) -> '11ðð'

 Chapter 4. Functions 4-39

 Functions

X2C (Hexadecimal to Character)

55─ ──X2C(hexstring) ──5%

returns a string, in character format, that represents hexstring converted to
character. The returned string is half as many bytes as the original hexstring.
hexstring can be of any length. If necessary, it is padded with a leading 0 to make
an even number of hexadecimal digits.

You can optionally include blanks in hexstring (at byte boundaries only, not leading
or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns a null string.

Here are some examples:

X2C('F7F2 A2') -> '72s' /\ EBCDIC \/
X2C('F7f2a2') -> '72s' /\ EBCDIC \/
X2C('F') -> ' ' /\ 'ðF' is unprintable EBCDIC \/

X2D (Hexadecimal to Decimal)

55─ ──X2D(hexstring ──┬ ┬──── ──) ──────────────────────────────────────5%
└ ┘──,n

returns the decimal representation of hexstring. The hexstring is a string of
hexadecimal characters. If the result cannot be expressed as a whole number, an
error results. That is, the result must not have more digits than the current setting
of NUMERIC DIGITS.

You can optionally include blanks in hexstring (at byte boundaries only, not leading
or trailing) to aid readability; they are ignored.

If hexstring is null, the function returns ð.

If you do not specify n, hexstring is processed as an unsigned binary number.

Here are some examples:

X2D('ðE') -> 14
X2D('81') -> 129
X2D('F81') -> 3969
X2D('FF81') -> 654ð9
X2D('c6 fð'X) -> 24ð /\ EBCDIC \/

If you specify n, the string is taken as a signed number expressed in n hexadecimal
digits. If the leftmost bit is off, then the number is positive; otherwise, it is a
negative number in two's complement notation. In both cases it is converted to a
whole number, which may, therefore, be negative. If n is ð, the function returns 0.

If necessary, hexstring is padded on the left with ð characters (note, not
“sign-extended”), or truncated on the left to n characters.

Here are some examples:

4-40 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

X2D('81',2) -> -127
X2D('81',4) -> 129
X2D('Fð81',4) -> -3967
X2D('Fð81',3) -> 129
X2D('Fð81',2) -> -127
X2D('Fð81',1) -> 1
X2D('ðð31',ð) -> ð

Implementation maximum: The input string may not have more than 500
hexadecimal characters that will be significant in forming the final result. Leading
sign characters (0 and F) do not count towards this total.

TSO/E External Functions
TSO/E provides the following external functions you can use to perform different
tasks:

 � DBCJUSTIFY
 � EXTERNALS
 � FIND
 � GETMSG
 � INDEX
 � JUSTIFY
 � LINESIZE
 � LISTDSI
 � MSG
 � MVSVAR
 � OUTTRAP
 � PROMPT
 � SETLANG
 � STORAGE
 � SYSCPUS
 � SYSDSN
 � SYSVAR
 � USERID

You can use the MVSVAR, SETLANG, STORAGE and SYSCPUS external
functions in REXX execs that run in any address space , TSO/E and non-TSO/E.
You can use the other external functions only in REXX execs that run in the TSO/E
address space.

The following topics describe the TSO/E external functions. For general information
about the syntax of function calls, see “Syntax” on page 4-1.

In this section, examples are provided that show how to use the TSO/E external
functions. The examples may include data set names. When an example includes a
data set name that is enclosed in single quotation marks, the prefix is added to the
data set name. In the examples, the user ID is the prefix.

Note: If you customize REXX processing and use the initialization routine IRXINIT,
you can initialize a language processor environment that is not integrated
into TSO/E (see page 14-8). You can use the SETLANG and STORAGE
external functions in any type of language processor environment. You can
use the other TSO/E external functions only if the environment is integrated

 Chapter 4. Functions 4-41

 Functions

into TSO/E. Chapter 13, TSO/E REXX Customizing Services describes
customization and language processor environments in more detail.

 GETMSG

55─ ──GETMSG(msgstem ──┬ ┬─── ──) ────5%
 └ ┘──, ──┬ ┬───────── ──┬ ┬───
 └ ┘─msgtype─ └ ┘──, ──┬ ┬────── ──┬ ┬──────────────────────────────
 └ ┘─cart─ └ ┘──, ──┬ ┬────── ──┬ ┬─────────────
 └ ┘─mask─ └ ┘──, ──┬ ┬──────
 └ ┘─time─

GETMSG returns a function code that replaces the function call and retrieves, in
variables, a message that has been issued during a console session. Figure 4-2 on
page 4-43 lists the function codes that GETMSG returns.

Use GETMSG during an extended MCS console session that you established using
the TSO/E CONSOLE command. Use GETMSG to retrieve messages that are
routed to the user's console but that are not being displayed at the user's terminal.
The message can be either solicited (a command response) or unsolicited (other
system messages), or either. GETMSG retrieves only one message at a time. The
message itself may be more than one line. Each line of message text is stored in
successive variables. For more information, see the description of the msgstem
argument on page 4-43.

To use GETMSG, you must:

� Have CONSOLE command authority

� Have solicited or unsolicited messages stored rather than displayed at the
terminal during a console session. Your installation may have set up a console
profile for you so that the messages are not displayed. You can also use the
TSO/E CONSPROF command to specify that solicited or unsolicited messages
should not be displayed during a console session.

� Issue the TSO/E CONSOLE command to activate a console session.

You can use the GETMSG function only in REXX execs that run in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use GETMSG only in environments that are integrated into TSO/E (see
page 14-8).

Responses to commands sent through the network to another system might be
affected as follows:

� The responses might not be returned as solicited even if a CART was specified
and preserved; UNSOLDISPLAY(YES) may be required.

� If the receiving system does not preserve the extended console identifier,
ROUTCODE(ALL) and UNSOLDISPLAY(YES) might be required to receive the
responses.

4-42 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

For information about ROUTCODE, see OS/390 MVS Initialization and Tuning
Reference. For information about UNSOLDISPLAY, see OS/390 TSO/E System
Programming Command Reference.

Figure 4-2 lists the function codes that replace the function call. The GETMSG
function raises the SYNTAX condition if you specify an incorrect argument on the
function call or you specify too many arguments. A SYNTAX condition is also
raised if a severe error occurs during GETMSG processing.

The arguments you can specify on the GETMSG function are:

msgstem the stem of the list of variables into which GETMSG places the
message text. To place the message text into compound variables,
which allow for indexing, msgstem should end with a period (for
example, “messg.”). GETMSG places each line of the retrieved
message into successive variables. For example, if GETMSG
retrieves a message that has three lines of text, GETMSG places
each line of message text into the variables messg.1, messg.2,
messg.3. GETMSG stores the number of lines of message text in
the variable ending in 0, messg.0.

Note: If messg.0=0, no lines are associated with this message.
This message might be a delete operator message (DOM)
request. For more information about the DOM macro, see
OS/390 MVS Programming: Authorized Assembler Services
Reference ALE-DYN.

Figure 4-2. Function Codes for GETMSG That Replace the Function Call

Function
Code Description

0 GETMSG processing was successful. GETMSG retrieved the
message.

4 GETMSG processing was successful. However, GETMSG did not
retrieve the message.

There are several reasons why GETMSG may not be able to retrieve
the message based on the arguments you specify on the function call.
GETMSG returns a function code of 4 if one of the following occurs:

� No messages were available to be retrieved

� The messages did not match the search criteria you specified on
the function call

� You specified the time argument and the time limit expired before
the message was available.

8 GETMSG processing was successful. However, you pressed the
attention interrupt key during GETMSG processing. GETMSG did not
retrieve the message.

12 GETMSG processing was not successful. A console session is not
active. The system issues a message that describes the error. You
must issue the TSO/E CONSOLE command to activate a console
session.

16 GETMSG processing was not successful. The console session was
being deactivated while GETMSG was processing. The system issues
a message that describes the error.

 Chapter 4. Functions 4-43

 Functions

If msgstem does not end with a period, the variable names are
appended with consecutive numbers. For example, suppose you
specify msgstem as “conmsg” (without a period). If GETMSG
retrieves a message that has two lines of message text, GETMSG
places the text into the variables conmsg1 and conmsg2. The variable
conmsgð contains the number of lines of message text, which is 2.

In addition to the variables into which GETMSG places the
retrieved message text, GETMSG also sets additional variables.
The additional variables relate to the field names in the message
data block (MDB) for MVS/ESA System Product. For more
information about these variables, see Appendix D, “Additional
Variables That GETMSG Sets” on page D-1.

msgtype the type of message you want to retrieve. Specify one of the
following values for msgtype:

 � SOL

indicates that you want to retrieve a solicited message. A
solicited message is the response from an MVS system or
subsystem command.

 � UNSOL

indicates that you want to retrieve an unsolicited message. An
unsolicited message is any message that is not issued in
response to an MVS system or subsystem command. For
example, an unsolicited message may be a message that
another user sends you or a broadcast message.

 � EITHER

indicates that you want to retrieve either type of message
(solicited or unsolicited). If you do not specify the msgtype
argument, EITHER is the default.

cart the command and response token (CART). The CART is a token
that lets you associate MVS system commands and subcommands
with their responses. When you issue an MVS system or
subsystem command, you can specify a CART on the command
invocation. To use GETMSG to retrieve a particular message that
is in direct response to the command invoked, specify the same
CART value.

GETMSG uses the CART you specify as a search argument to
obtain the message. If you specify a CART, GETMSG compares
the CART you specify with the CARTs for the messages that have
been routed to the user's console. GETMSG retrieves the
message, only if the CART you specify matches the CART
associated with the message. Otherwise, no message is retrieved.

The cart argument is used only if you are retrieving solicited
messages, that is, the value for the msgtype argument is SOL. The
CART is ignored if you specify UNSOL or EITHER for msgtype.

The cart argument is optional. If you do not specify a CART,
GETMSG retrieves the oldest message that is available. The type
of message retrieved depends on the msgtype argument.

4-44 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

For cart, you can specify a character string of 1-8 characters or a
hexadecimal string of 1-16 hexadecimal digits. For example:

'C1D7D7C1F4F9F4F1'X

If you specify less than 8 characters or less than 16 hexadecimal
digits, the value is padded on the right with blanks. If you specify
more than 8 characters or more than 16 hexadecimal digits, the
value is truncated to the first 8 characters or 16 digits and no error
message is issued.

For more information, see “Using the Command and Response
Token (CART) and Mask” on page 4-46.

mask search argument that GETMSG uses as a mask with the cart
argument for obtaining a message. If you specify a mask,
GETMSG ANDs the mask value with the CART value that you
specify on the GETMSG function. GETMSG also ANDs the mask
with the CARTs associated with the messages that have been
routed to the user's console. GETMSG then compares the results
of the AND operations. If a comparison matches, GETMSG
retrieves the message. Otherwise, no message is retrieved.

The mask argument is valid only if you are retrieving solicited
messages and are using a CART. That is, mask is valid only if you
specify SOL for msgtype and you specify the cart argument.

The mask argument is optional. If you do not specify a mask,
GETMSG does not use a mask value when comparing CART
values.

For mask, you can specify a character string of 1-8 characters or a
hexadecimal string of 1-16 hexadecimal digits. For example:

'FFFFFFFFðððððððð'X

If you specify less than 8 characters or less than 16 hexadecimal
digits, the value is padded on the right with blanks. If you specify
more than eight characters or more than 16 hexadecimal digits, the
value is truncated to the first eight characters or 16 digits and no
error message is issued.

For more information, see “Using the Command and Response
Token (CART) and Mask” on page 4-46.

time the amount of time, in seconds, that GETMSG should wait, if the
requested message has not yet been routed to the user's console.
If you specify a time value and the time expires before the
message is routed to the user's console, GETMSG does not
retrieve the message. Otherwise, if the message is available before
the time expires, GETMSG retrieves the message.

If you do not specify time, GETMSG uses a time value of 0
seconds. If the message has not been routed to the user's console,
GETMSG does not retrieve the message.

 Chapter 4. Functions 4-45

 Functions

Overview of Using GETMSG During a Console Session
You can use the GETMSG external function with the TSO/E CONSOLE and
CONSPROF commands and the CONSOLE host command environment to write
REXX execs that perform MVS operator activities from TSO/E. Using the TSO/E
CONSOLE command, you can activate an extended MCS console session with
MCS console services. After you activate a console session, you can then use the
TSO/E CONSOLE command and the CONSOLE host command environment to
issue MVS system and subsystem commands. You can use the TSO/E
CONSPROF command to specify that messages that are routed to the user's
console during a console session are not to be displayed at the user's terminal.
You can then use the GETMSG external function to retrieve messages that are not
being displayed and perform different types of processing.

The TSO/E external function SYSVAR has various arguments you can use to
determine the type of processing you want to perform. For example, using
SYSVAR, you can determine the console session options currently in effect, such
as whether solicited and unsolicited messages are being displayed. If you want to
display a message that GETMSG retrieved, you can use SYSVAR arguments to
obtain information about displaying the message. For example, you can determine
whether certain information, such as a time stamp, should be displayed with the
message. For more information, see “SYSVAR” on page 4-76.

Your installation may customize TSO/E to display certain types of information at the
terminal in different languages. Your installation can define a primary and
secondary language for the display of information. The language codes for the
primary and secondary languages are stored in the user profile table (UPT). If your
installation customizes TSO/E for different languages, messages that are routed to
the user's console during a console session and that are displayed at the user's
terminal are displayed in the user's primary or secondary language. However, if you
specify that messages are not displayed at the terminal and you then use GETMSG
to retrieve the message, the message you retrieve is not in the user's primary or
secondary language. The message you retrieve is in US English. For information
about customizing TSO/E for different languages, see OS/390 TSO/E
Customization.

For more information about writing execs to perform MVS operator tasks from
TSO/E, see Appendix C, “Writing REXX Execs to Perform MVS Operator Activities”
on page C-1.

Using the Command and Response Token (CART) and Mask
The command and response token (CART) is a keyword and subcommand for the
TSO/E CONSOLE command and an argument on the GETMSG function. You can
use the CART to associate MVS system and subsystem commands you issue with
their corresponding responses.

To associate MVS system and subsystem commands with their responses, when
you issue an MVS command, specify a CART on the command invocation. The
CART is then associated with any messages that the command issues. During the
console session, solicited messages that are routed to your user's console should
not be displayed at the terminal. Use GETMSG to retrieve the solicited message
from the command you issued. When you use GETMSG to retrieve the solicited
message, specify the same CART that you used on the command invocation.

4-46 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

If several programs use the CONSOLE command's services and run
simultaneously in one TSO/E address space, each program must use unique CART
values to ensure it retrieves only messages that are intended for that program. You
should issue all MVS system and subsystem commands with a CART. Each
program should establish an application identifier that the program uses as the first
four bytes of the CART. Establishing application identifiers is useful when you use
GETMSG to retrieve messages. On GETMSG, you can use both the cart and mask
arguments to ensure you retrieve only messages that begin with the application
identifier. Specify the hexadecimal digits FFFFFFFF for at least the first four bytes of
the mask value. For example, for the mask, use the value ‘FFFFFFFF00000000’X.

For the cart argument, specify the application identifier as the first four bytes
followed by blanks to pad the value to eight bytes. For example, if you use a four
character application identifier of APPL, specify 'APPL ' for the CART. If you use
a hexadecimal application identifier of C19793F7, specify 'C19793F7'X for the
CART. GETMSG ANDs the mask and CART values you specify, and also ANDs
the mask with the CART values for the messages. GETMSG compares the results
of the AND operations, and if a comparison matches, GETMSG retrieves the
message.

You may also want to use CART values if you have an exec using console services
that calls a second exec that also uses console services. The CART ensures that
each exec retrieves only the messages intended for that exec.

Using different CART values in one exec is useful to retrieve the responses from
specific commands and perform appropriate processing based on the command
response. In general, it is recommended that your exec uses a CART for issuing
commands and retrieving messages. For more information about console sessions
and how to use the CART, see Appendix C, “Writing REXX Execs to Perform MVS
Operator Activities” on page C-1.

Examples

The following are some examples of using GETMSG.

1. You want to retrieve a solicited message in variables starting with the stem
“CONSMSG.”. You do not want GETMSG to wait if the message has not yet
been routed to the user's console. Specify GETMSG as follows:

msg = GETMSG('CONSMSG.','SOL')

2. You want to retrieve a solicited message in variables starting with the stem
“DISPMSG.”. You want GETMSG to wait up to 2 minutes (120 seconds) for the
message. Specify GETMSG as follows:

mcode = getmsg('dispmsg.','sol',,,12ð)

3. You issued an MVS command using a CART value of ‘C1D7D7D3F2F9F6F8’X.
You want to retrieve the message that was issued in response to the command
and place the message in variables starting with the stem “DMSG”. You want
GETMSG to wait up to 1 minute (60 seconds) for the message. Specify
GETMSG as follows.

msgrett = getmsg('dmsg','sol','C1D7D7D3F2F9F6F8'X,,6ð)

4. Your exec has defined an application identifier of APPL for using CARTs.
Whenever you issue an MVS command, you specify a CART of APPLxxxx,
where xxxx is a four-digit number. For example, for the first MVS command,

 Chapter 4. Functions 4-47

 Functions

you use a CART of APPL0001. For the second MVS command, you use a
CART of APPL0002, and so on.

You want to use GETMSG to retrieve solicited messages that are intended only
for your exec. You can specify the mask and cart arguments to ensure that
GETMSG retrieves only messages that are for the MVS commands your exec
invoked. Specify 'FFFFFFFFðððððððð'X for the mask. Specify 'APPL ' (padded
with blanks to 8 characters) for the CART. You also want to wait up to 30
seconds for the message.

conmess = getmsg('msgc.','sol','APPL ','FFFFFFFFðððððððð'X,3ð)

 LISTDSI

55─ ──LISTDSI(──┬ ┬ ─data-set-name─ ──┬ ┬────────── ──┬ ┬─────────── ───────5
 │ │└ ┘─location─ └ ┘ ─directory─
 └ ┘─filename──file──────────────

5─ ──┬ ┬──────── ──┬ ┬───────── ─)──────────────────────────────────────5%
 └ ┘ ─recall─ └ ┘ ─smsinfo─

LISTDSI returns one of the following function codes that replace the function call,
and retrieves information about a data set's allocation, protection, and directory and
stores it in specific variables. Figure 4-3 shows the function codes that replace the
function call.

Note: To be compatible with CLIST processing, a function code of 16 is provided.
LISTDSI does not raise the syntax condition in this case, even though the
processing was not successful.

You can use LISTDSI to obtain information about a data set that is available on
DASD. LISTDSI does not directly support data that is on tape. LISTDSI supports
generation data group (GDG) data sets when using absolute generation names, but
does not support relative GDG names. LISTDSI does not support hierarchical file
system (HFS) data sets. Unpredictable results may occur.

LISTDSI is passed a single argument string. That string may consist of several
values which are the parameters to LISTDSI, separated by one or more blanks. For
example:

argument_string = "REXXEXEC VOLUME(PACK1) NODIRECTORY NORECALL"
x = LISTDSI(argument_string)

Figure 4-3. Function Codes for LISTDSI That Replace the Function Call

Function
Code Description

0 LISTDSI processing was successful. Data set information was
retrieved.

4 LISTDSI processing was successful. However, some data set
information is unavailable. All data set information, other than
directory information, can be considered valid.

16 LISTDSI processing was not successful. An error occurred. None of
the variables containing information about the data set can be
considered valid, except for SYSREASON. The SYSREASON variable
contains the LISTDSI reason code (see page 4-54).

4-48 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

If LISTDSI causes a syntax error (for example, if you specify more than one
argument string), a function code is not returned. In addition, none of the LISTDSI
variables are set.

The variables in which LISTDSI stores data set information are described in
Figure 4-4 on page 4-51.

To suppress TSO/E messages issued by the LISTDSI function, use the
MSG("OFF") function. For information about the MSG function, see 4-57.

The argument strings you can specify on the LISTDSI function are:

data-set-name the name of the data set about which you want to retrieve
information. See page 4-51 for more information.

location specifies how you want the data set (as specified in data-set-name)
located. You can specify location, only if you specify a data set
name, not a filename. For location, specify one of the following
values. If you do not specify either VOLUME or PREALLOC, the
system locates the data set through catalog search.

� ‘VOLUME(serial ID)’ specifies the serial number of the volume
where the data set is located.

� ‘PREALLOC’ specifies that the location of the specified data set
is determined by allocating the data set, rather than through a
catalog search. PREALLOC allows data sets that have been
previously allocated to be located without searching a catalog
and allows unmounted volumes to be mounted.

filename the name of an allocated file (ddname) about which you want to
retrieve information.

file you must specify the word “FILE” if you specify filename instead of
data-set-name. If you do not specify FILE, LISTDSI assumes that
you specified a data-set-name.

directory indicates whether you want directory information for a partitioned
data set (PDS). For directory, specify one of the following:

� ‘DIRECTORY’ indicates that you want directory information.

� ‘NODIRECTORY’ indicates that you do not want directory
information. If you do not require directory information,
NODIRECTORY can significantly improve processing.
NODIRECTORY is the default.

recall indicates whether you want to recall a data set migrated by Data
Facility Hierarchical Storage Manager (DFHSM). For recall, specify
one of the following:

� ‘RECALL’ indicates that you want to recall a data set migrated
by DFHSM. The system recalls the data set regardless of its
level of migration or the type of device to which it has been
migrated.

� ‘NORECALL’ indicates that you do not want to recall a data set.
If the data set has been migrated, the system stores an error
message.

 Chapter 4. Functions 4-49

 Functions

If you do not specify either RECALL or NORECALL, the system
recalls the data set only if it has been migrated to a direct
access storage device (DASD).

smsinfo indicates whether you want System Managed Storage (SMS)
information about an SMS-managed data set. This information
includes

type of data set
 used space

data class name
storage class name
management class name.

See also the following figure where the corresponding REXX
variables are described.

For smsinfo, specify one of the following:

� ‘SMSINFO’ indicates that you want SMS information about
data-set-name or filename. SMSINFO Neither data-set-name
nor filename may refer to a VSAM index or data component.

If the specified data set is not managed by SMS, LISTDSI
continues, but no SMS information is provided in the
corresponding REXX variables.

Specify SMSINFO only if you want SMS information about a
data set. NOSMSINFO (the default) significantly reduces the
execution time of the LISTDSI statement.

� ‘NOSMSINFO’ indicates that you do not want SMS information
about the specified data set. NOSMSINFO is the default.

You can use the LISTDSI function only in REXX execs that run in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use LISTDSI only in environments that are integrated into TSO/E (see page
14-8).

You can use the LISTDSI information to determine whether the data set is the right
size or has the right organization or format for a given task. You can also use the
LISTDSI information as input to the ALLOCATE command, for example, to create a
new data set using some attributes from the old data set while modifying others.

If you use LISTDSI to retrieve information about a VSAM data set, LISTDSI stores
only the volume serial ID (in variable SYSVOLUME), the device unit (in variable
SYSUNIT), and the data set organization (in variable SYSDSORG).

If you use LISTDSI to retrieve information about a multiple volume data set,
LISTDSI stores information for the first volume only. Similarly, if you specify a file
name or you specify PREALLOC for location and you have other data sets
allocated to the same file name, the system may not retrieve information for the
data set you wanted.

4-50 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

LISTDSI

When you use LISTDSI to obtain information about a file, LISTDSI will return
information only about the first data set in the file, if the file consists of a
concatenation of more than one data set. Likewise, if the ddname specified by
filename points to a multi-volume data set, LISTDSI can return information only
about the first volume, and will not be able to detect that the data is multi-volume.

If the data set is SMS managed and is capable of expanding to multiple volumes,
but has not yet done so, it is considered a single volume data set by LISTDSI until
it has expanded to the second volume. In any case, LISTDSI will only retrieve
information for the first volume referenced by the request.

Specifying Data Set Names

On the LISTDSI function, if you use data-set-name instead of filename, you can
specify the name of a sequential data set or a partitioned data set (PDS). You can
specify the data-set-name in any of the following ways:

� Non fully-qualified data set name that follows the naming conventions — When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

x = LISTDSI('myrexx.exec')

x = LISTDSI(myrexx.exec)

� Fully-qualified data set name — The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

x = LISTDSI("'sys1.proj.new'")

x = LISTDSI('''sys1.proj.new''')

� Variable name that represents a fully-qualified or non fully-qualified data set
name — The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution. An example of using a variable
for a fully-qualified data set name is:

/\ REXX program for \/
...

var1 = "'sys1.proj.monthly'"
...

dsinfo = LISTDSI(var1)
...

EXIT

Variables That LISTDSI Sets

Figure 4-4 describes the variables that LISTDSI sets. For VSAM data sets, only the
variables SYSVOLUME, SYSUNIT, and SYSDSORG are accurate; all other
variables are set to question marks.

Figure 4-4 (Page 1 of 4). Variables That LISTDSI Sets

Variable Contents

SYSDSNAME Data set name

SYSVOLUME Volume serial ID

 Chapter 4. Functions 4-51

 Functions

Figure 4-4 (Page 2 of 4). Variables That LISTDSI Sets

Variable Contents

SYSUNIT Generic device type on which volume resides, for example 3390.

SYSDSORG Data set organization:

PS - Physical sequential
PSU - Physical sequential unmovable
DA - Direct organization
DAU - Direct organization unmovable
IS - Indexed sequential
ISU - Indexed sequential unmovable
PO - Partitioned organization
POU - Partitioned organization unmovable
VS - VSAM
??? - Unknown

SYSRECFM Record format; one to six character combination of the following:

U - Records of undefined length
F - Records of fixed length
V - Records of variable length
T - Records written with the track overflow feature of the

device (3375, 3380, and 3390 do not support track
overflow)

B - Records blocked
S - Records written as standard or spanned

variable-length blocks
A - Records contain ASCII control characters
M - Records contain machine code control characters
?????? - Unknown

SYSLRECL Logical record length

SYSBLKSIZE Block size

SYSKEYLEN Key length

SYSALLOC Allocation, in space units

SYSUSED Allocation used, in space units. For a partitioned data set
extended (PDSE), 'N/A' will be returned; see the description of
the variable SYSUSEDPAGES for used space of a PDSE.

SYSUSEDPAGES(1) The used space of a partitioned data set extended (PDSE) in 4K
pages. A value is returned only if the SMSINFO keyword operand
is provided with the LISTDSI statement.

SYSPRIMARY Primary allocation in space units

SYSSECONDS Secondary allocation in space units

SYSUNITS Space units:

CYLINDER - Space units in cylinders
TRACK - Space units in tracks
BLOCK - Space units in blocks
???????? - Space units are unknown

SYSEXTENTS Number of extents allocated

SYSCREATE Creation date

Year/day format, for example: 1990/102

4-52 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Figure 4-4 (Page 3 of 4). Variables That LISTDSI Sets

Variable Contents

SYSREFDATE Last referenced date

Year/day format, for example: 1990/107

(Specifying DIRECTORY causes the date to be updated)

SYSEXDATE Expiration date

Year/day format, for example: 1990/365

SYSPASSWORD Password indication:

NONE - No password protection
READ - Password required to read
WRITE - Password required to write

SYSRACFA RACF indication:

NONE - No RACF protection
GENERIC - Generic profile covers this data set
DISCRETE - Discrete profile covers this data set

SYSUPDATED Change indicator:

YES - Data set has been updated
NO - Data set has not been updated

SYSTRKSCYL Tracks per cylinder for the unit identified in the SYSUNIT variable

SYSBLKSTRK Blocks (whose size is given in variable SYSBLKSIZE) per track
for the unit identified in the SYSUNIT variable. For a PDSE, the
value “N/A” is returned because a block of size SYSBLKSIZE can
'span' a track in a PDSE. The value contained in
SYSUSEDPAGES is a more meaningful measurement of space
usage for a PDSE.

SYSADIRBLK Directory blocks allocated - returned only for partitioned data sets
when DIRECTORY is specified. For a partitioned data set
extended (PDSE), “NO_LIM” will be returned because there is no
static allocation for its directory.

SYSUDIRBLK Directory blocks used - returned only for partitioned data sets
when DIRECTORY is specified. For a partitioned data set
extended (PDSE), “N/A” will be returned because it is not a static
value.

SYSMEMBERS Number of members - returned only for partitioned data sets
when DIRECTORY is specified

SYSREASON LISTDSI reason code

SYSMSGLVL1 First-level message if an error occurred

SYSMSGLVL2 Second-level message if an error occurred

 Chapter 4. Functions 4-53

 Functions

Reason Codes

Reason codes from the LISTDSI function appear in variable SYSREASON.
Figure 4-5 shows the LISTDSI reason codes. With each reason code the REXX
variable SYSMSGLVL2 is set to message IKJ584nnI, where nn is the reason code.
These messages are described in OS/390 TSO/E Messages.

Figure 4-4 (Page 4 of 4). Variables That LISTDSI Sets

Variable Contents

SYSDSSMS(1) Contains information about the type of a data set, provided by
DFSMS/MVS.

If the SMSINFO keyword operand on the LISTDSI statement is
not specified, or SMS DSNTYPE information could not be
retrieved, the SYSDSSMS variable contains:

SEQ for a sequential data set
PDS for a partitioned data set
PDSE for a partitioned data set extended.

If the SMSINFO keyword operand on the LISTDSI statement is
specified, and the data set is a PDSE, the SYSDSSMS variable
contains:

LIBRARY for an empty PDSE
PROGRAM_LIBRARY for a partitioned data set extended

program library
DATA_LIBRARY for a partitioned data set extended data library.

SYSDATACLASS(1) The SMS data class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is managed
by SMS.

SYSSTORCLASS(1) The SMS storage class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is managed
by SMS.

SYSMGMTCLASS(1) The SMS management class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is managed
by SMS.

Note: These variables, introduced with TSO/E 2.5, require either MVS/DFP 3.2 (or
later) or DFSMS/MVS 1.1 (or later) to be active on your system. For data sets
not managed by SMS these variables return a null string.

Figure 4-5 (Page 1 of 2). LISTDSI Reason Codes

Reason Code Description

0 Normal completion.

1 Error parsing the function.

2 Dynamic allocation processing error.

3 The data set is a type that cannot be processed.

4 Error determining UNIT name.

5 Data set not cataloged.

6 Error obtaining the data set name.

7 Error finding device type.

4-54 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Examples

The following are some examples of using LISTDSI.

1. To set variables with information about data set USERID.WORK.EXEC, use the
LISTDSI function as follows:

Figure 4-5 (Page 2 of 2). LISTDSI Reason Codes

Reason Code Description

8 The data set does not reside on a direct access storage device.

9 DFHSM migrated the data set. NORECALL prevents retrieval.

11 Directory information was requested, but you lack authority to
access the data set.

12 VSAM data sets are not supported.

13 The data set could not be opened.

14 Device type not found in unit control block (UCB) tables.

17 System or user abend occurred.

18 Partial data set information was obtained.

19 Data set resides on multiple volumes.

20 Device type not found in eligible device table (EDT).

21 Catalog error trying to locate the data set.

22 Volume not mounted.

23 Permanent I/O error on volume.

24 Data set not found.

25 Data set migrated to non-DASD device.

26 Data set on MSS (Mass Storage) device.

27 No volume serial is allocated to the data set.

28 The ddname must be one to eight characters.

29 Data set name or ddname must be specified.

30 Data set is not SMS-managed.

31 ISITMGD macro returned with bad return code and reason code.
Return code and reason code can be found in message
IKJ58431I, which is returned in variable &SYSMSGLVL2.

32 Unable to retrieve SMS information. DFSMS/MVS has incorrect
level.

33 Unable to retrieve SMS information. DFSMS/MVS is not active.

34 Unable to retrieve SMS information. OPEN error.

35 Unexpected error from DFSMS/MVS internal service IGWFAMS.

36 Unexpected error from the SMS service module.

 Chapter 4. Functions 4-55

 Functions

x = LISTDSI(work.exec)
SAY 'Function code from LISTDSI is: ' x
SAY 'The data set name is: ' sysdsname
SAY 'The device unit on which the volume resides is:' sysunit
SAY 'The record format is: ' sysrecfm
SAY 'The logical record length is: ' syslrecl
SAY 'The block size is: ' sysblksize
SAY 'The allocation in space units is: ' sysalloc
SAY 'Type of RACF protection is: ' sysracfa

Output from the example might be:

Function code from LISTDSI is: ð
The data set name is: USERID.WORK.EXEC
The device unit on which the volume resides is: 338ð
The record format is: VB
The logical record length is: 255
The block size is: 6124
The allocation in space units is: 33
Type of RACF protection is: GENERIC

2. To retrieve information about the DD called APPLPAY, you can use LISTDSI
as follows:

ddinfo = LISTDSI("applpay" "FILE")

3. Suppose you want to retrieve information about a PDS called
SYS1.APPL.PAYROLL, including directory information. You do not want the
PDS to be located through a catalog search, but have the location determined
by the allocation of the data set. You can specify LISTDSI as follows:

/\ REXX program for \/
...

var1 = "'sys1.appl.payroll'"
infod = "directory"
...

pdsinfo = LISTDSI(var1 infod "prealloc")
...

EXIT

In the example, the variable var1 was assigned the name of the PDS
(SYS1.APPL.PAYROLL). Therefore, in the LISTDSI function call, var1 is not
enclosed in quotation marks to allow for variable substitution. Similarly, the
variable infod was assigned the value “directory”, so in the LISTDSI function,
infod becomes the word “directory”. The PREALLOC argument is enclosed in
quotation marks to prevent any type of substitution. After the language
processor evaluates the LISTDSI function, it results in the following function call
being processed:

LISTDSI('sys1.appl.payroll' directory prealloc)

4. The LISTDSI function issues message IKJ56709I if a syntactically invalid data
set name is passed to the function. To prevent this message from being
displayed, use the MSG('OFF') function.

4-56 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

dsname = "'ABCDEFGHIJ.XYZ'" /\syntactically invalid name,
because a qualifier is longer
than 8 characters \/

msgval = MSG('OFF') /\ save current MSG value and
 suppress messages \/
x = LISTDSI(dsname) /\ Retrieve data set information \/
say 'Function Code returned by LISTDSI ==> ' x
msgval = MSG(msgval) /\ Restore MSG setting \/
exit ð

Special Considerations

LISTDSI considers file names starting with ‘SYS’ followed by five digits to be
system-generated file names. If you use LISTDSI to obtain information about a data
set that was preallocated multiple times using file names starting with ‘SYS’
followed by five digits, an existing file may be freed.

 MSG

55─ ──MSG(──┬ ┬────────) ───5%
 └ ┘──option

MSG returns the value ON or OFF, which indicates the status of the displaying of
TSO/E messages. That is, MSG indicates whether TSO/E messages are being
displayed while the exec is running.

Using MSG, you can control the display of TSO/E messages from TSO/E
commands and TSO/E external functions. Use the following options to control the
display of TSO/E informational messages. Informational messages are
automatically displayed unless an exec uses MSG(OFF) to inhibit their display.

ON returns the previous status of message issuing (ON or OFF) and
allows TSO/E informational messages to be displayed while an
exec is running.

OFF returns the previous status of message issuing (ON or OFF) and
inhibits the display of TSO/E informational messages while an exec
is running.

Here are some examples:

msgstat = MSG() -> 'OFF' /\ returns current setting (OFF) \/
stat = MSG('off') -> 'ON' /\ returns previous setting (ON) and

inhibits message display \/

You can use the MSG function only in REXX execs that run in the TSO/E address
space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use MSG only in environments that are integrated into TSO/E (see page
14-8).

 Chapter 4. Functions 4-57

 Functions

When an exec uses the MSG(OFF) function to inhibit the display of TSO/E
messages, messages are not issued while the exec runs and while functions and
subroutines called by that exec run. The displaying of TSO/E messages resumes if
you use the MSG(ON) function or when the original exec ends. However, if an exec
invokes another exec or CLIST using the EXEC command, message issuing status
from the invoking exec is not carried over into the newly-invoked program. The
newly-invoked program automatically displays TSO/E messages, which is the
default.

The MSG function is functionally equivalent to the CONTROL MSG and CONTROL
NOMSG statements for TSO/E CLISTs.

Note: In non-TSO/E address spaces, you cannot control message output using
the MSG function. However, if you use the TRACE OFF keyword
instruction, messages do not go to the output file (SYSTSPRT, by default).

Examples

The following are some examples of using MSG.

1. To inhibit the display of TSO/E informational messages while an exec is
running, use MSG as follows:

msg_status = MSG("OFF")

2. To ensure that messages associated with the TSO/E TRANSMIT command are
not displayed before including the TRANSMIT command in an exec, use the
MSG function as follows:

IF MSG() = 'OFF' THEN,
"TRANSMIT node.userid DA(myrexx.exec)"

ELSE
 DO

x = MSG("OFF")
"TRANSMIT node.userid DA(myrexx.exec)"
a = MSG(x) /\ resets message value \/

 END

 MVSVAR

55─ ──MVSVAR(arg_name) ──5%

MVSVAR returns information about MVS, TSO/E, and the current session, such as
the symbolic name of the MVS system, or the security label of the TSO/E session.

The MVSVAR function is available in any MVS address space.

The information returned depends on the arg_name value specified on the function
call. The following items of information are available for retrieval:

SYSAPPCLU the APPC/MVS logical unit (LU) name

SYSDFP the level of MVS/Data Facility Product (MVS/DFP)

SYSMVS the level of the base control program (BCP) component of OS/390

SYSNAME the name of the system your REXX exec is running on, as
specified in the SYSNAME statement in SYS1.PARMLIB member
IEASYSxx

4-58 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

SYSOPSYS the OS/390 name, version, release, modification level, and FMID.

SYSSECLAB the security label (SECLABEL) name of the TSO/E session

SYSSMFID identification of the system on which System Management Facilities
(SMF) is active

SYSSMS indicator whether DFSMS/MVS is available to your REXX exec

SYSCLONE MVS system symbol representing its system name

SYSPLEX the MVS sysplex name as found in the COUPLExx or LOADxx
member of SYS1.PARMLIB

SYMDEF symbolic variables of your MVS system

Note: For information on other system variables see “SYSVAR” on page 4-76.

These items of information will now be described one by one.

SYSAPPCLU the APPC/MVS logical unit (LU) name. The LU name identifies the
TSO/E address space, where your REXX exec is running, as the
SNA addressable unit for Advanced Program-to-Program
Communications (APPC). The LU name is obtained via the
APPC/MVS Advanced TP Callable Services (ATBEXAI -
Information Extract Service).

The LU name is returned as a character string. Trailing blanks are
truncated. A null string is returned if:

� There is no APPC activity in the address space where the
REXX exec is running, or

� No LU name is provided by the APPC/MVS Advanced TP
Callable Services.

SYSDFP the level of MVS/Data Facility Product (MVS/DFP) installed on your
system. The value returned is in the format cc.vv.rr.mm, where cc
is the component, vv the version, rr the release number, and mm
the modification level. All values are two-digit decimal numbers.

A value of 00 for cc indicates a pre-DFSMS/MVS component,
whereas any value other than 00 indicates a DFSMS/MVS
component or a follow-on component.

SYSMVS the level of the base control program (BCP) component of OS/390.

The value returned is that of the CVTPRODN field in the
communications vector table (CVT), for example SP4.3.ð. Trailing
blanks are removed.

Note: The format of the value returned by SYSMVS may change
in future, but will remain the content of the CVTPRODN
field.

OS/390 Users: To provide customers with the least disruptive
change when changing from MVS/ESA SP 5.x to OS/390, the
format of the CVTPRODN field is maintained and contains SP5.3.ð
for OS/390 Release 1. This is because some products test byte 3
to see if it is “5”, which indicates that certain functions are
available.

 Chapter 4. Functions 4-59

 Functions

SYSNAME the name of the system your REXX exec is running on, as
specified in the SYSNAME statement in SYS1.PARMLIB member
IEASYSxx.

The system name can be used in various ways:

� In a multi-system global resource serialization complex, the
name identifies each system in the complex.

� The system also uses this value to uniquely identify the
originating system in messages in the multiple console support
(MCS) hardcopy log and in the display created by the DISPLAY
R command.

� The value of SYSNAME is used as the name of the system log
(SYSLOG).

SYSOPSYS the OS/390 name, version, release, modification level, and FMID.
For example,

/\ REXX \/
mvsstring = MVSVAR('SYSOPSYS')
say mvsstring
exit ð

may return a string of OS/39ð ð1.ð1.ðð HBB66ð1, where OS/39ð
represents the product name, followed by a blank character,
followed by an eight-character string representing version, release,
modification number, followed by a blank character, followed by the
FMID.

SYSOPSYS was introduced after TSO/E Version 2 Release 5 with
APAR OW17844. If you use this variable in a environment earlier
than TSO/E 2.5, or without the PTF associated with APAR
OW17844, the system returns a null string.

SYSSECLAB the security label (SECLABEL) name of the TSO/E session where
the REXX exec was started. Trailing blanks are removed.

Note: The use of this argument requires that RACF is installed,
and that security label checking has been activated. If no
security information is found, the function returns a null
string.

SYSSMFID identification of the system on which System Management Facilities
(SMF) is active. The value returned is as specified in
SYS1.PARMLIB member SMFPRMxx on the SID statement.
Trailing blanks are removed.

Note that the value returned by arguments SYSSMFID and
SYSNAME can be the same in your installation. See OS/390 MVS
Initialization and Tuning Reference for more details on the
SYSNAME and SID statement in member SMFPRMxx.

SYSSMS indicator whether DFSMS/MVS is available to your REXX exec.
The function returns one of the following character strings:

UNAVAILABLE DFSMS/MVS is not available on your system.
INACTIVE DFSMS/MVS is available on your system but not

active.
ACTIVE DFSMS/MVS is available and active, so your REXX

exec can depend on it.

4-60 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Note: This argument requires MVS/Data Facility Product
(MVS/DFP) Version 3.3 or later. If used with lower releases,
an error message is issued.

The following three arguments are in support of a SYSPLEX configuration. They
return information about the SYSPLEX as stored in various members of
SYS1.PARMLIB. The returned values can be used, for example, to uniquely identify
or build datasets or other resources belonging to a specific system within the
SYSPLEX.

SYSCLONE
MVS system symbol representing its system name. It is a 1- to 2-byte
shorthand notation for the system name. The value is obtained from
SYS1.PARMLIB member IEASYMxx1. For example, if SYSCLONE(A1) is
specified in IEASYMxx, then

MVSVAR('SYSCLONE')

returns a value of A1. A null string is returned if no MVS SYSCLONE ID is
specified in IEASYMxx.

SYSPLEX
the MVS sysplex name as found in the COUPLExx or LOADxx member of
SYS1.PARMLIB. The returned value has a maximum of eight characters.
Trailing blanks are removed. If no sysplex name is specified in
SYS1.PARMLIB, the function returns a null string.

SYMDEFstring SYMDEF
the value represented by the variable string as SYMDEF specified in
SYS1.PARMLIB member IEASYMxx1 on the SYSDEF ... SYMDEF
statement. Or, string can also be one of the system static or dynamic
symbols as defined in OS/390 MVS Initialization and Tuning Reference. For
example, if SYMDEF(&SYSTEMA = 'SA') is specified in IEASYMxx, then

X = MVSVAR('SYMDEF','SYSTEMA')

returns a value of SA. A null string is returned if the symbolic name is not
specified in IEASYMxx and is not one of the standard static or dynamic
symbols defined by MVS.

You can also retrieve the value for one of the MVS defined static or
dynamic systems symbols. For example:

X = MVSVAR('SYMDEF',JOBNAME) /\Returns JOBNAME
 BOB perhaps \/

Refer to OS/390 MVS Initialization and Tuning Reference for a discussion
and list of the currently defined MVS static and dynamic symbols.

For example, you can retrieve the IPL Volume Serial Name of your system
using

SAY MVSVAR('SYMDEF','SYMR1') /\may return 64ðSð6
as IPL Vol. Ser. Name \/

The MVSVAR('SYMDEF',string) function goes through REXX substitution
first, the result of which must be a 1-8 character name specifying the

1 Introduced with MVS/ESA SP 5.2; provides a mechanism to assign system substitution symbols names and values.

 Chapter 4. Functions 4-61

 Functions

symbol that has been defined in the SYMDEF statement. Any other values
including REXX delimiters may cause unpredictable results.

Examples

1. This example shows how to retrieve the current JES node name (which is
useful to know before processing is allowed to continue).

nodenam = MVSVAR('SYSNODE')

2. This example shows how to retrieve information about a SYSPLEX
configuration.

Assume your installation has defined, in member SYS1.PARMLIB(IEASYM11),
certain variables that are applicable on a system wide basis. Assume further
that one of them starts with the string BOOK and is concatenated by the
sysclone ID, for example

SYMDEF(&BOOKA1='DIXI')

You can obtain the value of this variable as follows.

tempvar = 'BOOK'||MVSVAR('SYSCLONE') /\ the result could be BOOKA1 \/
/\ where A1 is obtained as the \/
/\ result of MVSVAR('SYSCLONE') \/

instvar = MVSVAR('SYMDEF',tempvar) /\ the result could be DIXI if \/
/\ in IEASYM11 the statement \/
/\ SYMDEF(&DATASA1='DIXI') had been \/
/\included by the system administrator \/

Checking for Prerequisite Program Level

Several of the MVSVAR arguments require a minimum prerequisite program level.

Running on a downlevel release causes a syntax error accompanied by an error
message. If you do not have SYNTAX trap enabled, the REXX exec ends. You
may avoid termination of the REXX exec by testing for the proper program level as
shown in the following examples.

Example 1: Testing for Proper MVS Level:

/\REXX\/
IF MVSVAR('SYSMVS') >= 'SP5.2.ð' THEN
SAY MVSVAR('SYSCLONE') /\ yes, we can use the SYSCLONE argument \/
EXIT ð

Example 2: Testing for Proper DFP Level:

/\REXX\/
IF MVSVAR('SYSDFP') >= 'ðð.ð3.ð3.ðð' THEN
SAY MVSVAR('SYSSMS') /\ yes, we can use the SYSSMS argument \/
EXIT ð

 OUTTRAP

4-62 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

55─ ──OUTTRAP(──┬ ┬──) ─────5%
 ├ ┤─off──
 └ ┘──varname ──┬ ┬──────────── ──┬ ┬───────────────
 └ ┘──, ──┬ ┬───── └ ┘──, ──┬ ┬────────
 └ ┘─max─ └ ┘─concat─

OUTTRAP returns the name of the variable in which trapped output is stored, or if
trapping is not in effect, OUTTRAP returns the word off.

You can use the following arguments to trap lines of command output into
compound variables or a series of numbered variables, or to turn trapping off that
was previously started.

off specify the word OFF to turn trapping off.

varname the stem of the compound variables or the variable prefix assigned to
receive the command output. Compound variables contain a period and
allow for indexing, but lists of variables with the same prefix cannot be
accessed by an index in a loop.

Note: Do not use “OFF” as a variable name.

max the maximum number of lines to trap. You can specify a number, an
asterisk in quotation marks (‘*’), or a blank. If you specify ‘*’ or a blank,
all the output is trapped. The default is 999,999,999. If the maximum
number of lines are trapped, subsequent lines are not stored in
variables.

concat indicates how output should be trapped. For concat, specify one of the
following:

 � CONCAT

indicates that output from commands be trapped in consecutive
order until the maximum number of lines is reached. For example, if
the first command has three lines of output, they are stored in
variables ending in 1, 2, and 3. If the second command has two
lines of output, they are stored in variables ending in 4 and 5. The
default order for trapping is CONCAT.

 � NOCONCAT

indicates that output from each command be trapped starting at the
variable ending in 1. For example, if the first command has three
lines of output, they are stored in variables ending in 1, 2, and 3. If
another command has two lines of output, they replace the first
command's output in variables 1 and 2.

Lines of output are stored in successive variable names (as specified by varname)
concatenated with integers starting with 1. All unused variables display their own
names. The number of lines that were trapped is stored in the variable name
followed by 0. For example, if you specify cmdout. as the varname, the number of
lines stored is in:

cmdout.ð

If you specify cmdout as the varname, the number of lines stored is in:

cmdoutð

 Chapter 4. Functions 4-63

 Functions

An exec can use these variables to display or process TSO/E command output.
Error messages from TSO/E commands are trapped, but other types of error
messages are sent to the terminal. Trapping, once begun, continues from one exec
to other invoked execs or CLISTs. Trapping ends when the original exec ends or
when trapping is turned off.

You can use the OUTTRAP function only in REXX execs that run in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use OUTTRAP only in environments that are integrated into TSO/E (see
page 14-8).

OUTTRAP traps output from commands, including those written in REXX. A
command written in REXX cannot turn output trapping off on behalf of its invoker.
Output trapping should be turned on and off at the same exec level. Therefore, a
command written in REXX should only turn output trapping off if that command
turned it on. In the following examples, the first illustrates correct usage of
OUTTRAP; the second incorrect usage. Note that the placement of the y =
OUTTRAP('OFF') statement must be within the REXX1 exec, not the REXX2
command.

� Correct usage of OUTTRAP

x = OUTTRAP('VAR.')
"%REXX2"
y = OUTTRAP('OFF')
EXIT

/\ REXX2 command \/
SAY "This is output from the REXX2 command " /\ This will be trapped \/
RETURN

� Incorrect usage of OUTTRAP

/\ REXX1 \/
x = OUTTRAP('VAR.')
"%REXX2"
EXIT

/\ REXX2 command \/
SAY "This is output from the REXX2 command " /\ This will be trapped \/
y = OUTTRAP('OFF')
RETURN

To trap the output of TSO/E commands under ISPF, you must invoke an exec with
command output after ISPF or one of its services has been invoked.

OUTTRAP may not trap all of the output from a TSO/E command. The output that
the OUTTRAP function traps depends on the type of output that the command
produces. For example, the TSO/E command OUTPUT PRINT(*) directs the output
from a job to your terminal. The OUTTRAP external function traps messages from
the OUTPUT PRINT(*) command, but does not trap the job output itself that is
directed to the terminal.

4-64 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

In general, the OUTTRAP function traps all output from a TSO/E command. For
example, OUTTRAP traps broadcast messages from LISTBC, the list of allocated
data sets from LISTALC, catalog entries from LISTCAT, and so on.

If you plan to write your own command processors for use in REXX execs, and you
plan to use the OUTTRAP external function to trap command output, note the
OUTTRAP function does not trap command output that is sent to the terminal by:

 � TPUT
 � WTO macro
� messages issued by TSO/E REXX (that is, messages beginning with IRX)
� messages issued by TRACE output.

However, OUTTRAP does trap output from the PUTLINE macro with DATA or
INFOR keywords. Therefore, if you write any command processors, you may want
to use the PUTLINE macro rather than the TPUT or WTO macros. OS/390 TSO/E
Programming Guide describes how to write a TSO/E command processor. For
information about the PUTLINE macro, see OS/390 TSO/E Programming Services.

Additional Variables That OUTTRAP Sets

In addition to the variables that store the lines of output, OUTTRAP stores
information in the following variables:

varname0
contains the largest index into which output was trapped. The number in
this variable cannot be larger than varnameMAX or varnameTRAPPED.

varnameMAX
contains the maximum number of output lines that can be trapped. That is,
the total number of lines generated by commands while OUTPUT trapping
is in effect. See example 1.

varnameTRAPPED
contains the total number of lines of command output. The number in this
variable can be larger than varname0 or varnameMAX.

varnameCON
contains the status of the concat argument, which is either CONCAT or
NOCONCAT.

Examples

The following are some examples of using OUTTRAP.

1. This example shows the resulting values in variables after the following
OUTTRAP function is processed.

x = OUTTRAP("ABC",4,"CONCAT")

Command 1 has three lines of output.

ABCð --> 3
ABC1 --> output line 1
ABC2 --> output line 2
ABC3 --> output line 3
ABC4 --> ABC4
ABCMAX --> 4
ABCTRAPPED --> 3
ABCCON --> CONCAT

 Chapter 4. Functions 4-65

 Functions

Command 2 has two lines of output. The second line is not trapped.

ABCð --> 4
ABC1 --> command 1 output line 1
ABC2 --> command 1 output line 2
ABC3 --> command 1 output line 3
ABC4 --> command 2 output line 1
ABCMAX --> 4
ABCTRAPPED --> 5
ABCCON --> CONCAT

2. This example shows the resulting values in variables after the following
OUTTRAP function is processed.

x = OUTTRAP("XYZ.",4,"NOCONCAT")

Command 1 has three lines of output.

XYZ.ð --> 3
XYZ.1 --> output line 1
XYZ.2 --> output line 2
XYZ.3 --> output line 3
XYZ.4 --> XYZ.4
XYZ.MAX --> 4
XYZ.TRAPPED --> 3
XYZ.CON --> NOCONCAT

Command 2 has two lines of output.

XYZ.ð --> 2
XYZ.1 --> command 2 output line 1
XYZ.2 --> command 2 output line 2
XYZ.3 --> command 1 output line 3
XYZ.4 --> XYZ.4
XYZ.MAX --> 4
XYZ.TRAPPED --> 2
XYZ.CON --> NOCONCAT

3. To determine if trapping is in effect:

x = OUTTRAP()
SAY x /\ If the exec is trapping output, displays the \/

/\ variable name; if it is not trapping output, \/
/\ displays OFF \/

4. To trap output from commands in consecutive order into the stem

output.

use one of the following:

x = OUTTRAP("output.",'\',"CONCAT")

x = OUTTRAP("output.")

x = OUTTRAP("output.",,"CONCAT")

5. To trap 6 lines of output into the variable prefix line and not concatenate the
output:

x = OUTTRAP(line,6,"NOCONCAT")

6. To suppress all command output:

x = OUTTRAP("output",ð)

4-66 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Note: This form of OUTTRAP provides the best performance for suppressing
command output.

7. Allocate a new data set like an existing one and if the allocation is successful,
delete the existing data set. If the allocation is not successful, display the
trapped output from the ALLOCATE command.

x = OUTTRAP("var.")
"ALLOC DA(new.data) LIKE(old.data) NEW"
IF RC = ð THEN
 "DELETE old.data"
ELSE
DO i = 1 TO var.ð

 SAY var.i
 END

If the ALLOCATE command is not successful, error messages are trapped in
the following compound variables.

VAR.1 = error message
VAR.2 = error message
VAR.3 = error message

 PROMPT

55─ ──PROMPT(──┬ ┬────────) ──5%
 └ ┘──option

PROMPT returns the value ON or OFF, which indicates the setting of prompting for
the exec.

You can use the following options to set prompting on or off for interactive TSO/E
commands, provided your profile allows for prompting. Only when your profile
specifies PROMPT, can prompting be made available to TSO/E commands issued
in an exec.

ON returns the previous setting of prompt (ON or OFF) and sets prompting on
for TSO/E commands issued within an exec.

OFF returns the previous setting of prompt (ON or OFF) and sets prompting off
for TSO/E commands issued within an exec.

Here are some examples:

promset = PROMPT() -> 'OFF' /\ returns current setting (OFF) \/

setprom = PROMPT("ON")-> 'OFF' /\ returns previous setting (OFF)
and sets prompting on \/

You can use the PROMPT function only in REXX execs that run in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use PROMPT only in environments that are integrated into TSO/E (see
"Interaction of Three Ways to Affect Prompting").

 Chapter 4. Functions 4-67

 Functions

You can set prompting for an exec using the PROMPT keyword of the TSO/E
EXEC command or the PROMPT function. The PROMPT function overrides the
PROMPT keyword of the EXEC command. For more information about situations
when one option overrides the other, see 4-68.

When an exec sets prompting on, prompting continues in other functions and
subroutines called by the exec. Prompting ends when the PROMPT(OFF) function
is used or when the original exec ends. When an exec invokes another exec or
CLIST with the EXEC command, prompting in the new exec or CLIST depends on
the setting in the profile and the use of the PROMPT keyword on the EXEC
command.

If the data stack is not empty, commands that prompt retrieve information from the
data stack before prompting a user at the terminal. To prevent a prompt from
retrieving information from the data stack, issue a NEWSTACK command to create
a new data stack for the exec.

Note: When your TSO/E profile specifies NOPROMPT, no prompting is allowed in
your terminal session even though the PROMPT function returns ON.

Interaction of Three Ways to Affect Prompting

You can control prompting within an exec in three ways:

 1. TSO/E profile

The TSO/E PROFILE command controls whether prompting is allowed for
TSO/E commands in your terminal session. The PROMPT operand of the
PROFILE command sets prompting on and the NOPROMPT operand sets
prompting off.

2. TSO/E EXEC command

When you invoke an exec with the EXEC command, you can specify the
PROMPT operand to set prompting on for the TSO/E commands issued within
the exec. The default is NOPROMPT.

3. PROMPT external function

You can use the PROMPT function to set prompting on or off within an exec.

Figure 4-6 shows how the three ways to affect prompting interact and the final
outcome of various interactions.

Figure 4-6 (Page 1 of 2). Different Ways Prompting is Affected

Interaction Prompting No Prompting

PROFILE PROMPT
EXEC PROMPT
PROMPT(ON)

X

PROFILE PROMPT
EXEC NOPROMPT
PROMPT(ON)

X

PROFILE PROMPT
EXEC NOPROMPT
PROMPT()

 X

4-68 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

Examples

The following are some examples of using PROMPT.

1. To check if prompting is available before issuing the interactive TRANSMIT
command, use the PROMPT function as follows:

"PROFILE PROMPT"
IF PROMPT() = 'ON' THEN
 "TRANSMIT"
ELSE
 DO

x = PROMPT('ON') /\ Save prompt setting and turn prompting ON \/
"TRANSMIT" /\ Restore prompting setting \/
y = PROMPT(x)

 END

2. Suppose you want to use the LISTDS command in an exec and want to ensure
that prompting is done to the terminal. First check whether the data stack is
empty. If the data stack is not empty, use the NEWSTACK command to create
a new data stack. Use the PROMPT function before issuing the LISTDS
command.

Figure 4-6 (Page 2 of 2). Different Ways Prompting is Affected

Interaction Prompting No Prompting

PROFILE PROMPT
EXEC NOPROMPT
PROMPT(OFF)

 X

PROFILE PROMPT
EXEC PROMPT
PROMPT()

X

PROFILE PROMPT
EXEC PROMPT
PROMPT(OFF)

X

PROFILE NOPROMPT
EXEC PROMPT
PROMPT(ON)

X

PROFILE NOPROMPT
EXEC NOPROMPT
PROMPT(ON)

X

PROFILE NOPROMPT
EXEC PROMPT
PROMPT(OFF)

X

PROFILE NOPROMPT
EXEC NOPROMPT
PROMPT(OFF)

X

PROFILE NOPROMPT
EXEC PROMPT
PROMPT()

X

PROFILE NOPROMPT
EXEC NOPROMPT
PROMPT()

X

 Chapter 4. Functions 4-69

 Functions

IF QUEUED() > ð THEN
 "NEWSTACK"
ELSE NOP
x = PROMPT('ON')
"LISTDS"
y = PROMPT(x)

 SETLANG

55─ ──SETLANG(──┬ ┬──────────) ───────────────────────────────────────5%
 └ ┘──langcode

SETLANG returns a three character code that indicates the language in which
REXX messages are currently being displayed. Figure 4-7 shows the language
codes that replace the function call and the corresponding languages for each
code.

You can optionally specify one of the language codes as an argument on the
function to set the language in which REXX messages are displayed. In this case,
SETLANG returns the code of the language in which messages are currently
displayed and changes the language in which subsequent REXX messages will be
displayed.

Here are some examples:

curlang = SETLANG() -> 'ENU' /\ returns current language (ENU) \/

oldlang = SETLANG("ENP")-> 'ENU' /\ returns current language (ENU)
and sets language to US English

 uppercase (ENP) \/

You can use the SETLANG function in an exec that runs in any MVS address
space (TSO/E and non-TSO/E).

Figure 4-7. Language Codes for SETLANG Function That Replace the Function Call

Language
Code Language

CHS Simplified Chinese

CHT Traditional Chinese

DAN Danish

DEU German

ENP US English - all uppercase

ENU US English - mixed case (upper and lowercase)

ESP Spanish

FRA French

JPN Japanese

KOR Korean

PTB Brazilian Portuguese

4-70 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

After an exec uses SETLANG to set a specific language, any REXX message the
system issues is displayed in that language. If the exec calls another exec (either
as a function or subroutine or using the TSO/E EXEC command), any REXX
messages are displayed in the language you specified on the SETLANG function.
The language specified on SETLANG is used as the language for displaying REXX
messages until another SETLANG function is invoked or the environment in which
the exec is running terminates.

Notes:

1. The default language for REXX messages depends on the language feature
that is installed on your system. The default language is in the language field of
the parameters module (see page 14-11). You can use the SETLANG function
to determine and set the language for REXX messages.

2. The language codes you can specify on the SETLANG function also depend on
the language features that are installed on your system. If you specify a
language code on the SETLANG function and the corresponding language
feature is not installed on your system, SETLANG does not issue an error
message. However, if the system needs to display a REXX message and
cannot locate the message for the particular language you specified, the
system issues an error message. The system then tries to display the REXX
message in US English.

3. Your installation can customize TSO/E to display certain information at the
terminal in different languages. Your installation can define a primary and
secondary language for the display of information. The language codes for the
primary and secondary languages are stored in the user profile table (UPT).
You can use the TSO/E PROFILE command to change the languages specified
in the UPT.

The languages stored in the UPT do not affect the language in which REXX
messages are displayed. The language for REXX messages is controlled only
by the default in the language field of the parameters module and the
SETLANG function.

For information about customizing TSO/E for different languages and the types
of information that are displayed in different languages, see OS/390 TSO/E
Customization.

4. The SYSVAR external function has the SYSPLANG and SYSSLANG
arguments that return the user's primary and secondary language stored in the
UPT. You can use the SYSVAR function to determine the setting of the user's
primary and secondary language. You can then use the SETLANG function to
set the language in which REXX messages are displayed to the same
language as the primary or secondary language specified for the user. See
“SYSVAR” on page 4-76 for more information.

Examples

The following are some examples of using SETLANG.

1. To check the language in which REXX messages are currently being displayed,
use the SETLANG function as follows:

currlng = SETLANG() /\ for example, returns ENU \/

2. The SYSPLANG argument of the SYSVAR function returns the user's primary
language that is stored in the user profile table (UPT).

 Chapter 4. Functions 4-71

 Functions

The following example uses the SYSVAR function to determine the user's
primary language and then uses the SETLANG function to check the language
in which REXX messages are displayed. If the two languages are the same, no
processing is performed. If the languages are different, the exec uses the
SETLANG function to set the language for REXX messages to the same
language as the user's primary language.

/\ REXX ... \/
...

proflang = SYSVAR('SYSPLANG') /\ check primary language in UPT \/
rexxlang = SETLANG() /\ check language for REXX messages \/
IF proflang ¬= rexxlang THEN

newlang = SETLANG(proflang) /\ set language for REXX messages \/
/\ to user's primary language \/

ELSE NOP /\ otherwise, no processing needed \/
...

EXIT

 STORAGE

55─ ──STORAGE(address ──┬ ┬──────────────────────────) ────────────────5%
 └ ┘──, ──┬ ┬──────── ──┬ ┬───────

└ ┘──length └ ┘──,data

STORAGE returns length bytes of data from the specified address in storage. The
address is a character string containing the hexadecimal representation of the
storage address from which data is retrieved.

Optionally, you can specify length, which is the decimal number of bytes to be
retrieved from address. The default length is one byte. When length is 0,
STORAGE returns a null character string.

If you specify data, STORAGE returns the information from address and then
overwrites the storage starting at address with data you specified on the function
call. The data is the character string to be stored at address. The length argument
has no effect on how much storage is overwritten; the entire data is written.

You can use the STORAGE function in REXX execs that run in any MVS address
space (TSO/E and non-TSO/E).

If the STORAGE function tries to retrieve or change data beyond the storage limit,
only the storage up to the limit is retrieved or changed.

Note: Virtual storage addresses may be fetch protected, update protected, or may
not be defined as valid addresses to the system. Any particular invocation
of the STORAGE function may fail if it references a non-existent address,
attempts to retrieve the contents of fetch protected storage, or attempts to
update non-existent storage or is attempting to modify store protected
storage. In all cases, a null string is returned to the REXX exec.

The STORAGE function returns a null string if any part of the request fails.
Because the STORAGE function can both retrieve and update virtual storage at the
same time, it is not evident whether the retrieve or update caused the null string to
be returned. In addition, a request for retrieving or updating storage of a shorter

4-72 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

length might have been successful. When part of a request fails, the failure point is
on a decimal 4096 boundary.

Examples

The following are some examples of using STORAGE.

1. To retrieve 25 bytes of data from address 000AAE35, use the STORAGE
function as follows:

storret = STORAGE(ðððAAE35,25)

2. To replace the data at address 0035D41F with ‘TSO/E REXX’, use the
following STORAGE function:

storrep = STORAGE(ðð35D41F,,'TSO/E REXX')

This example first returns one byte of information found at address 0035D41F
and then replaces the data beginning at address 0035D41F with the characters
‘TSO/E REXX’.

Note: Information is retrieved before it is replaced.

 SYSCPUS

55─ ──SYSCPUS(cpus_stem) ──5%

SYSCPUS places, in a stem variable, information about those CPUs that are
on-line.

The number of on-line CPUs is returned in variable cpus_stem.ð. The serial
numbers of each of those CPUs are returned in variables whose names are derived
by appending a number (1 through cpus_stem.ð) to the stem. Trailing blanks are
removed.

The SYSCPUS function runs in any MVS address space.

Function Codes

The SYSCPUS function replaces the function call by the following function codes.

Example

Consider a system with two on-line CPUs. Their serial numbers are FF0000149221
and FF1000149221. Assuming you issue the following sequence of statements

Figure 4-8. SYSCPUS Function Codes

Function
Code

Description

0 SYSCPUS processing was successful.

4 SYSCPUs processing was successful. However, the function detected
some inconsistency during processing, for example when the number
of on-line CPUs varies or becomes zero during processing. This can
happen when the operator changes an on-line CPU to off-line while
the function is in process. In this case, it may be advisable to repeat
the function call.

 Chapter 4. Functions 4-73

 Functions

/\ REXX \/
x = SYSCPUS('CPUS.')
say 'ð, if function performed okay: ' x
say 'Number of on-line CPUs is ' CPUS.ð
do i = 1 to CPUS.ð
say 'CPU' i ' has CPU info ' CPUS.i

end

you get the following output:

ð, if function performed okay: ð
Number of on-line CPUs is 2
CPU 1 has CPU info FFðððð149221
CPU 2 has CPU info FF1ððð149221
 /\ ↑ ↑ \/

/\ | 4 digits = model number \/
/\ 6 digits = CPU ID \/

 SYSDSN

55─ ──SYSDSN(dsname) ──5%

SYSDSN returns one of the following messages indicating whether the specified
dsname exists and is available for use. The dsname can be the name of any
cataloged data set or cataloged partitioned data set with a member name.
Additionally, if you specify a member of a partitioned data set, SYSDSN checks to
see if you have access to the data set.

You can use SYSDSN to obtain information about a data set that is available on
DASD. SYSDSN does not directly support data that is on tape. SYSDSN supports
generation data group (GDG) data sets when using absolute generation names, but
does not support relative GDG names.

To suppress TSO/E messages issued by the SYSDSN function, use the
MSG("OFF") function. For information about the MSG function, see 4-57.

OK /\ data set or member is available \/
MEMBER NOT FOUND
MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED
DATASET NOT FOUND
ERROR PROCESSING REQUESTED DATASET
PROTECTED DATASET /\ a member was specified and RACF

prevents this user from accessing
this data set \/

VOLUME NOT ON SYSTEM
INVALID DATASET NAME, dsname
MISSING DATASET NAME
UNAVAILABLE DATASET /\ another user has an exclusive ENQ

on the specified data set \/

After a data set is available for use, you may find it useful to get more detailed
information. For example, if you later need to invoke a service that requires a
specific data set organization, then use the LISTDSI function. For a description of
the LISTDSI function, see “LISTDSI” on page 4-48.

4-74 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

You can use the SYSDSN function only in REXX execs that run in the TSO/E
address space.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use SYSDSN only in environments that are integrated into TSO/E (see
page 14-8).

You can specify the dsname in any of the following ways:

� Fully-qualified data set name — The extra quotation marks prevent TSO/E from
adding your prefix to the data set name.

x = SYSDSN("'sys1.proj.new'")

x = SYSDSN('''sys1.proj.new''')

� Non fully-qualified data set name that follows the naming conventions — When
there is only one set of quotation marks or no quotation marks, TSO/E adds
your prefix to the data set name.

x = SYSDSN('myrexx.exec')

x = SYSDSN(myrexx.exec)

� Variable name that represents a fully-qualified or non fully-qualified data set
name — The variable name must not be enclosed in quotation marks because
quotation marks prevent variable substitution.

variable = "exec"
x = SYSDSN(variable) /\ looks for 'userid.exec' \/
y = SYSDSN('variable') /\ looks for 'userid.variable' \/
z = SYSDSN("'"variable"'") /\ looks for 'exec' \/

If the specified data set has been migrated, SYSDSN attempts to recall it.

Examples

The following are some examples of using SYSDSN.

1. To determine the availability of prefix.PROJ.EXEC(MEM1):

x = SYSDSN("proj.exec(mem1)")
IF x = 'OK' THEN
 CALL routine1
ELSE
 CALL routine2

2. To determine the availability of DEPT.REXX.EXEC:

s = SYSDSN("'dept.rexx.exec'")
say s

3. To suppress TSO/E messages:

/\ REXX \/
dsname = 'abcdefghij'
y = MSG("OFF")
x = SYSDSN(dsname)
y = MSG(y)

 Chapter 4. Functions 4-75

 Functions

 SYSVAR

55─ ──SYSVAR(arg_name) ──5%

SYSVAR returns information about MVS, TSO/E, and the current session, such as
levels of software available, your logon procedure, and your user ID. The
information returned depends on the arg_name value specified on the function call.
The arg_name values are divided into the following categories of information: user,
terminal, exec, system, language, and console session information. The different
categories are described below.

Note: For information on system variables not being listed below see “MVSVAR”
on page 4-58.

User Information

Use the following arguments to obtain information related to the user.

SYSPREF the prefix as defined in the user profile. The prefix is the string that
is prefix to data set names that are not fully-qualified. The prefix is
usually the user's user ID. You can use the TSO/E PROFILE
command to change the prefix.

SYSPROC the name of the logon procedure for the current session. You can
use the SYSPROC argument to determine whether certain
programs, such as the TSO/E Session Manager, are available to
the user. For example, suppose your installation has the logon
procedure SMPROC for the Session Manager. The exec can check
that the user logged on using SMPROC before invoking a routine
that uses Session Manager. Otherwise, the exec can display a
message telling the user to log on using the SMPROC logon
procedure.

SYSUID the user ID under which the current TSO/E session is logged on.
The SYSUID argument returns the same value that the USERID
built-in function returns in a TSO/E address space.

Terminal Information

Use the following arguments to obtain information related to the terminal.

SYSLTERM number of lines available on the terminal screen. In the
background, SYSLTERM returns 0.

SYSWTERM width of the terminal screen. In the background, SYSWTERM
returns 132.

Exec Information

Use the following arguments to obtain information related to the exec.

SYSENV indicates whether the exec is running in the foreground or
background. SYSENV returns the following values:

� FORE – exec is running in the foreground
� BACK – exec is running in the background

4-76 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

You can use the SYSENV argument to make logical decisions
based on foreground or background processing.

SYSICMD the name by which the user implicitly invoked the exec that is
currently processing. If the user invoked the exec explicitly,
SYSICMD returns a null value.

SYSISPF indicates whether ISPF dialog manager services are available for
the exec. SYSISPF returns the following values:

� ACTIVE – ISPF services are available. If the exec was invoked
under ISPF via the TSOEXEC interface, no ISPF services are
available.

� NOT ACTIVE – ISPF services are not available

SYSNEST indicates whether the exec was invoked from another program,
such as an exec or CLIST. The invocation could be either implicit
or explicit. SYSNEST returns YES if the exec was invoked from
another program; otherwise, it returns NO.

SYSPCMD the name or abbreviation of the TSO/E command processor that
the exec most recently processed.

The initial value that SYSPCMD returns depends on how you
invoked the exec. If you invoked the exec using the TSO/E EXEC
command, the initial value returned is EXEC. If you invoked the
exec using the EXEC subcommand of the TSO/E EDIT command,
the initial value returned is EDIT.

You can use the SYSPCMD argument with the SYSSCMD
argument for error and attention processing to determine where an
error or attention interrupt occurred.

SYSSCMD the name or abbreviation of the TSO/E subcommand processor
that the exec most recently processed.

The initial value that SYSSCMD returns depends on how you
invoked the exec. If you invoked the exec using the TSO/E EXEC
command, the initial value returned is null. If you invoked the exec
using the EXEC subcommand of the TSO/E EDIT command, the
initial value returned is EXEC.

The SYSPCMD and SYSSCMD arguments are interdependent.
After the initial invocation, the values that SYSPCMD and
SYSSCMD return depend on the TSO/E command and
subcommand processors that were most recently processed. For
example, if SYSSCMD returns the value EQUATE, which is a
subcommand unique to the TEST command, the value that
SYSPCMD returns would be TEST.

You can use the SYSPCMD and SYSSCMD arguments for error
and attention processing to determine where an error or attention
interrupt occurred.

System Information

Use the following arguments to obtain information related to the system.

 Chapter 4. Functions 4-77

 Functions

SYSCPU the number of seconds of central processing unit (CPU) time used
during the session in the form: seconds.hundredths-of-seconds.

You can use the SYSCPU argument and the SYSSRV argument,
which returns the number of system resource manager (SRM)
service units, to evaluate the:

� Performance of applications
� Duration of a session.

SYSHSM indicates the status of the Data Facility Hierarchical Storage
Manager (DFHSM). SYSHSM returns the following values:

� A null value if DFHSM is not installed and active

� AVAILABLE if a release of DFHSM before Version 1 Release 3
is installed and active

� A four-digit number in the following format if DFHSM Version 1
Release 3 or later is installed and active.

2 0 0 (DFHSM Version 2 Release 2.0)

modification number

release number

version number

2

SYSJES name and level of the JES installed on your system:

� A character string indicating name of the JES plus its version,
release and modification level, for example

JES2 SP4.3.3

where JES2 is the JES name and SP4.3.3 is the JES level.
These two strings are separated by a blank character. If either
the JES name or the level returns an empty character string,
then no blank character is inserted. Trailing blanks are
removed.

� -INACTIVE- (please note the delimiters) if the subsystem is not
active.

� -DOWNLEVEL- (please note the delimiters) if the subsystem is
neither JES2 SP4.3 or later, nor JES3 SP5.1.1 or later.

SYSLRACF indicates the level of RACF installed. SYSLRACF returns the
following values:

� A null value if RACF is not installed

� A four-digit number in the following format if RACF is installed.

1 0 0 (RACF Version 1 Release 8.0)

modification number

release number

version number

8

4-78 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

SYSNODE network node name of your installation's JES. This name identifies
the local JES in a network of systems or system complexes being
used for network job entry (NJE) tasks. The name that is returned
derives from the NODE initialization statement of JES.

The SYSNODE value is returned as either of the following:

� A character string indicating the node name, for example
BOE9.

� -INACTIVE- (please note the delimiters) if the subsystem is not
active.

� -DOWNLEVEL- (please note the delimiters) if the subsystem is
neither JES2 SP4.3 or later, nor JES3 SP5.1.1 or later.

SYSRACF indicates the status of RACF. SYSRACF returns the following
values:

� AVAILABLE if RACF is installed and available

� NOT AVAILABLE if RACF is installed but is not available

� NOT INSTALLED if RACF is not installed.

SYSSRV the number of system resource manager (SRM) service units used
during the session.

You can use the SYSSRV argument and the SYSCPU argument,
which returns the number of seconds of CPU time used, to
evaluate the:

� Performance of applications
� Duration of a session.

SYSTERMID the terminal ID of the terminal where the REXX exec was started.

� A character string indicating the terminal ID. Trailing blanks are
removed.

� A null string if TSO runs in the background.

SYSTSOE the version, release, and modification level of TSO/E installed in
the following format:

2 0 0 (TSO/E Version 2 Release 4)

modification number

release number

version number

4

Language Information

Use the following arguments to obtain information related to the display of
information in different languages.

SYSDTERM indicates whether the user's terminal supports Double-Byte
Character Set (DBCS). SYSDTERM returns the following values:

� YES – Terminal supports DBCS
� NO – Terminal does not support DBCS

 Chapter 4. Functions 4-79

 Functions

The SYSDTERM argument is useful if you want to display
messages or other information to the user and the information
contains DBCS characters.

SYSKTERM indicates whether the user's terminal supports Katakana.
SYSKTERM returns the following values:

� YES – Terminal supports Katakana
� NO – Terminal does not support Katakana

The SYSKTERM argument is useful if you want to display
messages or other information to the user and the information
contains Katakana characters.

SYSPLANG a three character code that indicates the user's primary language
stored in the user profile table (UPT). For more information, see
“Using the SYSPLANG and SYSSLANG Arguments”.

SYSSLANG a three character code that indicates the user's secondary
language stored in the user profile table (UPT). For more
information, see “Using the SYSPLANG and SYSSLANG
Arguments”.

Using the SYSPLANG and SYSSLANG Arguments: Your installation can
customize TSO/E to display certain types of information at the terminal in different
languages. Your installation can define a primary and secondary language for the
display of information. The language codes for the primary and secondary
language are stored in the user profile table (UPT). You can use the TSO/E
PROFILE command to change the languages specified in the UPT.

The SYSPLANG and SYSSLANG arguments return the three character language
codes for the user's primary and secondary language that are stored in the UPT.
The arguments are useful if you want to display messages or other information to
the user in the primary or secondary language. The language codes that SYSVAR
returns depend on the language support and codes that your installation has
defined. OS/390 TSO/E Customization describes how to customize TSO/E for
different languages, the types of information that are displayed in different
languages, and language codes.

TSO/E also provides the SETLANG external function that lets you determine and
set the language in which REXX messages are displayed. SETLANG has no effect
on the languages that are stored in the UPT. However, you can use both
SETLANG and SYSVAR together for language processing. For example, you can
use the SYSVAR function with the SYSPLANG or SYSSLANG argument to
determine the language code stored in the UPT. You can then use the SETLANG
function to set the language in which REXX messages are displayed to the same
language as the user's primary or secondary language. See “SETLANG” on
page 4-70 for more information.

Console Session Information

The console session arguments let you obtain information related to running an
extended MCS console session that you have established using the TSO/E
CONSOLE command.

The SOLDISP, UNSDISP, SOLNUM, and UNSNUM arguments provide information
about the options that have been specified for a console session. The arguments

4-80 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

relate to keywords on the TSO/E CONSPROF command. You can use the
arguments to determine what options are in effect before you issue MVS system or
subsystem commands or use the GETMSG function to retrieve a message.

The MFTIME, MFOSNM, MFJOB, and MFSNMJBX arguments provide information
about messages that are issued during a console session. These arguments are
useful if you use the GETMSG external function to retrieve messages that are not
displayed at the terminal and you want to display a particular message that was
retrieved. The arguments indicate whether certain types of information should be
displayed with the message, such as the time stamp.

For information about console sessions, see Appendix C, “Writing REXX Execs to
Perform MVS Operator Activities” on page C-1.

SOLDISP indicates whether solicited messages that are routed to a user's
console during a console session are to be displayed at the user's
terminal. Solicited messages are responses from MVS system and
subsystem commands that are issued during a console session.
SOLDISP returns the following values:

� YES - solicited messages are displayed
� NO - solicited messages are not displayed

UNSDISP indicates whether unsolicited messages that are routed to a user's
console during a console session are to be displayed at the user's
terminal. Unsolicited messages are messages that are not direct
responses from MVS system and subsystem commands that are
issued during a console session. UNSDISP returns the following
values:

� YES - unsolicited messages are displayed
� NO - unsolicited messages are not displayed

SOLNUM the size of the message table that contains solicited messages
(that is, the number of solicited messages that can be stored). The
system stores the messages in the table during a console session
if you specify that solicited messages are not to be displayed at the
terminal. You can use the TSO/E CONSPROF command to change
the size of the table. For more information, see OS/390 TSO/E
System Programming Command Reference.

UNSNUM the size of the message table that contains unsolicited messages
(that is, the number of unsolicited messages that can be stored).
The system stores the messages in the table during a console
session if you specify that unsolicited messages are not to be
displayed at the terminal. You can use the TSO/E CONSPROF
command to change the size of the table. For more information,
see OS/390 TSO/E System Programming Command Reference.

MFTIME indicates whether the user requested that the time stamp should be
displayed with system messages. MFTIME returns the following
values:

� YES – time stamp should be displayed
� NO – time stamp should not be displayed

MFOSNM indicates whether the user requested that the originating system
name should be displayed with system messages. MFOSNM
returns the following values:

 Chapter 4. Functions 4-81

 Functions

� YES – originating system name should be displayed
� NO – originating system name should not be displayed

MFJOB indicates whether the user requested that the originating job name
or job ID of the issuer should be displayed with system messages.
MFJOB returns the following values:

� YES – originating job name should be displayed
� NO – originating job name should not be displayed

MFSNMJBX indicates whether the user requested that the originating system
name and job name should not be displayed with system
messages. MFSNMJBX returns the following values:

� YES – originating system name and job name should not be
displayed

� NO – originating system name and job name should be
displayed

Note: MFSNMJBX is intended to override the values of MFOSNM
and MFJOB. The value for MFSNMJBX may not be
consistent with the values for MFOSNM and MFJOB.

You can use the SYSVAR function only in REXX execs that run in the TSO/E
address space. Use SYSVAR to determine various characteristics to perform
different processing within the exec.

Environment Customization Considerations

If you use IRXINIT to initialize language processor environments, note that you
can use SYSVAR only in environments that are integrated into TSO/E (see
page 14-8).

Examples

The following are some examples of using SYSVAR.

1. To display whether the exec is running in the foreground or background:

SAY SYSVAR("sysenv") /\ Displays FORE or BACK \/

2. To find out the level of RACF installed:

level = SYSVAR("syslracf") /\ Returns RACF level \/

3. To determine if the prefix is the same as the user ID:

IF SYSVAR("syspref") = SYSVAR("sysuid") THEN
...

ELSE
...

EXIT

4. Suppose you want to use the GETMSG external function to retrieve a solicited
message. Before using GETMSG, you want to save the current setting of
message displaying and use the TSO/E CONSPROF command so that solicited
messages are not displayed. After GETMSG processing, you want to restore
the previous setting of message displaying.

4-82 OS/390 V2R8.0 TSO/E REXX Reference

 Functions

/\ REXX program ... \/
...

mdisp = SYSVAR("SOLDISP") /\ Save current message setting \/
"CONSPROF SOLDISPLAY(NO)" /\ Inhibit message display \/
...

msg = GETMSG('cons','sol','APPðð96',,6ð) /\ Retrieve message \/
...

"CONSPROF SOLDISPLAY("mdisp")" /\ Restore message setting \/
...

EXIT

Relationship of CLIST Control Variables and SYSVAR Function

The information that the SYSVAR external function returns is similar to the
information stored in CLIST control variables for TSO/E CLISTs. The SYSVAR
external function does not support all the CLIST control variables. SYSVAR
supports only the arg_name values described in this topic.

Some CLIST control variables do not apply to REXX. Other CLIST control variables
duplicate other REXX functions. SYSVAR does not support the following CLIST
control variables. However, for these CLIST control variables, there is an equivalent
function in REXX, which is listed below.

SYSDATE ===> DATE(usa)
SYSJDATE ===> DATE(julian)
SYSSDATE ===> DATE(ordered)
SYSSTIME ===> SUBSTR(TIME(normal),1,5)
SYSTIME ===> TIME(normal) or TIME()

 Chapter 4. Functions 4-83

 Functions

4-84 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

 Chapter 5. Parsing

The parsing instructions are ARG, PARSE, and PULL (see “ARG” on page 3-3,
“PARSE” on page 3-20, and “PULL” on page 3-25).

The data to parse is a source string. Parsing splits up the data in a source string
and assigns pieces of it into the variables named in a template. A template is a
model specifying how to split the source string. The simplest kind of template
consists of only a list of variable names. Here is an example:

variable1 variable2 variable3

This kind of template parses the source string into blank-delimited words. More
complicated templates contain patterns in addition to variable names.

String patterns Match characters in the source string to specify
where to split it. (See “Templates Containing String
Patterns” on page 5-3 for details.)

Positional patterns Indicate the character positions at which to split the
source string. (See “Templates Containing
Positional (Numeric) Patterns” on page 5-4 for
details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.
2. Parse each substring into words.

Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value 'time and tide' with var1 var2 var3

The template in this instruction is: var1 var2 var3. The data to parse is between
the keywords PARSE VALUE and the keyword WITH, the source string time and tide.
Parsing divides the source string into blank-delimited words and assigns them to
the variables named in the template as follows:

var1='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the
next example, the source string is a variable.

/\ PARSE VALUE using a variable as the source string to parse \/
string='time and tide'
parse value string with var1 var2 var3 /\ same results \/

(PARSE VALUE does not convert lowercase a–z in the source string to uppercase
A–Z. If you want to convert characters to uppercase, use PARSE UPPER VALUE.
See “Using UPPER” on page 5-9 for a summary of the effect of parsing
instructions on case.)

 Copyright IBM Corp. 1988, 1999 5-1

 Parsing

All of the parsing instructions assign the parts of a source string into the variables
named in a template. There are various parsing instructions because of differences
in the nature or origin of source strings. (A summary of all the parsing instructions
is on page 5-9.)

The PARSE VAR instruction is similar to PARSE VALUE except that the source
string to parse is always a variable. In PARSE VAR, the name of the variable
containing the source string follows the keywords PARSE VAR. In the next example,
the variable stars contains the source string. The template is star1 star2 star3.

/\ PARSE VAR example \/
stars='Sirius Polaris Rigil'
parse var stars star1 star2 star3 /\ star1='Sirius' \/

/\ star2='Polaris' \/
 /\ star3='Rigil' \/

All variables in a template receive new values. If there are more variables in the
template than words in the source string, the leftover variables receive null (empty)
values. This is true for all parsing: for parsing into words with simple templates and
for parsing with templates containing patterns. Here is an example using parsing
into words.

/\ More variables in template than (words in) the source string \/
satellite='moon'
parse var satellite Earth Mercury /\ Earth='moon' \/
 /\ Mercury='' \/

If there are more words in the source string than variables in the template, the last
variable in the template receives all leftover data. Here is an example:

/\ More (words in the) source string than variables in template \/
satellites='moon Io Europa Callisto...'
parse var satellites Earth Jupiter /\ Earth='moon' \/

/\ Jupiter='Io Europa Callisto...'\/

Parsing into words removes leading and trailing blanks from each word before it is
assigned to a variable. The exception to this is the word or group of words
assigned to the last variable. The last variable in a template receives leftover data,
preserving extra leading and trailing blanks. Here is an example:

/\ Preserving extra blanks \/
solar5='Mercury Venus Earth Mars Jupiter '
parse var solar5 var1 var2 var3 var4
/\ var1 ='Mercury' \/
/\ var2 ='Venus' \/
/\ var3 ='Earth' \/
/\ var4 =' Mars Jupiter ' \/

In the source string, Earth has two leading blanks. Parsing removes both of them
(the word-separator blank and the extra blank) before assigning var3='Earth'. Mars
has three leading blanks. Parsing removes one word-separator blank and keeps the
other two leading blanks. It also keeps all five blanks between Mars and Jupiter
and both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value ' Pluto ' with var1 /\ var1=' Pluto '\/

5-2 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

The Period as a Placeholder
A period in a template is a placeholder. It is used instead of a variable name, but it
receives no data. It is useful:

� As a “dummy variable” in a list of variables
� Or to collect unwanted information at the end of a string.

The period in the first example is a placeholder. Be sure to separate adjacent
periods with spaces; otherwise, an error results.

/\ Period as a placeholder \/
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars . . brightest . /\ brightest='Sirius' \/

/\ Alternative to period as placeholder \/
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /\ brightest='Sirius' \/

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns
A string pattern matches characters in the source string to indicate where to split it.
A string pattern can be a:

Literal string pattern One or more characters within quotation marks.

Variable string pattern A variable within parentheses with no plus (+) or
minus (-) or equal sign (=) before the left
parenthesis. (See page 5-8 for details.)

Here are two templates: a simple template and a template containing a literal string
pattern:

var1 var2 /\ simple template \/
var1 ', ' var2 /\ template with literal string pattern \/

The literal string pattern is: ', '. This template:

� Puts characters from the start of the source string up to (but not including) the
first character of the match (the comma) into var1

� Puts characters starting with the character after the last character of the match
(the character after the blank that follows the comma) and ending with the end
of the string into var2.

A template with a string pattern can omit some of the data in a source string when
assigning data into variables. The next two examples contrast simple templates
with templates containing literal string patterns.

/\ Simple template \/
name='Smith, John'
parse var name ln fn /\ Assigns: ln='Smith,' \/
 /\ fn='John' \/

Notice that the comma remains (the variable ln contains 'Smith,'). In the next
example the template is ln ', ' fn. This removes the comma.

 Chapter 5. Parsing 5-3

 Parsing

/\ Template with literal string pattern \/
name='Smith, John'
parse var name ln ', ' fn /\ Assigns: ln='Smith' \/
 /\ fn='John' \/

First, the language processor scans the source string for ', '. It splits the source
string at that point. The variable ln receives data starting with the first character of
the source string and ending with the last character before the match. The variable
fn receives data starting with the first character after the match and ending with the
end of string.

A template with a string pattern omits data in the source string that matches the
pattern. (There is a special case (on page 5-12) in which a template with a string
pattern does not omit matching data in the source string.) We used the pattern ',
' (with a blank) instead of ',' (no blank) because, without the blank in the pattern,
the variable fn receives ' John' (including a blank).

If the source string does not contain a match for a string pattern, then any variables
preceding the unmatched string pattern get all the data in question. Any variables
after that pattern receive the null string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (Numeric) Patterns
A positional pattern is a number that identifies the character position at which to
split data in the source string. The number must be a whole number.

An absolute positional pattern is

� A number with no plus (+) or minus (-) sign preceding it or with an equal sign
(=) preceding it

� A variable in parentheses with an equal sign before the left parenthesis. (See
page 5-8 for details on variable positional patterns.)

The number specifies the absolute character position at which to split the source
string.

Here is a template with absolute positional patterns:

variable1 11 variable2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number 11 refers to
the 11th position in the input string, 21 to the 21st position. This template:

� Puts characters 1 through 10 of the source string into variable1
� Puts characters 11 through 20 into variable2
� Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such
as:

LASTNAMEFIELDS:

character positions:

FIRST PSEUDONYM
end of
record

1 11 21 40

5-4 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

The following example uses this record structure.

/\ Parsing with absolute positional patterns in template \/
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
parse var record.n lastname 11 firstname 21 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /\ Says 'By George!' after record 2 \/

The source string is first split at character position 11 and at position 21. The
language processor assigns characters 1 to 10 into lastname, characters 11 to 20
into firstname, and characters 21 to 40 into pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Optionally, you can put an equal sign before a number in a template. An equal sign
is the same as no sign before a number in a template. The number refers to a
particular character position in the source string. These two templates work the
same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding
it. (It can also be a variable within parentheses, with a plus (+) or minus (-) sign
preceding the left parenthesis; for details see “Parsing with Variable Patterns” on
page 5-8.)

The number specifies the relative character position at which to split the source
string. The plus or minus indicates movement right or left, respectively, from the
start of the string (for the first pattern) or from the position of the last match. The
position of the last match is the first character of the last match. Here is the same
example as for absolute positional patterns done with relative positional patterns:

/\ Parsing with relative positional patterns in template \/
record.1='Clemens Samuel Mark Twain '
record.2='Evans Mary Ann George Eliot '
record.3='Munro H.H. Saki '
do n=1 to 3
parse var record.n lastname +1ð firstname + 1ð pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /\ same results \/

Blanks between the sign and the number are insignificant. Therefore, +1ð and + 1ð
have the same meaning. Note that +0 is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special
case (on page 5-12) when a string pattern precedes a variable name and a

 Chapter 5. Parsing 5-5

 Parsing

positional pattern follows the variable name). The templates from the examples of
absolute and relative positional patterns give the same results.

(Implied
starting
point is
position 1.)

Put characters
1 through 10
in lastname.
(Non-inclusive
stopping point
is 11 (1+10).)

Put characters
11 through 20
in firstname.
(Non-inclusive
stopping point
is 21 (11+10).)

Put characters
21 through
end of string
in pseudonym.

lastname 11
lastname +10

firstname 21
firstname +10

pseudonym
pseudonym

Only with positional patterns can a matching operation back up to an earlier
position in the source string. Here is an example using absolute positional patterns:

/\ Backing up to an earlier position (with absolute positional) \/
string='astronomers'
parse var string 2 var1 4 1 var2 2 4 var3 5 11 var4
say string 'study' var1||var2||var3||var4
/\ Displays: "astronomers study stars" \/

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to
an earlier position. Here is the same example using relative positional patterns:

/\ Backing up to an earlier position (with relative positional) \/
string='astronomers'
parse var string 2 var1 +2 -3 var2 +1 +2 var3 +1 +6 var4
say string 'study' var1||var2||var3||var4 /\ same results \/

In the previous example, the relative positional pattern -3 backs up to the first
character in the source string.

The templates in the last two examples are equivalent.

Start
at 2.

Go to 1.
(4-3=1)

Go to 11
(5+6=11).

Non-
inclusive
stopping
point is 4
(2+2=4).

Non-
inclusive
stopping
point is 2
(1+1=2).

Go to 4
(2+2=4).
Non-inclusive
stopping point
is 5 (4+1=5).

var1 4
var1 +2

var2 2
var2 +1

11 var4
+6 var4

2
2

1
-3

4 var3 5
+2 var3 +1

You can use templates with positional patterns to make multiple assignments:

/\ Making multiple assignments \/
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/\ Assigns the (entire) value of books to Eliot and to Evans. \/

5-6 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

Combining Patterns and Parsing Into Words
What happens when a template contains patterns that divide the source string into
sections containing multiple words? String and positional patterns divide the source
string into substrings. The language processor then applies a section of the
template to each substring, following the rules for parsing into words.

/\ Combining string pattern and parsing into words \/
name=' John Q. Public'
parse var name fn init '.' ln /\ Assigns: fn='John' \/
 /\ init=' Q' \/
 /\ ln=' Public' \/

The pattern divides the template into two sections:

 � fn init
 � ln

The matching pattern splits the source string into two substrings:

 � ' John Q'
 � ' Public'

The language processor parses these substrings into words based on the
appropriate template section.

John had three leading blanks. All are removed because parsing into words
removes leading and trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the
rest because init is the last variable in that section of the template.

For the substring ' Public', parsing assigns the entire string into ln without
removing any blanks. This is because ln is the only variable in this section of the
template. (For details about treatment of blanks, see page 5-2.)

/\ Combining positional patterns with parsing into words \/
string='R E X X'
parse var string var1 var2 4 var3 6 var4 /\ Assigns: var1='R' \/
 /\ var2='E' \/

/\ var3=' X' \/
/\ var4=' X' \/

The pattern divides the template into three sections:

 � var1 var2
 � var3
 � var4

The matching patterns split the source string into three substrings that are
individually parsed into words:

 � 'R E'
 � ' X'
 � ' X'

The variable var1 receives 'R'; var2 receives 'E'. Both var3 and var4 receive
' X' (with a blank before the X) because each is the only variable in its section of
the template. (For details on treatment of blanks, see page 5-2.)

 Chapter 5. Parsing 5-7

 Parsing

Parsing with Variable Patterns
You may want to specify a pattern by using the value of a variable instead of a
fixed string or number. You do this by placing the name of the variable in
parentheses. This is a variable reference. Blanks are not necessary inside or
outside the parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string
pattern '. '.

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn='. '
parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable
name, the value of the variable is then treated as a string pattern. The variable can
be one that has been set earlier in the same template.

Example :

/\ Using a variable as a string pattern \/
/\ The variable (delim) is set in the same template \/
SAY "Enter a date (mm/dd/yy format). =====> " /\ assume 11/15/9ð \/
pull date
parse var date month 3 delim +1 day +2 (delim) year

/\ Sets: month='11'; delim='/'; day='15'; year='9ð' \/

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of
the variable is treated as an absolute or relative positional pattern. The value of the
variable must be a positive whole number or zero.

The variable can be one that has been set earlier in the same template. In the
following example, the first two fields specify the starting character positions of the
last two fields.

Example :

/\ Using a variable as a positional pattern \/
dataline = '12 26Samuel ClemensMark Twain'
parse var dataline pos1 pos2 6 =(pos1) realname =(pos2) pseudonym
/\ Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' \/

Why is the positional pattern 6 needed in the template? Remember that word
parsing occurs after the language processor divides the source string into
substrings using patterns. Therefore, the positional pattern =(pos1) cannot be
correctly interpreted as =12 until after the language processor has split the string at
column 6 and assigned the blank-delimited words 12 and 26 to pos1 and pos2,
respectively.

5-8 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

 Using UPPER
Specifying UPPER on any of the PARSE instructions converts characters to
uppercase (lowercase a–z to uppercase A–Z) before parsing. The following table
summarizes the effect of the parsing instructions on case.

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL
instruction is simply a short form of PARSE UPPER PULL. If you do not desire
uppercase translation, use PARSE ARG (instead of ARG or PARSE UPPER ARG)
and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Converts alphabetic characters to
uppercase before parsing

Maintains alphabetic characters in case
entered

ARG

PARSE UPPER ARG

PARSE ARG

PARSE UPPER EXTERNAL PARSE EXTERNAL

PARSE UPPER NUMERIC PARSE NUMERIC

PULL

PARSE UPPER PULL

PARSE PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

Parsing Instructions Summary
Remember: All parsing instructions assign parts of the source string into the
variables named in the template. The following table summarizes where the source
string comes from.

Instruction Where the source string comes from

ARG

PARSE ARG

Arguments you list when you call the program or arguments in
the call to a subroutine or function.

PARSE EXTERNAL Reads from user's terminal in TSO/E foreground, from input
stream (SYSTSIN) in TSO/E background, from input stream
INDD field defines in non-TSO/E address spaces.

PARSE NUMERIC Numeric control information (from NUMERIC instruction).

PULL

PARSE PULL

The string at the head of the external data queue. (If queue
empty, uses default input, typically the terminal.)

PARSE SOURCE System-supplied string giving information about the executing
program.

PARSE VALUE Expression between the keyword VALUE and the keyword
WITH in the instruction.

PARSE VAR name Parses the value of name.

PARSE VERSION System-supplied string specifying the language, language level,
and (three-word) date.

 Chapter 5. Parsing 5-9

 Parsing

Parsing Instructions Examples
All examples in this section parse source strings into words.

ARG

/\ ARG with source string named in REXX program invocation \/
/\ Program name is PALETTE. Specify 2 primary colors (yellow, \/
/\ red, blue) on call. Assume call is: palette red blue \/
arg var1 var2 /\ Assigns: var1='RED'; var2='BLUE' \/
If var1<>'RED' & var1<>'YELLOW' & var1<>'BLUE' then signal err
If var2<>'RED' & var2<>'YELLOW' & var2<>'BLUE' then signal err
total=length(var1)+length(var2)
SELECT;
When total=7 then new='purple'
When total=9 then new='orange'
When total=1ð then new='green'
Otherwise new=var1 /\ entered duplicates \/

END
Say new; exit /\ Displays: "purple" \/

Err:
say 'Input error--color is not "red" or "blue" or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of
ARG with the arguments in the CALL to a subroutine is in “Parsing Multiple Strings”
on page 5-11.

PARSE ARG works the same as ARG except that PARSE ARG does not convert
alphabetic characters to uppercase before parsing.

PARSE EXTERNAL

Say "Enter Yes or No =====> "
parse upper external answer 2 .
If answer='Y'
then say "You said 'Yes'!"
else say "You said 'No'!"

PARSE NUMERIC

parse numeric digits fuzz form
say digits fuzz form /\ Displays: '9 ð SCIENTIFIC' \/

/\ (if defaults are in effect) \/

PARSE PULL

PUSH '8ð 7' /\ Puts data on queue \/
parse pull fourscore seven /\ Assigns: fourscore='8ð'; seven='7' \/
SAY fourscore+seven /\ Displays: "87" \/

PARSE SOURCE

parse source sysname .
Say sysname /\ Displays: "TSO" \/

PARSE VALUE example is on page 5-1.

5-10 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

PARSE VAR examples are throughout the chapter, starting on page 5-2.

PARSE VERSION

parse version . level .
say level /\ Displays: "3.48" \/

PULL works the same as PARSE PULL except that PULL converts alphabetic
characters to uppercase before parsing.

Advanced Topics in Parsing
This section includes parsing multiple strings and flow charts depicting a conceptual
view of parsing.

Parsing Multiple Strings
Only ARG and PARSE ARG can have more than one source string. To parse
multiple strings, you can specify multiple comma-separated templates. Here is an
example:

parse arg template1, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated
templates. (For an ARG instruction, the source strings to parse come from
arguments you specify when you call a program or CALL a subroutine or function.)
Each comma is an instruction to the parser to move on to the next string.

Example :

/\ Parsing multiple strings in a subroutine \/
num='3'
musketeers="Porthos Athos Aramis D'Artagnon"
CALL Sub num,musketeers /\ Passes num and musketeers to sub \/
SAY total; say fourth /\ Displays: "4" and " D'Artagnon" \/
EXIT

Sub:
parse arg subtotal, . . . fourth
total=subtotal+1
RETURN

Note that when a REXX program is started as a command, only one argument
string is recognized. You can pass multiple argument strings for parsing:

� When one REXX program calls another REXX program with the CALL
instruction or a function call.

� When programs written in other languages start a REXX program.

If there are more templates than source strings, each variable in a leftover template
receives a null string. If there are more source strings than templates, the language
processor ignores leftover source strings. If a template is empty (two commas in a
row) or contains no variable names, parsing proceeds to the next template and
source string.

 Chapter 5. Parsing 5-11

 Parsing

Combining String and Positional Patterns: A Special Case
There is a special case in which absolute and relative positional patterns do not
work identically. We have shown how parsing with a template containing a string
pattern skips over the data in the source string that matches the pattern (see page
5-4). But a template containing the sequence:

 � string pattern
 � variable name
� relative positional pattern

does not skip over the matching data. A relative positional pattern moves relative to
the first character matching a string pattern. As a result, assignment includes the
data in the source string that matches the string pattern.

/\ Template containing string pattern, then variable name, then \/
/\ relative positional pattern does not skip over any data. \/
string='REstructured eXtended eXecutor'
parse var string var1 3 junk 'X' var2 +1 junk 'X' var3 +1 junk
say var1||var2||var3 /\ Concatenates variables; displays: "REXX" \/

Here is how this template works:

Put
characters
1 through
2 in var1.
(stopping
point is 3.)

var1=’RE’ var2=’X’ var3=’X’junk=
’structured
e’

junk=
’tended e’

junk=
’ecutor’

Starting
at 3, put
characters
up to (not
including)
first ’X’
in junk.

Starting
with first
’X’ put 1
(+1)
character
in var2.

Starting
with char-
acter after
first ’X’
put up to
second ’X’
in junk.

Starting
with char-
acter after
second ’X’
put rest
in junk.

Starting
with
second ’X’
put 1 (+1)
character
in var3.

junk ’X’ junk ’X’ junkvar2 +1 var3 +1var1 3

Parsing with DBCS Characters
Parsing with DBCS characters generally follows the same rules as parsing with
SBCS characters. Literal strings can contain DBCS characters, but numbers must
be in SBCS characters. See “PARSE” on page A-5 for examples of DBCS parsing.

Details of Steps in Parsing
The three figures that follow are to help you understand the concept of parsing.
Please note that the figures do not include error cases.

The figures include terms whose definitions are as follows:

string start is the beginning of the source string (or substring).

string end is the end of the source string (or substring).

length is the length of the source string.

match start is in the source string and is the first character of
the match.

5-12 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

match end is in the source string. For a string pattern, it is the
first character after the end of the match. For a
positional pattern, it is the same as match start.

match position is in the source string. For a string pattern, it is the
first matching character. For a positional pattern, it
is the position of the matching character.

token is a distinct syntactic element in a template, such
as a variable, a period, a pattern, or a comma.

value is the numeric value of a positional pattern. This
can be either a constant or the resolved value of a
variable.

START
Token is first one in template.
Length=length (source string)
Match start=1. Match end=1.

End of template?
yes

yes

no

no

Parsing complete.

Set next source
string and template.

CALL Find Next
Pattern.

CALL Find Next
Pattern.

Step to next token.

CALL Word Parsing.

Token a comma?

Figure 5-1. Conceptual Overview of Parsing

 Chapter 5. Parsing 5-13

 Parsing

Token period
or variable?

START:
End of
template?

Token a plus? Variable
form?

Variable
form?

Variable
form?

Resolve
its value.

Resolve
its value.

Resolve
its value.

Match found in
rest of string?

Resolve
its value.

Step to next token.

Token an equal?

Token a number?

Token a literal
string?

Token a variable
string?

Token a comma?

Token a minus?

String start=match end.
Match start=length + 1.
Match end=length + 1. Return.

String start=match start.
Match start=min (length + 1,
match start + value).
Match end=match start. Return.

String start=match start.
Match start=max (1, match
start - value).
Match end=match start. Return.

String start=match start.
Match start=match position.
Match end=match position +
pattern length. Return.

String start=match end.
Match start=min (length + 1, value).
Match end=match start. Return.

String start=match end.
Match start=length + 1.
Match end=length + 1. Return.

Match start=length + 1.
Match end=length + 1. Return.

String start=match end.
Match start=min (length + 1, value).
Match end=match start. Return.

no

yes

yes

yes

yes

yes yes

no

yes

no

no

no

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

yes

Figure 5-2. Conceptual View of Finding Next Pattern

5-14 OS/390 V2R8.0 TSO/E REXX Reference

 Parsing

START: Match end <=
string start?

String end=length + 1.

String end=match start.

Substring=substr (source string, string start, (string end-string start))
Token=previous pattern.

Assign word from substring to variable and step past blank.

no

no

no

no

no

no

no
Return.

no

yes

yes

yes

yes

yes

yes

yes

yes

Any more tokens?

Any more tokens?

Step to next token.

Token a variable or
a period?

Next token a variable
or period?

Assign rest of substring
to variable.

Assign rest of substring
to variable.

Assign null string
to variable.

Assign null string
to variable.

Strip any leading blanks.

Any substring left?

Any substring left?

Blank found in substring?

Figure 5-3. Conceptual View of Word Parsing

 Chapter 5. Parsing 5-15

 Parsing

5-16 OS/390 V2R8.0 TSO/E REXX Reference

 Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic

REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as natural a way as possible. What this really means is that the
rules followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules vary considerably (indeed much more than generally appreciated) from person
to person and from application to application and in ways that are not always
predictable. The arithmetic described here is, therefore, a compromise that
(although not the simplest) should provide acceptable results in most applications.

 Introduction
Numbers (that is, character strings used as input to REXX arithmetic operations
and built-in functions) can be expressed very flexibly. Leading and trailing blanks
are permitted, and exponential notation can be used. Some valid numbers are:

12 /\ a whole number \/
'-76' /\ a signed whole number \/
12.76 /\ decimal places \/

' + ð.ðð3 ' /\ blanks around the sign and so forth \/
17. /\ same as "17" \/
.5 /\ same as "ð.5" \/

4E9 /\ exponential notation \/
ð.73e-7 /\ exponential notation \/

In exponential notation, a number includes an exponent, a power of ten by which
the number is multiplied before use. The exponent indicates how the decimal point
is shifted. Thus, in the preceding examples, 4E9 is simply a short way of writing
4ððððððððð, and ð.73e-7 is short for ð.ððððððð73.

The arithmetic operators include addition (+), subtraction (-), multiplication (\),
power (\\), division (/), prefix plus (+), and prefix minus (-). In addition, there are
two further division operators: integer divide (%) divides and returns the integer part;
remainder (//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the “Definition”
section for full details):

� Results are calculated up to some maximum number of significant digits (the
default is 9, but you can alter this with the NUMERIC DIGITS instruction to give
whatever accuracy you need). Thus, if a result requires more than 9 digits, it
would usually be rounded to 9 digits. For example, the division of 2 by 3 would
result in 0.666666667 (it would require an infinite number of digits for perfect
accuracy).

� Except for division and power, trailing zeros are preserved (this is in contrast to
most popular calculators, which remove all trailing zeros in the decimal part of
results). So, for example:

 Copyright IBM Corp. 1988, 1999 6-1

 Numbers and Arithmetic

2.4ð + 2 -> 4.4ð
2.4ð - 2 -> ð.4ð
2.4ð \ 2 -> 4.8ð
2.4ð / 2 -> 1.2

This behavior is desirable for most calculations (especially financial
calculations).

If necessary, you can remove trailing zeros with the STRIP function (see page
4-30), or by division by 1.

� A zero result is always expressed as the single digit ð.

� Exponential form is used for a result depending on its value and the setting of
NUMERIC DIGITS (the default is 9). If the number of places needed before the
decimal point exceeds the NUMERIC DIGITS setting, or the number of places
after the point exceeds twice the NUMERIC DIGITS setting, the number is
expressed in exponential notation:

1e6 \ 1e6 -> 1E+12 /\ not 1ðððððððððððð \/
1 / 3E1ð -> 3.33333333E-11 /\ not ð.ðððððððððð333333333 \/

 Definition
A precise definition of the arithmetic facilities of the REXX language is given here.

 Numbers
A number in REXX is a character string that includes one or more decimal digits,
with an optional decimal point. (See “Exponential Notation” on page 6-8 for an
extension of this definition.) The decimal point may be embedded in the number, or
may be a prefix or suffix. The group of digits (and optional decimal point)
constructed this way can have leading or trailing blanks and an optional sign (+ or
-) that must come before any digits or decimal point. The sign can also have
leading or trailing blanks.

Therefore, number is defined as:

55─ ── ──┬ ┬──────── ──┬ ┬────────────────── ──┬ ┬─digits──────── ── ──┬ ┬──────── ─5%
└ ┘─blanks─ └ ┘──sign ──┬ ┬──────── ├ ┤──digits.digits └ ┘─blanks─

└ ┘─blanks─ ├ ┤──.digits ──────
└ ┘──digits. ──────

blanks
are one or more spaces

sign
is either + or −

digits
are one or more of the decimal digits ð–9.

Note that a single period alone is not a valid number.

6-2 OS/390 V2R8.0 TSO/E REXX Reference

 Numbers and Arithmetic

 Precision
Precision is the maximum number of significant digits that can result from an
operation. This is controlled by the instruction:

55─ ──NUMERIC DIGITS ──┬ ┬──────────── ; ─5%
 └ ┘─expression─

The expression is evaluated and must result in a positive whole number. This
defines the precision (number of significant digits) to which calculations are carried
out. Results are rounded to that precision, if necessary.

If you do not specify expression in this instruction, or if no NUMERIC DIGITS
instruction has been processed since the start of a program, the default precision is
used. The REXX standard for the default precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. However,
use small values with care—the loss of precision and rounding thus requested
affects all REXX computations, including, for example, the computation of new
values for the control variable in DO loops.

 Arithmetic Operators
REXX arithmetic is performed by the operators +, -, \, /, %, //, and \\ (add,
subtract, multiply, divide, integer divide, remainder, and power), which all act on two
terms, and the prefix plus and minus operators, which both act on a single term.
This section describes the way in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon have
leading zeros removed (noting the position of any decimal point, and leaving only
one zero if all the digits in the number are zeros). They are then truncated (if
necessary) to DIGITS + 1 significant digits before being used in the computation.
(The extra digit is a “guard” digit. It improves accuracy because it is inspected at
the end of an operation, when a number is rounded to the required precision.) The
operation is then carried out under up to double that precision, as described under
the individual operations that follow. When the operation is completed, the result is
rounded if necessary to the precision specified by the NUMERIC DIGITS
instruction.

Rounding is done in the traditional manner. The digit to the right of the least
significant digit in the result (the “guard digit”) is inspected and values of 5 through
9 are rounded up, and values of ð through 4 are rounded down. Even/odd rounding
would require the ability to calculate to arbitrary precision at all times and is,
therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there would
be no digit before it. Significant trailing zeros are retained for addition, subtraction,
and multiplication, according to the rules that follow, except that a result of zero is
always expressed as the single digit ð. For division, insignificant trailing zeros are
removed after rounding.

The FORMAT built-in function (see page 4-21) allows a number to be represented
in a particular format if the standard result provided does not meet your
requirements.

 Chapter 6. Numbers and Arithmetic 6-3

 Numbers and Arithmetic

Arithmetic Operation Rules—Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows.

Addition and Subtraction
If either number is ð, the other number, rounded to NUMERIC DIGITS digits, if
necessary, is used as the result (with sign adjustment as appropriate). Otherwise,
the two numbers are extended on the right and left as necessary, up to a total
maximum of DIGITS + 1 digits (the number with the smaller absolute value may,
therefore, lose some or all of its digits on the right) and are then added or
subtracted as appropriate.

Example :

xxx.xxx + yy.yyyyy

becomes:

 xxx.xxxðð
 + ðyy.yyyyy

 zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary
(taking into account any extra “carry digit” on the left after addition, but otherwise
counting from the position corresponding to the most significant digit of the terms
being added or subtracted). Finally, any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations +number
and -number are calculated as ð+number and ð-number, respectively.

 Multiplication
The numbers are multiplied together (“long multiplication”) resulting in a number
that may be as long as the sum of the lengths of the two operands.

Example :

xxx.xxx \ yy.yyyyy

becomes:

 zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to
the current setting of NUMERIC DIGITS.

 Division
For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the
right until it is larger than the number xxxxx (with note being taken of the change in
the power of ten that this implies). Thus, in this example, yyy might become yyyðð.
Traditional long division then takes place. This might be written:

6-4 OS/390 V2R8.0 TSO/E REXX Reference

 Numbers and Arithmetic

 zzzz

 xxxxx | yyyðð

The length of the result (zzzz) is such that the rightmost z is at least as far right as
the rightmost digit of the (extended) y number in the example. During the division,
the y number is extended further as necessary. The z number may increase up to
NUMERIC DIGITS+1 digits, at which point the division stops and the result is
rounded. Following completion of the division (and rounding if necessary),
insignificant trailing zeros are removed.

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just
described.

/\ With: Numeric digits 5 \/
12+7.ðð -> 19.ðð
1.3-1.ð7 -> ð.23
1.3-2.ð7 -> -ð.77
1.2ð\3 -> 3.6ð
7\3 -> 21
ð.9\ð.8 -> ð.72
1/3 -> ð.33333
2/3 -> ð.66667
5/2 -> 2.5
1/1ð -> ð.1
12/12 -> 1
8.ð/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms
being operated upon is arbitrary. The operations may be carried out as
integer operations with the exponent being calculated and applied afterward.
Therefore, the significant digits of a result are not in any way dependent on
the position of the decimal point in either of the terms involved in the
operation.

Arithmetic Operation Rules—Additional Operators
The operation rules for the power (\\), integer divide (%), and remainder (//)
operators follow.

 Power
The ** (power) operator raises a number to a power, which may be positive,
negative, or ð. The power must be a whole number. (The second term in the
operation must be a whole number and is rounded to DIGITS digits, if necessary,
as described under “Numbers Used Directly by REXX” on page 6-10.) If negative,
the absolute value of the power is used, and then the result is inverted (divided into
1). For calculating the power, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are removed (as
though the result were divided by 1).

In practice (see Note 1 on page 6-7 for the reasons), the power is calculated by
the process of left-to-right binary reduction. For a\\n: n is converted to binary, and
a temporary accumulator is set to 1. If n = ð the initial calculation is complete.
(Thus, a\\ð = 1 for all a, including ð\\ð.) Otherwise each bit (starting at the first
nonzero bit) is inspected from left to right. If the current bit is 1, the accumulator is

 Chapter 6. Numbers and Arithmetic 6-5

 Numbers and Arithmetic

multiplied by a. If all bits have now been inspected, the initial calculation is
complete; otherwise the accumulator is squared and the next bit is inspected for
multiplication. When the initial calculation is complete, the temporary result is
divided into 1 if the power was negative.

The multiplications and division are done under the arithmetic operation rules, using
a precision of DIGITS + L + 1 digits. L is the length in digits of the integer part of
the whole number n (that is, excluding any decimal part, as though the built-in
function TRUNC(n) had been used). Finally, the result is rounded to NUMERIC
DIGITS digits, if necessary, and insignificant trailing zeros are removed.

 Integer Division
The % (integer divide) operator divides two numbers and returns the integer part
of the result. The result returned is defined to be that which would result from
repeatedly subtracting the divisor from the dividend while the dividend is larger than
the divisor. During this subtraction, the absolute values of both the dividend and
the divisor are used: the sign of the final result is the same as that which would
result from regular division.

The result returned has no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed as a whole number, the operation is
in error and will fail—that is, the result must not have more digits than the current
setting of NUMERIC DIGITS. For example, 1ðððððððððð%3 requires 10 digits for the
result (3333333333) and would, therefore, fail if NUMERIC DIGITS 9 were in effect.
Note that this operator may not give the same result as truncating regular division
(which could be affected by rounding).

 Remainder
The // (remainder) operator returns the remainder from integer division and is
defined as being the residue of the dividend after the operation of calculating
integer division as previously described. The sign of the remainder, if nonzero, is
the same as that of the original dividend.

This operation fails under the same conditions as integer division (that is, if integer
division on the same two terms would fail, the remainder cannot be calculated).

Additional Operator Examples
Following are some examples using the power, integer divide, and remainder
operators:

/\ Again with: Numeric digits 5 \/
2\\3 -> 8
2\\-3 -> ð.125
1.7\\8 -> 69.758
2%3 -> ð
2.1//3 -> 2.1
1ð%3 -> 3
1ð//3 -> 1
-1ð//3 -> -1
1ð.2//1 -> ð.2
1ð//ð.3 -> ð.1
3.6//1.3 -> 1.ð

6-6 OS/390 V2R8.0 TSO/E REXX Reference

 Numbers and Arithmetic

Notes:

1. A particular algorithm for calculating powers is used, because it is efficient
(though not optimal) and considerably reduces the number of actual
multiplications performed. It, therefore, gives better performance than the
simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be
calculated as a by-product of the standard division operation. The division
process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

 Numeric Comparisons
The comparison operators are listed in “Comparison” on page 2-12. You can use
any of these for comparing numeric strings. However, you should not use ==, \==,
¬==, >>, \>>, ¬>>, <<, \<<, and ¬<< for comparing numbers because leading and
trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with 0. That is, the
operation:

A ? Z

where ? is any numeric comparison operator, is identical with:

(A - Z) ? 'ð'

It is, therefore, the difference between two numbers, when subtracted under REXX
subtraction rules, that determines their equality.

A quantity called fuzz affects the comparison of two numbers. This controls the
amount by which two numbers may differ before being considered equal for the
purpose of comparison. The FUZZ value is set by the instruction:

55─ ──NUMERIC FUZZ ──┬ ┬──────────── ; ─5%
 └ ┘─expression─

Here expression must result in a positive whole number or zero. The default is ð.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ value
for each numeric comparison. That is, the numbers are subtracted under a
precision of DIGITS minus FUZZ digits during the comparison. Clearly the FUZZ
setting must be less than DIGITS.

Thus if DIGITS = 9 and FUZZ = 1, the comparison is carried out to 8 significant
digits, just as though NUMERIC DIGITS 8 had been put in effect for the duration of
the operation.

Example:

 Chapter 6. Numbers and Arithmetic 6-7

 Numbers and Arithmetic

Numeric digits 5
Numeric fuzz ð
say 4.9999 = 5 /\ Displays "ð" \/
say 4.9999 < 5 /\ Displays "1" \/
Numeric fuzz 1
say 4.9999 = 5 /\ Displays "1" \/
say 4.9999 < 5 /\ Displays "ð" \/

 Exponential Notation
The preceding description of numbers describes “pure” numbers, in the sense that
the character strings that describe numbers can be very long. For example:

1ðððððððððð \ 1ðððððððððð

would give

1ðððððððððððððððððððð

and

.ðððððððððð1 \ .ðððððððððð1

would give

ð.ððððððððððððððððððððð1

For both large and small numbers some form of exponential notation is useful, both
to make long numbers more readable, and to make execution possible in extreme
cases. In addition, exponential notation is used whenever the “simple” form would
give misleading information.

For example:

numeric digits 5
say 54321\54321

would display 295ð8ððððð in long form. This is clearly misleading, and so the result
is expressed as 2.95ð8E+9 instead.

The definition of numbers is, therefore, extended as:

55─ ── ──┬ ┬──────── ──┬ ┬────────────────── ──┬ ┬─digits──────── ────────────────5
└ ┘─blanks─ └ ┘──sign ──┬ ┬──────── ├ ┤──digits.digits

└ ┘─blanks─ ├ ┤──.digits ──────
└ ┘──digits. ──────

5─ ──┬ ┬─────────────────── ── ──┬ ┬──────── ─5%
 └ ┘──E ──┬ ┬────── digits └ ┘─blanks─
 └ ┘─sign─

The integer following the E represents a power of ten that is to be applied to the
number. The E can be in uppercase or lowercase.

Certain character strings are numbers even though they do not appear to be
numeric to the user. Specifically, because of the format of numbers in exponential
notation, strings, such as ðE123 (0 raised to the 123 power) and 1E342 (1 raised to
the 342 power), are numeric. In addition, a comparison such as ðE123=ðE567 gives
a true result of 1 (0 is equal to 0). To prevent problems when comparing
nonnumeric strings, use the strict comparison operators.

6-8 OS/390 V2R8.0 TSO/E REXX Reference

 Numbers and Arithmetic

Here are some examples:

12E7 = 12ððððððð /\ Displays "1" \/
12E-5 = ð.ððð12 /\ Displays "1" \/
-12e4 = -12ðððð /\ Displays "1" \/
ðe123 = ðe456 /\ Displays "1" \/
ðe123 == ðe456 /\ Displays "ð" \/

The preceding numbers are valid for input data at all times. The results of
calculations are returned in either conventional or exponential form, depending on
the setting of NUMERIC DIGITS. If the number of places needed before the
decimal point exceeds DIGITS, or the number of places after the point exceeds
twice DIGITS, exponential form is used. The exponential form REXX generates
always has a sign following the E to improve readability. If the exponent is ð, then
the exponential part is omitted—that is, an exponential part of E+ð is never
generated.

You can explicitly convert numbers to exponential form, or force them to be
displayed in long form, by using the FORMAT built-in function (see page 4-21).

Scientific notation is a form of exponential notation that adjusts the power of ten
so a single nonzero digit appears to the left of the decimal point. Engineering
notation is a form of exponential notation in which from one to three digits (but not
simply ð) appear before the decimal point, and the power of ten is always
expressed as a multiple of three. The integer part may, therefore, range from 1
through 999. You can control whether Scientific or Engineering notation is used with
the instruction:

 ┌ ┐─SCIENTIFIC────────────
55─ ──NUMERIC FORM ──┼ ┼─────────────────────── ──; ─5%
 ├ ┤─ENGINEERING───────────
 └ ┘── ──┬ ┬─────── expression
 └ ┘─VALUE─

Scientific notation is the default.

/\ after the instruction \/
Numeric form scientific

123.45 \ 1e11 -> 1.2345E+13

/\ after the instruction \/
Numeric form engineering

123.45 \ 1e11 -> 12.345E+12

 Numeric Information
To determine the current settings of the NUMERIC options, use the built-in
functions DIGITS, FORM, and FUZZ. These functions return the current settings of
NUMERIC DIGITS, NUMERIC FORM, and NUMERIC FUZZ, respectively.

 Chapter 6. Numbers and Arithmetic 6-9

 Numbers and Arithmetic

 Whole Numbers
Within the set of numbers REXX understands, it is useful to distinguish the subset
defined as whole numbers . A whole number in REXX is a number that has a
decimal part that is all zeros (or that has no decimal part). In addition, it must be
possible to express its integer part simply as digits within the precision set by the
NUMERIC DIGITS instruction. REXX would express larger numbers in exponential
notation, after rounding, and, therefore, these could no longer be safely described
or used as whole numbers.

Numbers Used Directly by REXX
As discussed, the result of any arithmetic operation is rounded (if necessary)
according to the setting of NUMERIC DIGITS. Similarly, when REXX directly uses
a number (which has not necessarily been involved in an arithmetic operation), the
same rounding is also applied. It is just as though the number had been added to
0.

In the following cases, the number used must be a whole number, and an
implementation restriction on the largest number that can be used may apply:

� The positional patterns in parsing templates (including variable positional
patterns)

� The power value (right hand operand) of the power operator
� The values of exprr and exprf in the DO instruction
� The values given for DIGITS or FUZZ in the NUMERIC instruction
� Any number used in the numeric option in the TRACE instruction.

 Errors
Two types of errors may occur during arithmetic:

� Overflow or Underflow

This error occurs if the exponential part of a result would exceed the range that
the language processor can handle, when the result is formatted according to
the current settings of NUMERIC DIGITS and NUMERIC FORM. The language
defines a minimum capability for the exponential part, namely the largest
number that can be expressed as an exact integer in default precision.
Because the default precision is 9, TSO/E supports exponents in the range
-999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated
as a syntax error.

 � Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail because of lack of storage. This is considered a
terminating error as usual, rather than an arithmetic error.

6-10 OS/390 V2R8.0 TSO/E REXX Reference

 Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

A condition is a specified event or state that CALL ON or SIGNAL ON can trap. A
condition trap can modify the flow of execution in a REXX program. Condition traps
are turned on or off using the ON or OFF subkeywords of the SIGNAL and CALL
instructions (see “CALL” on page 3-4 and “SIGNAL” on page 3-29).

55─ ──┬ ┬─CALL─── ──┬ ┬──OFFcondition ───────────────── ──; ─5%
└ ┘─SIGNAL─ └ ┘──ONcondition ──┬ ┬──────────────

└ ┘──NAMEtrapname

condition and trapname are single symbols that are taken as constants. Following
one of these instructions, a condition trap is set to either ON (enabled) or OFF
(disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to
the routine or label trapname if you have specified trapname. Otherwise, control
passes to the routine or label condition. CALL or SIGNAL is used, depending on
whether the most recent trap for the condition was set using CALL ON or SIGNAL
ON, respectively.

Note: If you use CALL, the trapname can be an internal label, a built-in function,
or an external routine. If you use SIGNAL, the trapname can be only an
internal label.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if
any command indicates failure and neither CALL ON FAILURE nor SIGNAL ON
FAILURE is active. The condition is raised at the end of the clause that called
the command but is ignored if the ERROR condition trap is already in the
delayed state. The delayed state is the state of a condition trap when the
condition has been raised but the trap has not yet been reset to the enabled
(ON) or disabled (OFF) state.

In TSO/E, SIGNAL ON ERROR traps all positive return codes, and negative
return codes only if CALL ON FAILURE and SIGNAL ON FAILURE are not set.

Note: In TSO/E, a command is not only a TSO/E command processor. See
“Host Commands and Host Command Environments” on page 2-22 for
a definition of host commands.

FAILURE
raised if a command indicates a failure condition upon return. The condition is
raised at the end of the clause that called the command but is ignored if the
FAILURE condition trap is already in the delayed state.

In TSO/E, CALL ON FAILURE and SIGNAL ON FAILURE trap all negative
return codes from commands.

HALT
raised if an external attempt is made to interrupt and end execution of the
program. The condition is usually raised at the end of the clause that was being
processed when the external interruption occurred.

 Copyright IBM Corp. 1988, 1999 7-1

 Conditions and Condition Traps

For example, the TSO/E REXX immediate command HI (Halt Interpretation) or
the EXECUTIL HI command raises a halt condition. The HE (Halt Execution)
immediate command does not raise a halt condition. See “Interrupting
Execution and Controlling Tracing” on page 11-3.

NOVALUE
raised if an uninitialized variable is used:

� As a term in an expression
� As the name following the VAR subkeyword of a PARSE instruction
� As a variable reference in a parsing template, a PROCEDURE instruction,

or a DROP instruction.

Note: SIGNAL ON NOVALUE can trap any uninitialized variables except
tails in compound variables.

/\ The following does not raise NOVALUE. \/
signal on novalue
a.=ð
say a.z
say 'NOVALUE is not raised.'
exit

novalue:
say 'NOVALUE is raised.'

You can specify this condition only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected while the program is
running. This includes all kinds of processing errors, including true syntax errors
and “run-time” errors, such as attempting an arithmetic operation on
nonnumeric terms. You can specify this condition only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF,
or DELAY, and any trapname) of that condition trap. Thus, a CALL ON HALT
replaces any current SIGNAL ON HALT (and a SIGNAL ON HALT replaces any
current CALL ON HALT), a CALL ON or SIGNAL ON with a new trap name
replaces any previous trap name, any OFF reference disables the trap for CALL or
SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition
occurs, the default action depends on the condition:

� For HALT and SYNTAX, the processing of the program ends, and a message
(see OS/390 TSO/E Messages) describing the nature of the event that
occurred usually indicates the condition.

� For all other conditions, the condition is ignored and its state remains OFF.

7-2 OS/390 V2R8.0 TSO/E REXX Reference

 Conditions and Condition Traps

Action Taken When a Condition Is Trapped
When a condition trap is currently enabled (ON) and the specified condition occurs,
instead of the usual flow of control, a CALL trapname or SIGNAL trapname
instruction is processed automatically. You can specify the trapname after the
NAME subkeyword of the CALL ON or SIGNAL ON instruction. If you do not
specify a trapname, the name of the condition itself (ERROR, FAILURE, HALT,
NOVALUE, or SYNTAX) is used.

For example, the instruction call on error enables the condition trap for the
ERROR condition. If the condition occurred, then a call to the routine identified by
the name ERROR is made. The instruction call on error name commanderror
would enable the trap and call the routine COMMANDERROR if the condition
occurred.

The sequence of events, after a condition has been trapped, varies depending on
whether a SIGNAL or CALL is processed:

� If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes
place in exactly the same way as usual (see page 3-29).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it when the
label is reached. For example, if SIGNAL ON SYNTAX is enabled when a
SYNTAX condition occurs, then, if the SIGNAL ON SYNTAX label name is not
found, a usual syntax error termination occurs.

� If the action taken is a CALL (which can occur only at a clause boundary), the
CALL is made in the usual way (see page 3-4) except that the call does not
affect the special variable RESULT. If the routine should RETURN any data,
then the returned character string is ignored.

Because these conditions (ERROR, FAILURE, and HALT) can arise during
execution of an INTERPRET instruction, execution of the INTERPRET may be
interrupted and later resumed if CALL ON was used.

As the condition is raised, and before the CALL is made, the condition trap is
put into a delayed state. This state persists until the RETURN from the CALL,
or until an explicit CALL (or SIGNAL) ON (or OFF) is made for the condition.
This delayed state prevents a premature condition trap at the start of the
routine called to process a condition trap. When a condition trap is in the
delayed state it remains enabled, but if the condition is raised again, it is either
ignored (for ERROR or FAILURE) or (for the other conditions) any action
(including the updating of the condition information) is delayed until one of the
following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is processed. In this
case a CALL or SIGNAL takes place immediately after the new CALL ON
or SIGNAL ON instruction has been processed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is processed. In
this case the condition trap is disabled and the default action for the
condition occurs at the end of the CALL OFF or SIGNAL OFF instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is
no longer delayed and the subroutine is called again immediately.

 Chapter 7. Conditions and Condition Traps 7-3

 Conditions and Condition Traps

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

Notes:

1. You must be extra careful when you write a syntax trap routine. Where
possible, put the routine near the beginning of the program. This is
necessary because the trap routine label might not be found if there are
certain scanning errors, such as a missing ending comment. Also, the trap
routine should not contain any statements that might cause more of the
program in error to be scanned. Examples of this are calls to built-in
functions with no quotation marks around the name. If the built-in function
name is in uppercase and is enclosed in quotation marks, REXX goes
directly to the function, rather than searching for an internal label.

2. In all cases, the condition is raised immediately upon detection. If SIGNAL
ON traps the condition, the current instruction is ended, if necessary.
Therefore, the instruction during which an event occurs may be only partly
processed. For example, if SYNTAX is raised during the evaluation of the
expression in an assignment, the assignment does not take place. Note
that the CALL for ERROR, FAILURE, and HALT traps can occur only at
clause boundaries. If these conditions arise in the middle of an
INTERPRET instruction, execution of INTERPRET may be interrupted and
later resumed. Similarly, other instructions, for example, DO or SELECT,
may be temporarily interrupted by a CALL at a clause boundary.

3. The state (ON, OFF, or DELAY, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can be
used in a subroutine without affecting the conditions set up by the caller.
See the CALL instruction (page 3-4) for details of other information that is
saved during a subroutine call.

4. The state of condition traps is not affected when an external routine is
called by a CALL, even if the external routine is a REXX program. On entry
to any REXX program, all condition traps have an initial setting of OFF.

5. While user input is processed during interactive tracing, all condition traps
are temporarily set OFF. This prevents any unexpected transfer of
control—for example, should the user accidentally use an uninitialized
variable while SIGNAL ON NOVALUE is active. For the same reason, a
syntax error during interactive tracing does not cause exit from the program
but is trapped specially and then ignored after a message is given.

6. The system interface detects certain execution errors either before
execution of the program starts or after the program has ended. SIGNAL
ON SYNTAX cannot trap these errors.

Note that a label is a clause consisting of a single symbol followed by a colon.
Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

7-4 OS/390 V2R8.0 TSO/E REXX Reference

 Conditions and Condition Traps

 Condition Information
When any condition is trapped and causes a SIGNAL or CALL, this becomes the
current trapped condition, and certain condition information associated with it is
recorded. You can inspect this information by using the CONDITION built-in
function (see page 4-12).

The condition information includes:

� The name of the current trapped condition
� The name of the instruction processed as a result of the condition trap (CALL

or SIGNAL)
� The status of the trapped condition
� Any descriptive string associated with that condition.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information is
saved and restored across subroutine or function calls, including one because of a
CALL ON trap. Therefore, a routine called by a CALL ON can access the
appropriate condition information. Any previous condition information is still
available after the routine returns.

 Descriptive Strings
The descriptive string varies, depending on the condition trapped.

ERROR The string that was processed and resulted in the error condition.

FAILURE The string that was processed and resulted in the failure condition.

HALT Any string associated with the halt request. This can be the null
string if no string was provided.

NOVALUE The derived name of the variable whose attempted reference
caused the NOVALUE condition. The NOVALUE condition trap can
be enabled only using SIGNAL ON.

SYNTAX Any string the language processor associated with the error. This
can be the null string if you did not provide a specific string. Note
that the special variables RC and SIGL provide information on the
nature and position of the processing error. You can enable the
SYNTAX condition trap only by using SIGNAL ON.

 Special Variables
A special variable is one that may be set automatically during processing of a
REXX program. There are three special variables: RC, RESULT, and SIGL. None
of these has an initial value, but the program may alter them. (For information
about RESULT, see page 3-27.)

The Special Variable RC
For ERROR and FAILURE, the REXX special variable RC is set to the command
return code, as usual, before control is transferred to the condition label. The
return code may be the return code from a TSO/E command processor or a routine
(such as, a CLIST, REXX exec, program, and so on) that caused the ERROR or
FAILURE condition. The return code may also be a -3, which indicates that the
command could not be found. For more information about issuing commands and

 Chapter 7. Conditions and Condition Traps 7-5

 Conditions and Condition Traps

their return codes, see “Host Commands and Host Command Environments” on
page 2-22.

For SIGNAL ON SYNTAX, RC is set to the syntax error number.

The Special Variable SIGL
Following any transfer of control because of a CALL or SIGNAL, the program line
number of the clause causing the transfer of control is stored in the special variable
SIGL. Where the transfer of control is because of a condition trap, the line number
assigned to SIGL is that of the last clause processed (at the current subroutine
level) before the CALL or SIGNAL took place. This is especially useful for SIGNAL
ON SYNTAX when the number of the line in error can be used, for example, to
control a text editor. Typically, code following the SYNTAX label may PARSE
SOURCE to find the source of the data, then call an editor to edit the source file
positioned at the line in error. Note that in this case you may have to run the
program again before any changes made in the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as
the occasional failure of a function call) as in the following example:

signal on syntax
a = a + 1 /\ This is to create a syntax error \/
say 'SYNTAX error not raised'
exit

/\ Standard handler for SIGNAL ON SYNTAX \/
syntax:
say 'REXX error' rc 'in line' sigl':' "ERRORTEXT"(rc)

 say "SOURCELINE"(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then
displays the line in error, and finally drops into debug mode to let you inspect the
values of the variables used at the line in error.

7-6 OS/390 V2R8.0 TSO/E REXX Reference

 Using REXX in Different Address Spaces

Chapter 8. Using REXX in Different Address Spaces

TSO/E provides support for the REXX programming language in any MVS address
space. You can run REXX execs in the TSO/E address space and in any
non-TSO/E address space, such as CICS or IMS.

The REXX language consists of keyword instructions and built-in functions that you
use in a REXX exec. The keyword instructions and built-in functions are described
in Chapter 3, Keyword Instructions and Chapter 4, Functions, respectively.

TSO/E also provides TSO/E external functions and REXX commands you can use
in a REXX exec. The functions are described in “TSO/E External Functions” on
page 4-41. The TSO/E REXX commands provide additional services that let you:

� Control I/O processing to and from data sets
� Perform data stack requests
� Change characteristics that control how a REXX exec runs
� Check for the existence of a specific host command environment.

Chapter 10, TSO/E REXX Commands describes the commands.

In an exec, you can use any of the keyword instructions and built-in functions
regardless of whether the exec runs in a TSO/E or non-TSO/E address space.
There are, however, differences in the TSO/E external functions, commands, and
programming services you can use in an exec depending on whether the exec will
run in a TSO/E address space or in a non-TSO/E address space. For example,
you can use the TSO/E external function SETLANG in an exec that runs in any
MVS address space. However, you can use the LISTDSI external function only in
execs that run in a TSO/E address space. The following topics describe the
services you can use in execs that run in TSO/E and non-TSO/E address spaces:

� “Writing Execs That Run in Non-TSO/E Address Spaces” on page 8-4
� “Writing Execs That Run in the TSO/E Address Space” on page 8-6.

TSO/E provides the TSO/E environment service, IKJTSOEV, that lets you create a
TSO/E environment in a non-TSO/E address space. If you use IKJTSOEV and then
run a REXX exec in the TSO/E environment that is created, the exec can contain
TSO/E external functions, commands, and services that an exec running in a
TSO/E address space can use. That is, the TSO host command environment
(ADDRESS TSO) is available to the exec. OS/390 TSO/E Programming Services
describes the TSO/E environment service and the different considerations for
running REXX execs within the environment.

TSO/E REXX is the implementation of the SAA Procedures Language on the MVS
system. By using the keyword instructions and functions that are defined for the
SAA Procedures Language, you can write REXX programs that can run in any of
the supported SAA environments. See SAA Common Programming Interface REXX
Level 2 Reference for more information.

 Copyright IBM Corp. 1988, 1999 8-1

 Using REXX in Different Address Spaces

Additional REXX Support
In addition to the keyword instructions, built-in functions, and TSO/E external
functions and REXX commands, TSO/E provides programming services you can
use to interface with REXX and the language processor and customizing services
that let you customize REXX processing and how system services are accessed
and used.

TSO/E REXX Programming Services
The REXX programming services that TSO/E provides in addition to REXX
language support are:

IRXEXCOM – Variable Access
The variable access routine IRXEXCOM lets you access and manipulate the
current generation of REXX variables. Unauthorized commands and programs
can invoke IRXEXCOM to inspect, set, and drop REXX variables. “Variable
Access Routine – IRXEXCOM” on page 12-46 describes IRXEXCOM.

IRXSUBCM – Maintain Host Command Environments
The IRXSUBCM routine is a programming interface to the host command
environment table. The table contains the names of the environments and
routines that handle the processing of host commands. You can use
IRXSUBCM to add, change, and delete entries in the table and to query
entries. “Maintain Entries in the Host Command Environment Table –
IRXSUBCM” on page 12-53 describes the IRXSUBCM routine.

IRXIC – Trace and Execution Control
The trace and execution control routine IRXIC is an interface to the immediate
commands HI, HT, RT, TS, and TE. A program can invoke IRXIC to use one of
these commands to affect the processing and tracing of REXX execs. “Trace
and Execution Control Routine – IRXIC” on page 12-57 describes the routine.

IRXRLT – Get Result
You can use the get result routine, IRXRLT, to get the result from a REXX exec
that was invoked with the IRXEXEC routine. If you write an external function or
subroutine that is link-edited into a load module, you can use IRXRLT to obtain
storage to return the result to the calling exec. The IRXRLT routine also lets a
compiler run-time processor obtain an evaluation block to handle the result
from a compiled REXX exec. “Get Result Routine – IRXRLT” on page 12-60
describes the IRXRLT routine.

IRXJCL and IRXEXEC – Exec Processing
You can use the IRXJCL and IRXEXEC routines to invoke a REXX exec in any
address space. The two routines are programming interfaces to the language
processor. You can run an exec in MVS batch by specifying IRXJCL as the
program name on the JCL EXEC statement. You can invoke either IRXJCL or
IRXEXEC from an application program, including a REXX exec, in any address
space to invoke a REXX exec. “Exec Processing Routines – IRXJCL and
IRXEXEC” on page 12-9 describes the IRXJCL and IRXEXEC routines.

External Functions and Subroutines, and Function Packages
You can write your own external functions and subroutines to extend the
programming capabilities of the REXX language. You can write external
functions or subroutines in REXX. You can also write external functions or
subroutines in any programming language that supports the system-dependent

8-2 OS/390 V2R8.0 TSO/E REXX Reference

 Using REXX in Different Address Spaces

interfaces that the language processor uses to invoke the function or
subroutine.

You can also group frequently used external functions and subroutines into a
package, which allows for quick access to the packaged functions and
subroutines. If you want to include an external function or subroutine in a
function package, the function or subroutine must be link-edited into a load
module. “External Functions and Subroutines, and Function Packages” on
page 12-32 describes the system-dependent interfaces for writing external
functions and subroutines and how to define function packages.

IRXSAY – SAY Instruction Routine
The SAY instruction routine, IRXSAY, lets you write a character string to the
same output stream as the REXX SAY keyword instruction. “SAY Instruction
Routine – IRXSAY” on page 12-68 describes the IRXSAY routine.

IRXHLT – Halt Condition Routine
The halt condition routine, IRXHLT, lets you query or reset the halt condition.
“Halt Condition Routine – IRXHLT” on page 12-71 describes the IRXHLT
routine.

IRXTXT – Text Retrieval Routine
The text retrieval routine, IRXTXT, lets you retrieve the same text that the
TSO/E REXX interpreter uses for the ERRORTEXT built-in function and for
certain options of the DATE built-in function. For example, using IRXTXT, a
program can retrieve the name of a month or the text of a syntax error
message. “Text Retrieval Routine – IRXTXT” on page 12-73 describes the
IRXTXT routine.

IRXLIN – LINESIZE Function Routine
The LINESIZE function routine, IRXLIN, lets you retrieve the same value that
the LINESIZE built-in function returns. “LINESIZE Function Routine – IRXLIN”
on page 12-79 describes the IRXLIN routine.

TSO/E REXX Customizing Services
In addition to the programming support to write REXX execs and REXX
programming services that allow you to interface with REXX and the language
processor, TSO/E also provides services you can use to customize REXX
processing. Many services let you change how an exec is processed and how the
language processor interfaces with the system to access and use system services,
such as storage and I/O. Customization services for REXX processing include the
following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize the
environment in which the language processor processes a REXX exec. This
environment is known as the language processor environment and defines
various characteristics relating to how execs are processed and how system
services are accessed and used. TSO/E provides default environment
characteristics that you can change and also provides a routine you can use to
define your own environment.

Replaceable Routines
When a REXX exec runs, various system services are used, such as services
for loading and freeing an exec, I/O, obtaining and freeing storage, and data
stack requests. TSO/E provides routines that handle these types of system

 Chapter 8. Using REXX in Different Address Spaces 8-3

 Using REXX in Different Address Spaces

services. The routines are known as replaceable routines because you can
provide your own routine that either replaces the system routine or that
performs pre-processing and then calls the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX
processing.

Information about the different ways in which you can customize REXX processing
are described in Chapters 13 - 16.

Writing Execs That Run in Non-TSO/E Address Spaces
As described above, you can run REXX execs in any MVS address space (both
TSO/E and non-TSO/E). Execs that run in TSO/E can use several TSO/E external
functions, commands, and programming services that are not available to execs
that run in a non-TSO/E address space. “Writing Execs That Run in the TSO/E
Address Space” on page 8-6 describes writing execs for TSO/E.

If you write a REXX exec that will run in a non-TSO/E address space, you can use
the following in the exec:

� All keyword instructions that are described in Chapter 3, Keyword Instructions

� All built-in functions that are described in Chapter 4, Functions.

� The TSO/E external functions SETLANG and STORAGE. See “TSO/E External
Functions” on page 4-41 for more information.

� The following TSO/E REXX commands:

– MAKEBUF - to create a buffer on the data stack

– DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

– NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

– DELSTACK - to delete the most current data stack that was created with
the NEWSTACK command

– QBUF - to query how many buffers are currently on the active data stack

– QELEM - to query how many elements are on the data stack above the
most recently created buffer

– QSTACK - to query the number of data stacks that are currently in
existence

– EXECIO - to read data from and write data to data sets. Using EXECIO,
you can read data from and write data to the data stack or stem variables.

– TS (Trace Start) - to start tracing REXX execs. Tracing lets you control
exec processing and debug problems.

– TE (Trace End) - to end tracing of REXX execs

– SUBCOM - to determine whether a particular host command environment is
available for the processing of host commands.

The commands are described in Chapter 10, TSO/E REXX Commands.

8-4 OS/390 V2R8.0 TSO/E REXX Reference

 Using REXX in Different Address Spaces

� Invoking an exec

You can invoke another REXX exec from an exec using the following
instructions (the examples assume that the current host command environment
is MVS):

"execname p1 p2 ..."

"EX execname p1 p2 ..."

"EXEC execname p1 p2 ..."

See “Commands to External Environments” on page 2-20 about using host
commands in a REXX exec.

� Linking to and attaching programs

You can use the LINK, LINKMVS, and LINKPGM host command environments
to link to unauthorized programs. For example:

ADDRESS LINK "program p1 p2 ..."

You can use the ATTACH, ATTCHMVS, and ATTCHPGM host command
environments to attach unauthorized programs. For example:

ADDRESS ATTACH "program p1 p2 ..."

For more information about linking to and attaching programs, see “Host
Command Environments for Linking to and Attaching Programs” on page 2-30.

� TSO/E REXX programming services.

In any address space, you can use the REXX programming services, such as
IRXEXEC and IRXJCL, IRXEXCOM, and IRXIC. The services are described in
Chapter 12, TSO/E REXX Programming Services.

Running an Exec in a Non-TSO/E Address Space
You can invoke a REXX exec in a non-TSO/E address space using the IRXJCL
and IRXEXEC routines, which are programming interfaces to the language
processor.

To execute an exec in MVS batch, use the IRXJCL routine. In the JCL, specify
IRXJCL as the program name (PGM=) on the JCL EXEC statement. On the EXEC
statement, specify the member name of the exec and the argument in the PARM
field. Specify the name of the data set that contains the member on a DD
statement. For example:

//STEP1 EXEC PGM=IRXJCL,PARM='PAYEXEC week hours'
//SYSEXEC DD DSN=USERID.REXX.EXEC,DISP=SHR

You can also invoke IRXJCL from a program (for example, a PL/I program) to
invoke a REXX exec.

You can invoke the IRXEXEC routine from a program to invoke a REXX exec.
“Exec Processing Routines – IRXJCL and IRXEXEC” on page 12-9 describes
IRXJCL and IRXEXEC in more detail and provides several examples.

If you want to invoke an exec from another exec that is running in a non-TSO/E
address space, use one of the following instructions (the examples assume that the
current host command environment is not MVS):

 Chapter 8. Using REXX in Different Address Spaces 8-5

 Using REXX in Different Address Spaces

ADDRESS MVS "execname p1 p2 ..."

ADDRESS MVS "EX execname p1 p2 ..."

ADDRESS MVS "EXEC execname p1 p2 ..."

See “Host Commands and Host Command Environments” on page 2-22 for more
information about the different environments for issuing host commands.

Writing Execs That Run in the TSO/E Address Space
If you write a REXX exec that will run in the TSO/E address space, there are
additional TSO/E external functions and TSO/E commands and services you can
use that are not available to execs that run in a non-TSO/E address space. For
execs that run in the TSO/E address space, you can use the following:

� All keyword instructions that are described in Chapter 3, Keyword Instructions.

� All built-in functions that are described in Chapter 4, Functions.

� All of the TSO/E external functions, which are described in “TSO/E External
Functions” on page 4-41.

You can use the SETLANG and STORAGE external functions in execs that run
in any address space (TSO/E and non-TSO/E). However, you can use the
other TSO/E external functions only in execs that run in the TSO/E address
space.

� The following TSO/E REXX commands:

– MAKEBUF - to create a buffer on the data stack

– DROPBUF - to drop (discard) a buffer that was previously created on the
data stack with the MAKEBUF command

– NEWSTACK - to create a new data stack and effectively isolate the current
data stack that the exec is using

– DELSTACK - to delete the most current data stack that was created with
the NEWSTACK command

– QBUF - to query how many buffers are currently on the active data stack

– QELEM - to query how many elements are on the data stack above the
most recently created buffer

– QSTACK - to query the number of data stacks that are currently in
existence

– EXECIO - to read data from and write data to data sets. Using EXECIO,
you can read data from and write data to the data stack or stem variables.

– SUBCOM - to determine whether a particular host command environment is
available for the processing of host commands

– EXECUTIL - to change various characteristics that control how a REXX
exec is processed. You can use EXECUTIL in an exec or CLIST, and from
TSO/E READY mode and ISPF.

– Immediate commands, which are:

8-6 OS/390 V2R8.0 TSO/E REXX Reference

 Using REXX in Different Address Spaces

- HE (Halt Execution) - halt execution of the exec

- HI (Halt Interpretation) - halt interpretation of the exec

- TS (Trace Start) - start tracing of the exec

- TE (Trace End) - end tracing of the exec

- HT (Halt Typing) - suppress terminal output that the exec generates

- RT (Resume Typing) - resume terminal output that was previously
suppressed.

You can use the TS and TE immediate commands in a REXX exec to start
and end tracing. You can use any of the immediate commands if an exec is
running in TSO/E and you press the attention interruption key. When you
enter attention mode, you can enter an immediate command. The
commands are described in Chapter 10, TSO/E REXX Commands.

� Invoking an exec

You can invoke another REXX exec using the TSO/E EXEC command
processor. For more information about the EXEC command, see OS/390
TSO/E Command Reference.

� Linking to and attaching programs

You can use the LINK, LINKMVS, and LINKPGM host command environments
to link to unauthorized programs. For example:

ADDRESS LINK "program p1 p2 ..."

You can use the ATTACH, ATTCHMVS, and ATTCHPGM host command
environments to attach unauthorized programs. For example:

ADDRESS ATTACH "program p1 p2 ..."

For more information about linking to and attaching programs, see “Host
Command Environments for Linking to and Attaching Programs” on page 2-30.

� Interactive System Productivity Facility (ISPF)

You can invoke REXX execs from ISPF. You can also write ISPF dialogs in the
REXX programming language. If an exec runs in ISPF, it can use ISPF
services that are not available to execs that are invoked from TSO/E READY
mode. In an exec, you can use the ISPEXEC and ISREDIT host command
environments to use ISPF services. For example, to use the ISPF SELECT
service, use:

ADDRESS ISPEXEC 'SELECT service'

You can use ISPF services only after ISPF has been invoked.

 � TSO/E commands

You can use any TSO/E command in a REXX exec that runs in the TSO/E
address space. That is, from ADDRESS TSO, you can issue any unauthorized
and authorized TSO/E command. For example, the exec can issue the
ALLOCATE, TEST, PRINTDS, FREE, SEND, and LISTBC commands. OS/390
TSO/E Command Reference and OS/390 TSO/E System Programming
Command Reference describe the syntax of TSO/E commands.

� TSO/E programming services

If your REXX exec runs in the TSO/E address space, you can use various
TSO/E service routines. For example, your exec can call a module that invokes

 Chapter 8. Using REXX in Different Address Spaces 8-7

 Using REXX in Different Address Spaces

a TSO/E programming service, such as the parse service routine (IKJPARS);
TSO/E I/O service routines, such as PUTLINE and PUTGET; message handling
routine (IKJEFF02); and the dynamic allocation interface routine (DAIR). These
TSO/E programming services are described in OS/390 TSO/E Programming
Services.

� TSO/E REXX programming services

In any address space, you can use the TSO/E REXX programming services,
such as IRXEXEC and IRXJCL, IRXEXCOM, and IRXIC. The services are
described in Chapter 12, TSO/E REXX Programming Services.

� Interaction with CLISTs.

In TSO/E, REXX execs can invoke CLISTs and can also be invoked by
CLISTs. CLIST is a command language and is described in OS/390 TSO/E
CLISTs.

Running an Exec in the TSO/E Address Space
You can invoke a REXX exec in the TSO/E address space in several ways. To
invoke an exec in TSO/E foreground, use the TSO/E EXEC command processor to
either implicitly or explicitly invoke the exec and you must have ddname GRXBIMG
allocated. OS/390 TSO/E REXX User's Guide describes how to invoke an exec in
TSO/E foreground.

You can run a REXX exec in TSO/E background. In the JCL, specify IKJEFT01 as
the program name (PGM=) on the JCL EXEC statement. On the EXEC statement,
specify the member name of the exec and any arguments in the PARM field. For
example, to execute an exec called TEST4 that is in data set
USERID.MYREXX.EXEC, use the following JCL:

//TSOBATCH EXEC PGM=IKJEFTð1,DYNAMNBR=3ð,REGION=4ð96K,PARM='TEST4'
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR

You can also invoke an exec implicitly or explicitly in the input stream of the
SYSTSIN DD statement.

//TSOBATCH EXEC PGM=IKJEFTð1,DYNAMNBR=3ð,REGION=4ð96K
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD \
 %TEST4
 or
 EXEC 'USERID.MYREXX.EXEC(TEST4)'EXEC
/\
//

See OS/390 TSO/E REXX User's Guide for more information about invoking execs.

From a program that is written in a high-level programming language, you can use
the TSO service facility to invoke the TSO/E EXEC command to process a REXX
exec. OS/390 TSO/E Programming Services describes the TSO service facility in
detail.

You can also invoke a REXX exec from an application program using the exec
processing routines IRXJCL and IRXEXEC. Although IRXJCL and IRXEXEC are
primarily used in non-TSO/E address spaces, they are programming interfaces to

8-8 OS/390 V2R8.0 TSO/E REXX Reference

 Using REXX in Different Address Spaces

the language processor that you can use to run an exec in any address space,
including TSO/E. For example, in an assembler or PL/I program, you could invoke
IRXJCL or IRXEXEC to process a REXX exec.

The IRXEXEC routine gives you more flexibility in processing an exec. For
example, if you want to preload an exec in storage and then process the preloaded
exec, you can use IRXEXEC. “Exec Processing Routines – IRXJCL and IRXEXEC”
on page 12-9 describes the IRXJCL and IRXEXEC interfaces in detail.

Note: You cannot invoke a REXX exec as authorized in either the foreground or
the background.

Summary of Writing Execs for Different Address Spaces
Figure 8-1 summarizes the REXX keyword instructions, built- in functions, TSO/E
external functions, TSO/E REXX commands, and other services you can use for
execs that run in TSO/E and non-TSO/E address spaces. An X in the TSO/E or
non-TSO/E columns indicates that the entry can be used in REXX execs that run in
that address space.

Note: You can use the TSO/E environment service, IKJTSOEV, to create a TSO/E
environment in a non-TSO/E address space. If you run a REXX exec in the
TSO/E environment you created, the exec can contain TSO/E commands,
external functions, and services that an exec running in a TSO/E address
space can use. For more information about the TSO/E environment service
and the different considerations for running REXX execs within the
environment, see OS/390 TSO/E Programming Services.

Figure 8-1 (Page 1 of 2). Summary of Using Instructions, Functions, Commands, and
Services

Instruction, Function, Command, Service TSO/E Non-TSO/E

Keyword instructions (page 3-1) X X

Built-in functions (page 4-7) X X

TSO/E external functions (page 4-41)

GETMSG X

LISTDSI X

MSG X

OUTTRAP X

PROMPT X

SETLANG X X

STORAGE X X

SYSDSN X

SYSVAR X

TSO/E REXX commands (page 10-1)

DELSTACK X X

DROPBUF X X

EXECIO X X

EXECUTIL X

 Chapter 8. Using REXX in Different Address Spaces 8-9

 Using REXX in Different Address Spaces

Figure 8-1 (Page 2 of 2). Summary of Using Instructions, Functions, Commands, and
Services

Instruction, Function, Command, Service TSO/E Non-TSO/E

HE (from attention mode only) X

HI (from attention mode only) X

HT (from attention mode only) X

MAKEBUF X X

NEWSTACK X X

QBUF X X

QELEM X X

QSTACK X X

RT (from attention mode only) X

SUBCOM X X

TE X X

TS X X

Miscellaneous services

Invoking another exec X X

Linking to programs X X

Attaching programs X X

ISPF services X

TSO/E commands, such as ALLOCATE and PRINTDS X

TSO/E service routines, such as DAIR and IKJPARS X

TSO/E REXX programming services, such as IRXJCL,
IRXEXEC, and IRXEXCOM (page 12-1)

X X

Interacting with TSO/E CLISTs X

Issuing MVS system and subsystem commands during an
extended MCS console session

X

SAA CPI Communications calls X X

APPC/MVS calls X X

8-10 OS/390 V2R8.0 TSO/E REXX Reference

 Keywords, Variables, and Command Names

Chapter 9. Reserved Keywords, Special Variables, and
Command Names

You can use keywords as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT, and SIGL.

TSO/E provides several TSO/E REXX commands whose names are reserved.

This chapter describes the reserved keywords, special variables, and reserved
command names.

 Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for the language
processor's use in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE in a DO instruction, and the THEN (which acts as a
clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an "=" or ":" are checked to see if they are instruction
keywords. You can use the symbols freely elsewhere in clauses without their being
taken to be keywords.

It is not, however, recommended for users to execute host commands or
subcommands with the same name as REXX keywords (QUEUE, for example).
This can create problems for programmers whose REXX programs might be used
for some time and in circumstances outside their control, and who wish to make the
program absolutely "watertight."

In this case, a REXX program may be written with (at least) the first words in
command lines enclosed in quotation marks.

Example :

'LISTDS' ds_name

This also has the advantage of being more efficient, and with this style, you can
use the SIGNAL ON NOVALUE condition to check the integrity of an exec.

In TSO/E, single quotation marks are often used in TSO/E commands, for example,
to enclose the name of a fully qualified data set. In any REXX execs that run in
TSO/E, you may want to enclose an entire host command in double quotation
marks. This ensures that the language processor processes the expression as a
host command. For example:

"ALLOCATE DA('prefix.proga.exec') FILE(SYSEXEC) SHR REUSE"

 Copyright IBM Corp. 1988, 1999 9-1

 Keywords, Variables, and Command Names

 Special Variables
There are three special variables that the language processor can set
automatically:

RC is set to the return code from any executed host command (or
subcommand). Following the SIGNAL events SYNTAX, ERROR,
and FAILURE, RC is set to the code appropriate to the event: the
syntax error number or the command return code. RC is
unchanged following a NOVALUE or HALT event.

Note: Host commands issued manually from debug mode do not
cause the value of RC to change.

The special variable RC can also be set to a -3 if the host
command could not be found. See “Host Commands and Host
Command Environments” on page 2-22 for information about
issuing commands from an exec.

The TSO/E REXX commands also return a value in the special
variable RC. Some of the commands return the result from the
command. For example, the QBUF command returns the number
of buffers currently on the data stack in the special variable RC.
The commands are described in Chapter 10, TSO/E REXX
Commands.

RESULT is set by a RETURN instruction in a subroutine that has been
called, if the RETURN instruction specifies an expression. If the
RETURN instruction has no expression, RESULT is dropped
(becomes uninitialized.)

SIGL contains the line number of the clause currently executing when the
last transfer of control to a label took place. (A SIGNAL, a CALL,
an internal function invocation, or a trapped error condition could
cause this.)

None of these variables has an initial value. You can alter them, just as with any
other variable, and they can be accessed using the variable access routine
IRXEXCOM (page 12-46). The PROCEDURE and DROP instructions also affect
these variables in the usual way.

Certain other information is always available to a REXX program. This includes the
name by which the program was invoked and the source of the program (which is
available using the PARSE SOURCE instruction—see page 3-21). The data that
PARSE SOURCE returns is:

1. The character string TSO

2. The call type (command, function, or subroutine)

3. Name of the exec in uppercase

4. Name of the DD from which the exec was loaded, if known

5. Name of the data set from which the exec was loaded, if known

6. Name of the exec as invoked (that is, not folded to uppercase)

7. Initial (default) host command environment

8. Name of the address space in uppercase

9-2 OS/390 V2R8.0 TSO/E REXX Reference

 Keywords, Variables, and Command Names

9. Eight character user token

In addition, PARSE VERSION (see page 3-23) makes available the version and
date of the language processor code that is running. The built-in functions TRACE
and ADDRESS return the current trace setting and host command environment
name, respectively.

Finally, you can obtain the current settings of the NUMERIC function using the
DIGITS, FORM, and FUZZ built-in functions.

Reserved Command Names
TSO/E provides TSO/E REXX commands that you can use for REXX processing.
The commands are described in Chapter 10, TSO/E REXX Commands. The
names of these commands are reserved for use by TSO/E, and it is recommended
that you do not use these names for names of your REXX execs, CLISTs, or load
modules. The names are:

 � DELSTACK
 � DROPBUF
 � EXECIO
 � EXECUTIL
 � HE
 � HI
 � HT
 � MAKEBUF
 � NEWSTACK
 � QBUF
 � QELEM
 � QSTACK
 � RT
 � SUBCOM
 � TE
 � TS

 Chapter 9. Reserved Keywords, Special Variables, and Command Names 9-3

 Keywords, Variables, and Command Names

9-4 OS/390 V2R8.0 TSO/E REXX Reference

 TSO/E REXX Commands

Chapter 10. TSO/E REXX Commands

TSO/E provides TSO/E REXX commands to perform different services, such as I/O
and data stack requests. The TSO/E REXX commands are not the same as TSO/E
command processors, such as ALLOCATE and PRINTDS. In general, you can only
use these commands in REXX execs (in any address space), not in CLISTs or from
TSO/E READY mode. The exceptions are the EXECUTIL command and the
immediate commands HE, HI, HT, RT, TE, and TS.

You can use the EXECUTIL command in the TSO/E address space only. In
general, you can use EXECUTIL in an exec or a CLIST, from TSO/E READY
mode, or from ISPF. The description of the EXECUTIL command on page 10-19
describes the different operands and any exceptions about using them.

You can use the TS (Trace Start) and TE (Trace End) immediate commands in an
exec that runs in any address space. In the TSO/E address space, you can use
any of the immediate commands (HE, HI, HT, RT, TE, and TS) if you are executing
a REXX exec and press the attention interrupt key. When you enter attention mode,
you can enter one of the immediate commands.

The TSO/E REXX commands perform services, such as:

� Controlling I/O processing of information to and from data sets (EXECIO)

� Performing data stack services (MAKEBUF, DROPBUF, QBUF, QELEM,
NEWSTACK, DELSTACK, QSTACK)

� Changing characteristics that control the execution of an exec (EXECUTIL and
the immediate commands)

� Checking for the existence of a host command environment (SUBCOM).

Note: The names of the TSO/E REXX commands are reserved for use by TSO/E.
It is recommended that you do not use these names for names of your
REXX execs, CLISTs, or load modules.

Environment Customization Considerations

If you customize REXX processing using the initialization routine IRXINIT, you
can initialize a language processor environment that is not integrated into
TSO/E (see page 14-8). Most of the TSO/E REXX commands can be used in
any type of language processor environment. The EXECUTIL command can be
used only if the environment is integrated into TSO/E. You can use the
immediate commands from attention mode only if the environment is integrated
into TSO/E. You can use the TS and TE immediate commands in a REXX exec
that executes in any type of language processor environment (integrated or not
integrated into TSO/E). Chapter 13, TSO/E REXX Customizing Services
describes customization and language processor environments in more detail.

In this chapter, examples are provided that show how to use the TSO/E REXX
commands. The examples may include data set names. When an example includes
a data set name that is enclosed in single quotation marks, the prefix is added to
the data set name. In the examples, the user ID is the prefix.

 Copyright IBM Corp. 1988, 1999 10-1

 DELSTACK

 DELSTACK

55─ ──DELSTACK ──5%

deletes the most recently created data stack that was created by the NEWSTACK
command, and all elements on it. If a new data stack was not created, DELSTACK
removes all the elements from the original data stack.

The DELSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

The exec that creates a new data stack with the NEWSTACK command can delete
the data stack with the DELSTACK command, or an external function or subroutine
that is written in REXX and that is called by that exec can issue a DELSTACK
command to delete the data stack.

Examples

1. To create a new data stack for a called routine and delete the data stack when
the routine returns, use the NEWSTACK and DELSTACK commands as
follows:

...
"NEWSTACK" /\ data stack 2 created \/
CALL sub1
"DELSTACK" /\ data stack 2 deleted \/

...
EXIT

sub1:
PUSH ...
QUEUE ...
PULL ...
RETURN

2. After creating multiple new data stacks, to find out how many data stacks were
created and delete all but the original data stack, use the NEWSTACK,
QSTACK, and DELSTACK commands as follows:

"NEWSTACK" /\ data stack 2 created \/

...
"NEWSTACK" /\ data stack 3 created \/

...
"NEWSTACK" /\ data stack 4 created \/
"QSTACK"
times = RC-1 /\ set times to the number of new data stacks created \/
DO times /\ delete all but the original data stack \/
"DELSTACK" /\ delete one data stack \/

END

10-2 OS/390 V2R8.0 TSO/E REXX Reference

 DROPBUF

 DROPBUF

55─ ──DROPBUF ──┬ ┬─── ──5%
 └ ┘──n

removes the most recently created data stack buffer that was created with the
MAKEBUF command, and all elements on the data stack in the buffer. To remove
a specific data stack buffer and all buffers created after it, issue the DROPBUF
command with the number (n) of the buffer.

The DROPBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

Operand: The operand for the DROPBUF command is:

n specifies the number of the first data stack buffer you want to drop. DROPBUF
removes the specified buffer and all buffers created after it. Any elements that
were placed on the data stack after the specified buffer was created are also
removed. If n is not specified, only the most recently created buffer and its
elements are removed.

The data stack initially contains one buffer, which is known as buffer 0. This
buffer will never be removed, as it is not created by MAKEBUF. If you issue
DROPBUF 0, all buffers that were created on the data stack with the
MAKEBUF command and all elements that were put on the data stack are
removed. DROPBUF 0 effectively clears the data stack including the elements
on buffer 0.

If processing was not successful, the DROPBUF command sets one of the
following return codes in the REXX special variable RC.

Example

A subroutine (sub2) in a REXX exec (execc) issues the MAKEBUF command to
create four buffers. Before the subroutine returns, it removes buffers two and above
and all elements within the buffers.

Return Code Meaning

0 DROPBUF was successful.

1 An invalid number n was specified. For example, n was A1.

2 The specified buffer does not exist. For example, you get a return
code of 2 if you try to drop a buffer that does not exist.

 Chapter 10. TSO/E REXX Commands 10-3

 EXECIO

/\ REXX program \/
execc:

...
 CALL sub2

...

exit
sub2:

"MAKEBUF" /\ buffer 1 created \/
 QUEUE A

"MAKEBUF" /\ buffer 2 created \/
 QUEUE B
 QUEUE C

"MAKEBUF" /\ buffer 3 created \/
 QUEUE D

"MAKEBUF" /\ buffer 4 created \/
 QUEUE E
 QUEUE F

...
"DROPBUF 2" /\ buffers 2 and above deleted \/

 RETURN

 EXECIO

55─ ──EXECIO ──┬ ┬─lines─ ──┬ ┬─DISKW──ddname─ ──┬ ┬───────────────── ──────────────────── ──────5%
 └ ┘─\───── │ │└ ┘─┤ Write Parms ├─
 └ ┘── ──┬ ┬─DISKR─── ddname ──┬ ┬───────── ──┬ ┬──────────────────

└ ┘─DISCKRU─ └ ┘──linenum └ ┘───┤ Read Parms ├─

Write Parms:
├─ ──┬ ┬── ─────────────────────────────────┤

 └ ┘ ─(─ ──┬ ┬─────────────── ──┬ ┬────── ──┬ ┬─────── ──┬ ┬───
└ ┘──STEM var-name └ ┘──OPEN └ ┘──FINIS └ ┘──)

Read Parms:
├─ ──┬ ┬── ───────────────────────┤

 └ ┘──(──┬ ┬─────────────── ──┬ ┬────── ──┬ ┬─────── ──┬ ┬────── ──┬ ┬───
 ├ ┤─FIFO────────── └ ┘──OPEN └ ┘──FINIS └ ┘──SKIP └ ┘──)
 ├ ┤─LIFO──────────

└ ┘──STEM var-name

controls the input and output (I/O) of information to and from a data set.
Information can be read from a data set to the data stack for serialized processing
or to a list of variables for random processing. Information from the data stack or a
list of variables can be written to a data set.

The EXECIO command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

You can use the EXECIO command to do various types of I/O tasks, such as copy
information to and from a data set to add, delete, or update the information.

10-4 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

Note: The EXECIO command does not support I/O on files allocated to data sets
with spanned, track overflow, or undefined record formats.

An I/O data set must be either sequential or a single member of a PDS. Before the
EXECIO command can perform I/O to or from the data set, the data set must be
allocated to a file that is specified on the EXECIO command. The EXECIO
command does not perform the allocation.

When performing I/O with a system data set that is available to multiple users,
allocate the data set as OLD, before issuing the EXECIO command, to have
exclusive use of the data set.

When you use EXECIO, you must ensure that you use quotation marks around any
operands, such as DISKW, STEM, FINIS, or LIFO. Using quotation marks prevents
the possibility of the operands being substituted as variables. For example, if you
assign the variable stem to a value in the exec and then issue EXECIO with the
STEM option, if STEM is not enclosed in quotation marks, it will be substituted with
its assigned value.

Operands for Reading from a Data Set: The operands for the EXECIO command
to read from a data set are as follows:

lines
the number of lines to be processed. This operand can be a specific decimal
number or an arbitrary number indicated by *. When the operand is * and
EXECIO is reading from a data set, input is read until EXECIO reaches the end
of the data set.

If you specify a value of zero (0), no I/O operations are performed unless you
also specify either OPEN, FINIS, or both OPEN and FINIS.

� If you specify OPEN and the data set is closed, EXECIO opens the data
set but does not read any lines. If you specify OPEN and the data set is
open, EXECIO does not read any lines.

In either case, if you also specify a non-zero value for the linenum operand,
EXECIO sets the current record number to the record number indicated by
the linenum operand.

Note: By default, when a file is opened, the current record number is set
to the first record (record 1). The current record number is the
number of the next record EXECIO will read. However, if you use a
non-zero linenum value with the OPEN operand, EXECIO sets the
current record number to the record number indicated by linenum.

� If you specify FINIS and the data set is open, EXECIO does not read any
lines, but EXECIO closes the data set. If you specify FINIS and the data
set is not already opened, EXECIO does not open the data set and then
close it.

� If you specify both OPEN and FINIS, EXECIO processes the OPEN first as
described above. EXECIO then processes the FINIS as described above.

DISKR
opens a data set for input (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

 Chapter 10. TSO/E REXX Commands 10-5

 EXECIO

While a data set is open for input, you cannot write information back to the
same data set.

The data set is not automatically closed unless:

� The task, under which the data set was opened, ends

� The last language processor environment associated with the task, under
which the data set was opened, is terminated (see page “Initialization and
Termination of a Language Processor Environment” on page 13-3 for
information about language processor environments).

DISKRU
opens a data set for update (if it is not already open) and reads the specified
number of lines from the data set and places them on the data stack. If the
STEM operand is specified, the lines are placed in a list of variables instead of
on the data stack.

While a data set is open for update, the last record read can be changed and
then written back to the data set with a corresponding EXECIO DISKW
command. Typically, you open a data set for update when you want to modify
information in the data set.

The data set is not automatically closed unless:

� The task, under which the data set was opened, ends

� The last language processor environment associated with the task, under
which the data set was opened, is terminated.

After a data set is open for update (by issuing a DISKRU as the first operation
against the data set), you can use either DISKR or DISKRU to fetch
subsequent records for update.

ddname
the name of the file to which the sequential data set or member of the PDS
was allocated. You must allocate the file before you can issue EXECIO. For
example, you can allocate a file using the ALLOCATE command in the TSO/E
address space only or a JCL DD statement.

linenum
the line number in the data set at which EXECIO is to begin reading. When a
data set is closed and reopened as a result of specifying a record number
earlier than the current record number, the file is open for:

� input if DISKR is specified
� update if DISKRU is specified.

When a data set is open for input or update, the current record number is the
number of the next record to be read. When linenum specifies a record number
earlier than the current record number in an open data set, the data set must
be closed and reopened to reposition the current record number at linenum.
When this situation occurs and the data set was not opened at the same task
level as that of the executing exec, attempting to close the data set at a
different task level results in an EXECIO error. The linenum operand must not
be used in this case.

Specifying a value of zero (0) for linenum is equivalent to not specifying the
linenum operand. In either case, EXECIO begins reading the file as follows:

10-6 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

� If the file was already opened, EXECIO begins reading with the line
following the last line that was read

� If the file was just opened, EXECIO begins reading with the first line of the
file.

FINIS
close the data set after the EXECIO command completes. A data set can
be closed only if it was opened at the same task level as the exec issuing
the EXECIO command.

You can use FINIS with a lines value of 0 to have EXECIO close an open
data set without first reading a record.

Because the EXEC command (when issued from TSO/E READY mode) is
attached by the TSO/E terminal monitor program (TMP), data sets opened
by a REXX exec are typically closed automatically when the top level exec
ends. Good programming practice, however, would be to explicitly close all
data sets when finished with them.

OPEN
opens the specified data set if it is not already open. You can use OPEN
with a lines value of 0 to have EXECIO do one of the following:

� Open a data set without reading any records

� Set the current record number (that is, the number of the next record
EXECIO will read) to the record number indicated by the linenum
operand, if you specify a value for linenum.

STEM var-name
the stem of the set of variables into which information is to be placed. To
place information in compound variables, which allow for easy indexing, the
var-name should end with a period. For example,

MYVAR.

When var-name does not end with a period, the variable names are
appended with numbers and can be accessed in a loop such as:

"EXECIO \ DISKR MYINDD (FINIS STEM MYVAR"
DO i = 1 to MYVARð

this_line = VALUE('MYVAR'||i)
 END

In the first example above, the list of compound variables has the stem
MYVAR. and lines of information (records) from the data set are placed in
variables MYVAR.1, MYVAR.2, MYVAR.3, and so forth. The number of variables
in the list is placed in MYVAR.ð

Thus if 10 lines of information were read into the MYVAR variables,
MYVAR.ð contains the number 10, indicating that 10 records are read.
Furthermore, MYVAR.1 contains record 1, MYVAR.2 contains record 2, and so
forth up to MYVAR.1ð which contains record 10. All stem variables beyond
MYVAR.1ð (i.e. MYVAR.11, MYVAR.12, etc.) are residual and contain the
values that they held prior to entering the EXECIO command.

To avoid confusion as to whether a residual stem variable value is
meaningful, you may want to clear the entire stem variable prior to entering
the EXECIO command. To clear all compound variables whose names
begin with that stem, you can either:

 Chapter 10. TSO/E REXX Commands 10-7

 EXECIO

� Use the DROP instruction as follows, to set all possible compound
variables whose names begin with that stem to their uninitialized
values:

DROP MYVAR.

� Set all possible compound variables whose names begin with that stem
to nulls as follows:

MYVAR. = ''

See the example at 12 on page 10-16, which shows the usage of the
EXECIO command with stem variables.

LIFO
places information on the data stack in LIFO (last in first out) order.

FIFO
places information on the data stack in FIFO (first in first out) order. FIFO
is the default when neither LIFO or FIFO is specified.

SKIP
reads the specified number of lines but does not place them on the data
stack or in variables. When the number of lines is *, EXECIO skips to the
end of the data set.

Operands for Writing to a Data Set: The operands for the EXECIO command that
write to a data set are as follows:

lines
the number of lines to be written. This operand can be a specific decimal
number or an arbitrary number indicated by *. If you specify a value of zero (0),
no I/O operations are performed unless you also specify either OPEN, FINIS,
or both OPEN and FINIS.

� If you specify OPEN and the data set is closed, EXECIO opens the data
set but does not write any lines. If you specify OPEN and the data set is
open, EXECIO does not write any lines.

� If you specify FINIS and the data set is open, EXECIO does not write any
lines, but EXECIO closes the data set. If you specify FINIS and the data
set is not already opened, EXECIO does not open the data set and then
close it.

� If you specify both OPEN and FINIS, EXECIO processes the OPEN first as
described above. EXECIO then processes the FINIS as described above.

When EXECIO writes an arbitrary number of lines from the data stack, it stops
only when it reaches a null line. If there is no null line on the data stack in an
interactive TSO/E address space, EXECIO waits for input from the terminal and
stops only when it receives a null line. See note below.

When EXECIO writes an arbitrary number of lines from a list of compound
variables, it stops when it reaches a null value or an uninitialized variable (one
that displays its own name).

The 0th variable has no effect on controlling the number of lines written from
variables.

Note: EXECIO running in TSO/E background or in a non-TSO/E address
space has the same use of the data stack as an exec that runs in the

10-8 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

TSO/E foreground. If an EXECIO * DISKW ... command is executing in
the background or in a non-TSO/E address space and the data stack
becomes empty before a null line is found (which would terminate
EXECIO), EXECIO goes to the input stream as defined by the INDD
field in the module name table (see page 14-21). The system default is
SYSTSIN. When end-of-file is reached, EXECIO ends.

DISKW
opens a data set for output (if it is not already open) and writes the specified
number of lines to the data set. The lines can be written from the data stack or,
if the STEM operand is specified, from a list of variables.

You can use the DISKW operand to write information to a different data set
from the one opened for input, or to update, one line at a time, the same data
set opened for update.

When a data set is open for update, you can use DISKW to rewrite the last
record read. The lines value should be 1 when doing an update. For lines
values greater than 1, each write updates the same record.

The data set is not automatically closed unless:

� The task, under which the data set was opened, ends.

� The last language processor environment associated with the task, under
which the data set was opened, is terminated.

Notes:

1. The length of an updated line is set to the length of the line it replaces.
When an updated line is longer than the line it replaces, information that
extends beyond the replaced line is truncated. When information is shorter
than the replaced line, the line is padded with blanks to attain the original
line length.

2. When using EXECIO to write to more than one member of the same PDS,
only one member of the PDS should be open at a time for output.

3. Do not use the MOD attribute when allocating a member of a PDS to which
you want to append information. You can use MOD only when appending
information to a sequential data set. To append information to a member of
a PDS, rewrite the member with the additional records added.

ddname
the name of the file to which the sequential data set or member of the PDS
was allocated. You must allocate the file before you issue the EXECIO
command.

FINIS
close the data set after the EXECIO command completes. A data set can
be closed only if it was opened at the same task level as the exec issuing
the EXECIO command.

You can use FINIS with a lines value of 0 to have EXECIO close an open
data set without first writing a record.

Because the EXEC command (when issued from TSO/E READY mode) is
attached by the TMP, data sets opened by a REXX exec are typically
closed automatically when the top level exec ends. Good programming

 Chapter 10. TSO/E REXX Commands 10-9

 EXECIO

practice, however, would be to explicitly close all data sets when finished
with them.

OPEN
opens the specified data set if it is not already open. You can use OPEN
with a lines value of 0 to have EXECIO open a data set without writing any
records.

STEM var-name
the stem of the list of variables from which information is to be written. To
write information from compound variables, which allow for indexing, the
var-name should end with a period, MYVAR., for example. When three lines
are written to the data set, they are taken from MYVAR.1, MYVAR.2,
MYVAR.3. When * is specified as the number of lines to write, the EXECIO
command stops writing information to the data set when it finds a null line
or an uninitialized compound variable. In this case, if the list contained 10
compound variables, the EXECIO command stops at MYVAR.11.

The 0th variable has no effect on controlling the number of lines written
from variables.

When var-name does not end with a period, the variable names must be
appended with consecutive numbers, such as MYVAR1, MYVAR2, MYVAR3.

See the example 12 on page 10-16 which shows the usage of the EXECIO
command with stem variables.

Closing Data Sets: If you specify FINIS on the EXECIO command, the data set is
closed after EXECIO completes processing. If you do not specify FINIS, the data
set is closed when one of the following occurs:

� The task, under which the data set was opened, is terminated, or

� The last language processor environment associated with the task, under which
the data set was opened, is terminated (even if the task itself is not
terminated).

In general, if you use the TSO/E EXEC command to invoke a REXX exec, any data
sets that the exec opens are closed when the top level exec completes. For
example, suppose you are executing an exec (top level exec) that invokes another
exec. The second exec uses EXECIO to open a data set and then returns control
to the first exec without closing the data set. The data set is still open when the top
level exec regains control. The top level exec can then read the same data set
continuing from the point where the nested exec finished EXECIO processing.
When the original exec (top level exec) ends, the data set is automatically closed.

Figure 10-1 on page 10-11 is an example of two execs that show how a data set
remains open. The first (top level) exec, EXEC1, allocates a file and then calls
EXEC2. The second exec (EXEC2) opens the file, reads the first three records, and
then returns control to EXEC1. Note that EXEC2 does not specify FINIS on the
EXECIO command, so the file remains open.

When the first exec EXEC1 regains control, it issues EXECIO and gets the fourth
record because the file is still open. If EXEC2 had specified FINIS on the EXECIO
command, EXEC1 would have read the first record. In the example, both execs run
at the same task level.

10-10 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

FIRST EXEC ---- EXEC1

/\ REXX exec (EXEC1) invokes another exec (EXEC2) to open a \/
/\ file. EXEC1 then continues reading the same file. \/
say 'Executing the first exec EXEC1'
"ALLOC FI(INPUTDD) DA(MYINPUT) SHR REUSE" /\ Allocate input file \/
/\ \/
/\ Now invoke the second exec (EXEC2) to open the INPUTDD file. \/
/\ The exec uses a call to invoke the second exec. You can \/
/\ also use the TSO/E EXEC command, which would have the \/
/\ same result. \/
/\ If EXEC2 opens a file and does not close the file before \/
/\ returning control to EXEC1, the file remains open when \/
/\ control is returned to EXEC1. \/
/\ \/
say 'Invoking the second exec EXEC2'
call exec2 /\ Call EXEC2 to open file \/
say 'Now back from the second exec EXEC2. Issue another EXECIO.'
"EXECIO 1 DISKR INPUTDD (STEM X." /\ EXECIO reads record 4 \/
say x.1
say 'Now close the file'
"EXECIO ð DISKR INPUTDD (FINIS" /\ Close file so it can be freed \/
"FREE FI(INPUTDD)"
EXIT ð

SECOND EXEC ---- EXEC2

/\ REXX exec (EXEC2) opens the file INPUTDD, reads 3 records, and \/
/\ then returns to the invoking exec (EXEC1). The exec (EXEC2) \/
/\ returns control to EXEC1 without closing the INPUTDD file. \/
/\ \/
say "Now in the second exec EXEC2"
DO I = 1 to 3 /\ Read & display first 3 records \/

"EXECIO 1 DISKR INPUTDD (STEM Y."
 say y.1
END
Say 'Leaving second exec EXEC2. Three records were read from file.'
RETURN ð

Figure 10-1. Example of Closing Data Sets With EXECIO

Return Codes: After the EXECIO command runs, it sets the REXX special variable
RC to one of the following return codes:

Return Code Meaning

0 Normal completion of requested operation

1 Data was truncated during DISKW operation

2 End-of-file reached before the specified number of lines were read
during a DISKR or DISKRU operation. This does not occur if * is used
for number of lines because the remainder of the file is always read.

4 During a DISKR or DISKRU operation, an empty data set was found
in a concatenation of data sets. The file was not successfully opened
and no data was returned.

 Chapter 10. TSO/E REXX Commands 10-11

 EXECIO

Examples

1. This example copies an entire existing sequential data set named
prefix.MY.INPUT into a member of an existing PDS named
DEPT5.MEMO(MAR22), and uses the ddnames DATAIN and DATAOUT
respectively.

 "ALLOC DA(MY.INPUT) F(DATAIN) SHR REUSE"
 "ALLOC DA('DEPT5.MEMO(MAR22)') F(DATAOUT) OLD"
 "NEWSTACK" /\ Create a new data stack for input only \/

 "EXECIO \ DISKR DATAIN (FINIS"
 QUEUE '' /\ Add a null line to indicate the end of information \/
 "EXECIO \ DISKW DATAOUT (FINIS"

 "DELSTACK" /\ Delete the new data stack \/
 "FREE F(DATAIN DATAOUT)"

2. This example copies an arbitrary number of lines from existing sequential data
set prefix.TOTAL.DATA into a list of compound variables with the stem DATA.,
and uses the ddname INPUTDD:

 ARG lines
 "ALLOC DA(TOTAL.DATA) F(INPUTDD) SHR REUSE"
 "EXECIO" lines "DISKR INPUTDD (STEM DATA."
 SAY data.ð 'records were read.'

3. To update the second line in data set DEPT5.EMPLOYEE.LIST in file
UPDATEDD, allocate the data set as OLD to guarantee exclusive update.

 "ALLOC DA('DEPT5.EMPLOYEE.LIST') F(UPDATEDD) OLD"
 "EXECIO 1 DISKRU UPDATEDD 2"
 PULL line
 PUSH 'Crandall, Amy AMY 55ðð'
 "EXECIO 1 DISKW UPDATEDD (FINIS"
 "FREE F(UPDATEDD)"

4. The following example scans each line of a data set whose name and size is
specified by the user. The user is given the option of changing each line as it
appears. If there is no change to the line, the user presses the Enter key to
indicate that there is no change. If there is a change to the line, the user types
the entire line with the change and the new line is returned to the data set.

Return Code Meaning

20 Severe error. EXECIO completed unsuccessfully and a message is
issued.

10-12 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

PARSE ARG name numlines /\ Get data set name and size from user \/

"ALLOC DA("name") F(UPDATEDD) OLD"
eof = 'NO' /\ Initialize end-of-file flag \/

DO i = 1 to numlines WHILE eof = no
"EXECIO 1 DISKRU UPDATEDD " /\ Queue the next line on the stack \/
IF RC = 2 THEN /\ Return code indicates end-of-file \/

eof = 'YES'
 ELSE
 DO

PARSE PULL line
SAY 'Please make changes to the following line.'
SAY 'If you have no changes, press ENTER.'

 SAY line
PARSE PULL newline
IF newline = '' THEN NOP

 ELSE
 DO
 PUSH newline

"EXECIO 1 DISKW UPDATEDD"
 END
 END
END
"EXECIO ð DISKW UPDATEDD (FINIS"

5. This example reads from the data set allocated to INDD to find the first
occurrence of the string "Jones". Upper and lowercase distinctions are ignored.
The example demonstrates how to read and search one record at a time. For
better performance, you can read all records to the data stack or to a list of
variables, search them, and then return the updated records.

done = 'no'

DO WHILE done = 'no'
"EXECIO 1 DISKR INDD"
IF RC = ð THEN /\ Record was read \/

 DO
 PULL record

lineno = lineno + 1 /\ Count the record \/
IF INDEX(record,'JONES') ¬= ð THEN

 DO
SAY 'Found in record' lineno
done = 'yes'
SAY 'Record = ' record

 END
 ELSE NOP
 END
 ELSE

done = 'yes'
END
"EXECIO ð DISKR INDD (FINIS"
EXIT ð

6. This exec copies records from data set prefix.MY.INPUT to the end of data set
prefix.MY.OUTPUT. Neither data set has been allocated to a ddname. It
assumes that the input data set has no null lines.

 Chapter 10. TSO/E REXX Commands 10-13

 EXECIO

"ALLOC DA(MY.INPUT) F(INDD) SHR REUSE"
"ALLOC DA(MY.OUTPUT) F(OUTDD) MOD REUSE"

SAY 'Copying ...'

"EXECIO \ DISKR INDD (FINIS"
QUEUE '' /\ Insert a null line at the end to indicate end of file \/
"EXECIO \ DISKW OUTDD (FINIS"

SAY 'Copy complete.'
"FREE F(INDD OUTDD)"

EXIT ð

7. This exec reads five records from the data set allocated to MYINDD starting
with the third record. It strips trailing blanks from the records, and then writes
any record that is longer than 20 characters. The file is not closed when the
exec is finished.

"EXECIO 5 DISKR MYINDD 3"

DO i = 1 to 5
PARSE PULL line
stripline = STRIP(line,t)
len = LENGTH(stripline)

IF len > 2ð THEN
SAY 'Line' stripline 'is long.'

 ELSE NOP
END

/\ The file is still open for processing \/

EXIT ð

8. This exec reads the first 100 records (or until EOF) of the data set allocated to
INVNTORY. Records are placed on the data stack in LIFO order. A message is
issued that gives the result of the EXECIO operation.

eofflag = 2 /\ Return code to indicate end of file \/

"EXECIO 1ðð DISKR INVNTORY (LIFO"
return_code = RC

IF return_code = eofflag THEN
SAY 'Premature end of file.'

ELSE
SAY '1ðð Records read.'

EXIT return_code

9. This exec erases any existing data from the data set FRED.WORKSET.FILE by
opening the data set and then closing it without writing any records. By doing
this, EXECIO just writes an end-of-file marker, which erases any existing
records in the data set.

In this example, the data set from which you are erasing records must not be
allocated with a disposition of MOD. If you allocate the data set with a
disposition of MOD, the EXECIO OPEN followed by the EXECIO FINIS results
in EXECIO just rewriting the existing end-of-file marker.

10-14 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

"ALLOCATE DA('FRED.WORKSET.FILE') F(OUTDD) OLD REUSE"

"EXECIO ð DISKW OUTDD (OPEN" /\ Open the OUTDD file for writing,
but do not write a record \/

"EXECIO ð DISKW OUTDD (FINIS" /\ Close the OUTDD file. This
basically completes the erasing of
any existing records from the

 OUTDD file. \/

Note that in this example, the EXECIO ... (OPEN command followed by the
EXECIO ... (FINIS command is equivalent to:

"EXECIO ð DISKW OUTDD (OPEN FINIS"

10. This exec opens the data set MY.INVNTORY without reading any records. The
exec then uses a main loop to read records from the data set and process the
records.

"ALLOCATE DA('MY.INVNTORY') F(INDD) SHR REUSE"
"ALLOCATE DA('MY.AVAIL.FILE') F(OUTDD) OLD REUSE"

"EXECIO ð DISKR INDD (OPEN" /\ Open INDD file for input, but
do not read any records \/

eof = 'NO' /\ Initialize end-of-file flag \/
avail_count = ð /\ Initialize counter \/

DO WHILE eof = 'NO' /\ Loop until the EOF of input
 file \/
"EXECIO 1 DISKR INDD (STEM LINE." /\ Read a line \/
IF RC = 2 THEN /\ If end of file is reached, \/
eof = 'YES' /\ set the end-of-file (eof)

 flag \/
ELSE /\ Otherwise, a record is read \/

 DO
IF INDEX(line.1,'AVAILABLE') THEN /\ Look for records

 marked "available" \/
DO /\ "Available" record found \/

"EXECIO 1 DISKW OUTDD" /\ Write record to available
 file \/

avail_count = avail_count + 1 /\ Increment "available"
 counter \/

 END
 END
END

"EXECIO ð DISKR INDD (FINIS" /\ Close INDD file that is currently
 open \/
"EXECIO ð DISKW OUTDD (FINIS" /\ Close OUTDD file if file is cur-

rently open. If the OUTDD file is
not open, the EXECIO command has

 no effect. \/

EXIT ð

 Chapter 10. TSO/E REXX Commands 10-15

 EXECIO

11. This exec opens the data set MY.WRKFILE and sets the current record number
to record 8 so that the next EXECIO DISKR command begins reading at the
eighth record.

"ALLOC DA('MY.WRKFILE') F(INDD) SHR REUSE"

"EXECIO ð DISKR INDD 8 (OPEN" /\ Open INDD file for input and set
current record number to 8. \/

CALL READ_NEXT_RECORD /\ Call subroutine to read record on
to the data stack. The next
record EXECIO reads is record 8
because the previous EXEC IO set
the current record number to 8. \/

...

"EXECIO ð DISKR INDD (FINIS" /\ Close the INDD file. \/

12. This exec uses EXECIO to successively append the records from
'sample1.data' and then from 'sample2.data' to the end of the data set
'all.sample.data'. It illustrates the effect of residual data in STEM variables. Data
set 'sample1.data' contains 20 records. Data set 'sample2.data' contains 10
records.

10-16 OS/390 V2R8.0 TSO/E REXX Reference

 EXECIO

"ALLOC FI(MYINDD1) DA('SAMPLE1.DATA') SHR REUSE" /\ input file 1 \/
"ALLOC FI(MYINDD2) DA('SAMPLE2.DATA') SHR REUSE" /\ input file 2 \/

"ALLOC FI(MYOUTDD) DA('ALL.SAMPLE.DATA') MOD REUSE" /\ output append
 file \/

/\\\/
/\ Read all records from 'sample1.data' and append them to the \/
/\ end of 'all.sample.data'. \/
/\\\/

exec_RC = ð /\ Initialize exec return code \/

"EXECIO \ DISKR MYINDD1 (STEM NEWVAR. FINIS" /\ Read all records \/

if rc = ð then /\ If read was successful \/
 do
 /\\\/
/\ At this point, newvar.ð should be 2ð, indicating 2ð records \/
/\ have been read. Stem variables newvar.1, newvar.2, ... through\/
/\ newvar.2ð will contain the 2ð records that were read. \/

 /\\\/

 say "---"
say newvar.ð "records have been read from 'sample1.data': "

 say
do i = 1 to newvar.ð /\ Loop through all records \/
say newvar.i /\ Display the ith record \/

 end

"EXECIO" newvar.ð "DISKW MYOUTDD (STEM NEWVAR." /\ Write exactly
the number of records read \/

if rc = ð then /\ If write was successful \/
 do
 say

say newvar.ð "records were written to 'all.sample.data'"
 end
 else
 do

exec_RC = RC /\ Save exec return code \/
 say

say "Error during 1st EXECIO ... DISKW, return code is " RC
 say
 end
 end

 Chapter 10. TSO/E REXX Commands 10-17

 EXECIO

else
 do

exec_RC = RC /\ Save exec return code \/
 say

say "Error during 1st EXECIO ... DISKR, return code is " RC
 say
 end

If exec_RC = ð then /\ If no errors so far... continue \/
 do
 /\\\/

/\ At this time, the stem variables newvar.ð through newvar.2ð \/
/\ will contain residual data from the previous EXECIO. We \/
/\ issue the "DROP newvar." instruction to clear these residual\/
/\ values from the stem. \/

 /\\\/
DROP newvar. /\ Set all stems variables to their \/

 uninitialized state \/
 /\\\/

/\ Read all records from 'sample2.data' and append them to the \/
/\ end of 'all.sample.data'. \/

 /\\\/
"EXECIO \ DISKR MYINDD2 (STEM NEWVAR. FINIS" /\Read all records\/
if rc = ð then /\ If read was successful \/

 do
 /\\\/

/\ At this point, newvar.ð should be 1ð, indicating 1ð \/
/\ records have been read. Stem variables newvar.1, newvar.2,\/
/\ ... through newvar.1ð will contain the 1ð records. If we \/
/\ had not cleared the stem newvar. with the previous DROP \/
/\ instruction, variables newvar.11 through newvar.2ð would \/
/\ still contain records 11 through 2ð from the first data \/
/\ set. However, we would know that these values were not \/
/\ read by the last EXECIO DISKR since the current newvar.ð \/
/\ variable indicates that only 1ð records were read by \/
/\ that last EXECIO. \/

 /\\\/

10-18 OS/390 V2R8.0 TSO/E REXX Reference

 EXECUTIL

 say
 say
 say "---"

say newvar.ð "records have been read from 'sample2.data': "
 say

do i = 1 to newvar.ð /\ Loop through all records \/
say newvar.i /\ Display the ith record \/

 end

"EXECIO" newvar.ð "DISKW MYOUTDD (STEM NEWVAR." /\ Write
exactly the number of records read \/

if rc = ð then /\ If write was successful \/
 do
 say

say newvar.ð "records were written to 'all.sample.data'"
 end
 else
 do

exec_RC = RC /\ Save exec return code \/
 say

say "Error during 2nd EXECIO ...DISKW, return code is " RC
 say
 end
 end
 else
 do

exec_RC = RC /\ Save exec return code \/
 say

say "Error during 2nd EXECIO ... DISKR, return code is " RC
 say
 end
 end

"EXECIO ð DISKW MYOUTDD (FINIS" /\ Close output file \/

"FREE FI(MYINDD1)"
"FREE FI(MYINDD2)"
"FREE FI(MYOUTDD)"
 exit ð

 EXECUTIL

55─ ──EXECUTIL ──┬ ┬──EXECDD(──┬ ┬─CLOSE───) ── ─────────────5%
 │ │└ ┘─NOCLOSE─
 ├ ┤─TS──
 ├ ┤─TE──
 ├ ┤─HT──
 ├ ┤─RT──
 ├ ┤─HI──

├ ┤──RENAME NAME(function-name) ──┬ ┬─────────────────── ──┬ ┬────────────
│ │└ ┘──SYSNAME(sys-name) └ ┘──DD(sys-dd)
└ ┘──SEARCHDD(──┬ ┬─NO──) ──

 └ ┘─YES─

lets you change various characteristics that control how an exec processes in the
TSO/E address space. You can use EXECUTIL:

� In a REXX exec that runs in a TSO/E address space

� From TSO/E READY mode

 Chapter 10. TSO/E REXX Commands 10-19

 EXECUTIL

� From ISPF — the ISPF command line or the ISPF option that lets you enter a
TSO/E command or CLIST

� In a CLIST. You can use EXECUTIL in a CLIST to affect exec processing.
However, it has no effect on CLIST processing

You can also use EXECUTIL with the HI, HT, RT, TS, and TE operands from a
program that is written in a high-level programming language by using the TSO
service facility. From READY mode or ISPF, the HI, HT, and RT operands are not
applicable because an exec is not currently running.

Use EXECUTIL to:

� Specify whether the system exec library (the default is SYSEXEC) is to be
closed after the exec is located or is to remain open

� Start and end tracing of an exec

� Halt the interpretation of an exec

� Suppress and resume terminal output from an exec

� Change entries in a function package directory

� Specify whether the system exec library (the default is SYSEXEC) is to be
searched in addition to SYSPROC.

Additional Considerations for Using EXECUTIL:

� All of the EXECUTIL operands are mutually exclusive, that is, you can only
specify one of the operands on the command.

� The HI, HT, RT, TS, and TE operands on the EXECUTIL command are also,
by themselves, immediate commands. Immediate commands are commands
you can issue from the terminal if an exec is running in TSO/E and you press
the attention interrupt key and enter attention mode. When you enter attention
mode, you can enter an immediate command. Note that HE (Halt Execution) is
an immediate command, but HE is not a valid operand on the EXECUTIL
command.

Note: You can also use the TSO/E REXX commands TS (Trace Start) and TE
(Trace End) in a REXX exec that runs in any address space (TSO/E
and non-TSO/E). For information about the TS command, see page
10-39. For information about the TE command, see page 10-38.

� In general, EXECUTIL works on a language processor environment basis. That
is, EXECUTIL affects only the current environment in which EXECUTIL is
issued. For example, if you are in split screen in ISPF and issue EXECUTIL
TS from the second ISPF screen to start tracing, only execs that are invoked
from that ISPF screen are traced. If you invoke an exec from the first ISPF
screen, the exec is not traced.

Using the EXECDD and SEARCHDD operands may affect subsequent
language processor environments that are created. For example, if you issue
EXECUTIL SEARCHDD from TSO/E READY mode and then invoke ISPF, the
new search order defined by EXECUTIL SEARCHDD may be in effect for the
ISPF session also. This depends on whether your installation has provided its
own parameters modules IRXTSPRM and IRXISPRM and the values specified
in the load module.

10-20 OS/390 V2R8.0 TSO/E REXX Reference

 EXECUTIL

EXECDD(CLOSE) or EXECDD(NOCLOSE)
Specifies whether the system exec library is to be closed after the system
locates the exec but before the exec runs.

CLOSE causes the system exec library, whose default name is SYSEXEC, to
be closed after the exec is located but before the exec runs. You can change
this condition by issuing the EXECUTIL EXECDD(NOCLOSE) command.

NOCLOSE causes the system exec library to remain open. This is the default
condition and can be changed by issuing the EXECUTIL EXECDD(CLOSE)
command. The selected option remains in effect until it is changed by the
appropriate EXECUTIL command, or until the current environment is
terminated.

Notes:

1. The EXECDD operand affects the ddname specified in the LOADDD field in
the module name table. The default is SYSEXEC. “Module Name Table” on
page 14-20 describes the table.

2. If you specify EXECDD(CLOSE), the exec library (DD specified in the
LOADDD field) is closed immediately after an exec is loaded.

3. Specify EXECDD(CLOSE) or EXECDD(NOCLOSE) before running any
execs out of the SYSEXEC file. If you attempt to use EXECDD(CLOSE) or
EXECDD(NOCLOSE) after SYSEXEC has already been opened, you may
not get the expected result because the SYSEXEC file must be closed at
the same MVS task level at which it was opened.

Any libraries defined using the ALTLIB command are not affected by the
EXECDD operand. SYSPROC is also not affected.

TS Use TS (Trace Start) to start tracing execs. Tracing lets you interactively
control the processing of an exec and debug problems. For more information
about the interactive debug facility, see Chapter 11, “Debug Aids” on
page 11-1.

If you issue EXECUTIL TS from READY mode or ISPF, tracing is started for
the next exec you invoke. Tracing is then in effect for that exec and any other
execs it calls. Tracing ends:

� When the original exec completes
� If one of the invoked execs specifies EXECUTIL TE
� If one of the invoked execs calls a CLIST, which specifies EXECUTIL TE
� If you enter attention mode while an exec is running and issue the TE

immediate command.

If you use EXECUTIL TS in an exec, tracing is started for all execs that are
running. This includes the current exec that contains EXECUTIL TS, any execs
it invokes, and any execs that were running when the current exec was
invoked. Tracing remains active until all execs that are currently running
complete or an exec or CLIST contains EXECUTIL TE.

For example, suppose exec A calls exec B, which then calls exec C. If exec B
contains the EXECUTIL TS command, tracing is started for exec B and remains
in effect for both exec C and exec A. Tracing ends when exec A completes.
However, if one of the execs contains EXECUTIL TE, tracing ends for all of the
execs.

 Chapter 10. TSO/E REXX Commands 10-21

 EXECUTIL

If you use EXECUTIL TS in a CLIST, tracing is started for all execs that are
running, that is, for any exec the CLIST invokes or execs that were running
when the CLIST was invoked. Tracing ends when the CLIST and all execs that
are currently running complete or if an exec or CLIST contains EXECUTIL TE.
For example, suppose an exec calls a CLIST and the CLIST contains the
EXECUTIL TS command. When control returns to the exec that invoked the
CLIST, that exec is traced.

You can use EXECUTIL TS from a program by using the TSO service facility.
For example, suppose an exec calls a program and the program encounters an
error. The program can invoke EXECUTIL TS using the TSO service facility to
start tracing all execs that are currently running.

You can also press the attention interrupt key, enter attention mode, and then
enter TS to start tracing or TE to end tracing. You can also use the TS
command (see page 10-39) and TE command (see page 10-38) in an exec.

TE Use TE (Trace End) to end tracing execs. The TE operand is not really
applicable in READY mode because an exec is not currently running. However,
if you issued EXECUTIL TS to trace the next exec you invoke and then issued
EXECUTIL TE, the next exec you invoke is not traced.

If you use EXECUTIL TE in an exec or CLIST, tracing is ended for all execs
that are currently running. This includes execs that were running when the exec
or CLIST was invoked and execs that the exec or CLIST calls. For example,
suppose exec A calls CLIST B, which then calls exec C. If tracing was on and
CLIST B contains EXECUTIL TE, tracing is ended and execs C and A are not
traced.

You can use EXECUTIL TE from a program by using the TSO service facility.
For example, suppose tracing has been started and an exec calls a program.
The program can invoke EXECUTIL TE using the TSO service facility to end
tracing of all execs that are currently running.

You can also press the attention interrupt key, enter attention mode, and then
enter TE to end tracing. You can also use the TE immediate command in an
exec (see page 10-38).

HT
Use HT (Halt Typing) to suppress terminal output generated by an exec. The
exec continues running. HT suppresses any output generated by REXX
instructions or functions (for example, the SAY instruction) and REXX
informational messages. REXX error messages are still displayed. Normal
terminal output resumes when the exec completes. You can also use
EXECUTIL RT to resume terminal output.

HT has no effect on CLISTs or commands. If an exec invokes a CLIST and the
CLIST generates terminal output, the output is displayed. If an exec invokes a
command, the command displays messages.

Use the HT operand in either an exec or CLIST. You can also use EXECUTIL
HT from a program by using the TSO service facility. If the program invokes
EXECUTIL HT, terminal output from all execs that are currently running is
suppressed. EXECUTIL HT is not applicable from READY mode or ISPF
because no execs are currently running.

If you use EXECUTIL HT in an exec, output is suppressed for all execs that are
running. This includes the current exec that contains EXECUTIL HT, any execs
the exec invokes, and any execs that were running when the current exec was

10-22 OS/390 V2R8.0 TSO/E REXX Reference

 EXECUTIL

invoked. Output is suppressed until all execs that are currently running
complete or an exec or CLIST contains EXECUTIL RT.

If you use EXECUTIL HT in a CLIST, output is suppressed for all execs that
are running, that is, for any exec the CLIST invokes or execs that were running
when the CLIST was invoked. Terminal output resumes when the CLIST and
all execs that are currently running complete or if an exec or CLIST contains
EXECUTIL RT.

For example, suppose exec A calls CLIST B, which then calls exec C. If the
CLIST contains EXECUTIL HT, output is suppressed for both exec A and exec
C.

If you use EXECUTIL HT and want to display terminal output using the SAY
instruction, you must use EXECUTIL RT before the SAY instruction to resume
terminal output.

RT
Use RT (Resume Typing) to resume terminal output that was previously
suppressed. Use the RT operand in either an exec or CLIST. You can also use
EXECUTIL RT from a program by using the TSO service facility. If the program
invokes EXECUTIL RT, terminal output from all execs that are currently running
is resumed. EXECUTIL RT is not applicable from READY mode or ISPF
because no execs are currently running.

If you use EXECUTIL RT in an exec or CLIST, typing is resumed for all execs
that are running.

HI Use HI (Halt Interpretation) to halt the interpretation of all execs that are
currently running in the language processor environment. From either an exec
or a CLIST, EXECUTIL HI halts the interpretation of all execs that are currently
running. If an exec calls a CLIST and the CLIST contains EXECUTIL HI, the
exec that invoked the CLIST stops processing.

EXECUTIL HI is not applicable from READY mode or ISPF because no execs
are currently running.

You can use EXECUTIL HI from a program by using the TSO service facility. If
the program invokes EXECUTIL HI, the interpretation of all execs that are
currently running is halted.

If an exec enables the halt condition trap and the exec includes the EXECUTIL
HI command, the interpretation of the current exec and all execs the current
exec invokes is halted. However, any execs that were running when the current
exec was invoked are not halted. These execs continue running. For example,
suppose exec A calls exec B and exec B specifies EXECUTIL HI and also
contains a SIGNAL ON HALT instruction (with a HALT: label). When
EXECUTIL HI is processed, control is given to the HALT subroutine. When the
subroutine completes, exec A continues processing at the statement that
follows the call to exec B. For more information, see Chapter 7, Conditions and
Condition Traps.

RENAME
Use EXECUTIL RENAME to change entries in a function package directory. A
function package directory contains information about the functions and
subroutines that make up a function package. See “External Functions and
Subroutines, and Function Packages” on page 12-32 for more information.

 Chapter 10. TSO/E REXX Commands 10-23

 EXECUTIL

A function package directory contains the following fields for each function and
subroutine:

� Func-name -- the name of the external function or subroutine that is used
in an exec.

� Addr -- the address, in storage, of the entry point of the function or
subroutine code.

� Sys-name -- the name of the entry point in a load module that corresponds
to the code that is called for the function or subroutine.

� Sys-dd -- the name of the DD from which the function or subroutine code is
loaded.

You can use EXECUTIL RENAME with the SYSNAME and DD operands to
change an entry in a function package directory as follows:

� Use the SYSNAME operand to change the sys-name of the function or
subroutine in the function package directory. When an exec invokes the
function or subroutine, the routine with the new sys-name is invoked.

� Use EXECUTIL RENAME NAME(function-name) without the SYSNAME
and DD operands to flag the directory entry as null. This causes the search
for the function or subroutine to continue because a null entry is bypassed.
The system will then search for a load module and/or an exec. See page
4-3 for the complete search order.

EXECUTIL RENAME clears the addr field in the function package directory to
X'00'. When you change an entry, the name of the external function or
subroutine is not changed, but the code that the function or subroutine invokes
is replaced.

You can use EXECUTIL RENAME to change an entry so that different code is
used.

NAME(function-name)
Specifies the name of the external function or subroutine that is used in an
exec. This is also the name in the func-name field in the directory entry.

SYSNAME(sys-name)
Specifies the name of the entry point in a load module that corresponds to
the package code that is called for the function or subroutine. If SYSNAME
is omitted, the sys-name field in the package directory is set to blanks.

DD(sys-dd)
Specifies the name of the DD from which the package code is loaded. If
DD is omitted, the sys-dd field in the package directory is set to blanks.

SEARCHDD(YES/NO)
Specifies whether the system exec library (the default is SYSEXEC) should be
searched when execs are implicitly invoked. YES indicates that the system
exec library (SYSEXEC) is searched, and if the exec is not found, SYSPROC is
then searched. NO indicates that SYSPROC only is searched.

EXECUTIL SEARCHDD lets you dynamically change the search order. The
new search order remains in effect until you issue EXECUTIL SEARCHDD
again, the language processor environment terminates, or you use ALTLIB.
Subsequently created environments inherit the same search order unless
explicitly changed by the invoked parameters module.

10-24 OS/390 V2R8.0 TSO/E REXX Reference

 EXECUTIL

ALTLIB affects how EXECUTIL operates to determine the search order. If you
use the ALTLIB command to indicate that user-level, application-level, or
system-level libraries are to be searched, ALTLIB operates on an application
basis. For more information about the ALTLIB command, see OS/390 TSO/E
Command Reference.

Note: EXECUTIL SEARCHDD generally affects the current language
processor environment in which it is invoked. For example, if you are in
split screen in ISPF and issue EXECUTIL SEARCHDD from the second
ISPF screen to change the search order, the changed search order
affects execs invoked from that ISPF screen. If you invoke an exec from
the first ISPF screen, the changed search order is not in effect.
However, if you issue EXECUTIL SEARCHDD from TSO/E READY
mode, when you invoke ISPF, the new search order may also be in
effect for ISPF. This depends on whether your installation has provided
its own parameters modules IRXTSPRM and IRXISPRM and the values
specified in the load module.

Return Codes: EXECUTIL returns the following return codes.

Examples

1. Your installation uses both SYSEXEC and SYSPROC to store REXX execs
and CLISTs. All of the execs you work with are stored in SYSEXEC and your
CLISTs are stored in SYSPROC. Currently, your system searches SYSEXEC
and SYSPROC and you do not use ALTLIB.

You want to work with CLISTs only and do not need to search SYSEXEC. To
change the search order and have the system search SYSPROC only, use the
following command:

EXECUTIL SEARCHDD(NO)

2. You are updating a REXX exec and including a new internal subroutine. You
want to trace the subroutine to test for any problems. In your exec, include
EXECUTIL TS at the beginning of your subroutine and EXECUTIL TE when the
subroutine returns control to the main program. For example:

/\ REXX program \/
MAINRTN:
...
CALL SUBRTN
"EXECUTIL TE"
...
EXIT
/\ Subroutine follows \/
SUBRTN:
"EXECUTIL TS"
...
RETURN

3. You want to invoke an exec and trace it. The exec does not contain EXECUTIL
TS or the TRACE instruction. Instead of editing the exec and including

Return Code Meaning

0 Processing successful.

12 Processing unsuccessful. An error message has been issued.

 Chapter 10. TSO/E REXX Commands 10-25

 HE

EXECUTIL TS or a TRACE instruction, you can enter the following from TSO/E
READY mode:

EXECUTIL TS

When you invoke the exec, the exec is traced. When the exec completes
processing, tracing is off.

4. Suppose an external function called PARTIAL is part of a function package.
You have written your own function called PARTIAL or a new version of the
external function PARTIAL and want to execute your new PARTIAL function
instead of the one in the function package. Your new PARTIAL function may be
an exec or may be stored in a load module. You must flag the entry for the
PARTIAL function in the function package directory as null in order for the
search to continue to execute your new PARTIAL function. To flag the
PARTIAL entry in the function package directory as null, use the following
command:

EXECUTIL RENAME NAME(PARTIAL)

When you execute the function PARTIAL, the null entry for PARTIAL in the
function package directory is bypassed. The system will continue to search for
a load module and/or exec that is called PARTIAL.

 HE

55─ ──HE ──5%

HE (Halt Execution) is an immediate command you can use to halt the execution of
a REXX exec. The HE immediate command is available only if an exec is running
in TSO/E and you press the attention interrupt key to enter attention mode. You
can enter HE in response to the REXX attention prompting message, IRX0920I.

HE does not set the halt condition, which is set by the HI (Halt Interpretation)
immediate command. If you need to halt the execution of an exec, it is
recommended that you use the HI immediate command whenever possible. HE is
useful if an exec is processing an external function or subroutine written in a
programming language other than REXX and the function or subroutine goes into a
loop.

For more information about how to use the HE immediate command, see
Chapter 11, “Debug Aids” on page 11-1.

Example

You are running an exec in TSO/E. The exec invokes an external subroutine and
the subroutine goes into a loop. To halt execution of the exec, press the attention
interrupt key. The system issues the REXX attention prompting message that asks
you to enter either a null line to continue or an immediate command. Enter HE to
halt execution.

10-26 OS/390 V2R8.0 TSO/E REXX Reference

 HT

 HI

55─ ──HI ──5%

HI (Halt Interpretation) is an immediate command you can use to halt the
interpretation of all currently executing execs. The HI immediate command is
available only if an exec is running in TSO/E and you press the attention interrupt
key to enter attention mode. You can enter HI in response to the REXX attention
prompting message, IRX0920I.

After you enter HI, exec processing ends or control passes to a routine or label if
the halt condition trap has been turned on in the exec. For example, if the exec
contains a SIGNAL ON HALT instruction and exec processing is interrupted by HI,
control passes to the HALT: label in the exec. See Chapter 7, Conditions and
Condition Traps for information about the halt condition.

Example

You are running an exec in TSO/E that is in an infinite loop. To halt interpretation of
the exec, press the attention interrupt key. The system issues the REXX attention
prompting message that asks you to enter either a null line to continue or an
immediate command. Enter HI to halt interpretation.

 HT

55─ ──HT ──5%

HT (Halt Typing) is an immediate command you can use to suppress terminal
output that an exec generates. The HT immediate command is available only if an
exec is running in TSO/E and you press the attention interrupt key to enter
attention mode. You can enter HT in response to the REXX attention prompting
message, IRX0920I.

After you enter HT, the exec that is running continues processing, but the only
output that is displayed at the terminal is output from TSO/E commands that the
exec issues. All other output from the exec is suppressed.

Example

You are running an exec in TSO/E that calls an internal subroutine to display a line
of output from a loop that repeats many times. Before the exec calls the subroutine,
the exec displays a message that lets you press the attention interrupt key and
then suppress the output by entering HT. When the loop is completed, the
subroutine issues EXECUTIL RT to redisplay output.

 Chapter 10. TSO/E REXX Commands 10-27

 MAKEBUF

/\ REXX program \/
 . . .
SAY 'To suppress the output that will be displayed,'
SAY 'press the attention interrupt key and'
SAY 'enter HT.'
CALL printout
...

EXIT

printout:
DO i = 1 to 1ðððð
...
SAY 'The outcome is'

END
"EXECUTIL RT"
RETURN

 Immediate Commands
Immediate commands are commands you can use if you are running a REXX exec
in TSO/E and you press the attention interrupt key to enter attention mode. When
you enter attention mode, the system displays the REXX attention prompting
message, IRX0920I. In response to the message, you can enter an immediate
command. The immediate commands are:

� HE – Halt Execution
� HI – Halt Interpretation
� HT – Halt Typing
� RT – Resume Typing
� TE – Trace End
� TS – Trace Start

TE and TS are also TSO/E REXX commands you can use in a REXX exec that
runs in any address space. That is, TE and TS are available from the TSO and
MVS host command environments.

Except for HE, when you enter an immediate command from attention mode in
TSO/E, the system processes the command as soon as control returns to the exec
but before the next statement in the exec is interpreted. For the HE immediate
command, the system processes the command before control returns to the exec.

For information about the syntax of each immediate command, see the description
of the command in this chapter.

 MAKEBUF

55─ ──MAKEBUF ───5%

Use the MAKEBUF command to create a new buffer on the data stack. The
MAKEBUF command can be issued from REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

10-28 OS/390 V2R8.0 TSO/E REXX Reference

 MAKEBUF

Initially, the data stack contains one buffer, which is known as buffer 0. You create
additional buffers using the MAKEBUF command. MAKEBUF returns the number of
the buffer it creates in the REXX special variable RC. For example, the first time an
exec issues MAKEBUF, it creates the first buffer and returns a 1 in the special
variable RC. The second time MAKEBUF is used, it creates another buffer and
returns a 2 in the special variable RC.

To remove buffers from the data stack that were created with the MAKEBUF
command, use the DROPBUF command (see page 10-3).

After the MAKEBUF command executes, it sets the REXX special variable RC to
the number of the buffer it created.

Example

An exec (execa) places two elements, elem1 and elem2, on the data stack. The
exec calls a subroutine (sub3) that also places an element, elem3, on the data
stack. The exec (execa) and the subroutine (sub3) each create a buffer on the data
stack so they do not share their data stack information. Before the subroutine
returns, it uses the DROPBUF command to remove the buffer it created.

/\ REXX program to ... \/
execa:

...
"MAKEBUF" /\ buffer created \/
SAY 'The number of buffers created is' RC /\ RC = 1 \/

 PUSH elem1
 PUSH elem2
 CALL sub3

...

exit
sub3:

"MAKEBUF" /\ second buffer created \/
 PUSH elem3

...
"DROPBUF" /\ second buffer created is deleted \/

...
 RETURN

Return Code Meaning

1 A single additional buffer after the original buffer 0 now exists on the
data stack.

2 A second additional buffer after the original buffer 0 now exists on the
data stack.

3 A third additional buffer after the original buffer 0 now exists on the
data stack.

n An nth additional buffer after the original buffer 0 now exists on the
data stack.

 Chapter 10. TSO/E REXX Commands 10-29

 NEWSTACK

 NEWSTACK

55─ ──NEWSTACK ──5%

creates a new data stack and basically hides or isolates the current data stack.
Elements on the previous data stack cannot be accessed until a DELSTACK
command is issued to delete the new data stack and any elements remaining in it.

The NEWSTACK command can be used in REXX execs that execute in both the
TSO/E address space and non-TSO/E address spaces.

After an exec issues the NEWSTACK command, any element that is placed on the
data stack with a PUSH or QUEUE instruction is placed on the new data stack. If
an exec calls a routine (function or subroutine) after the NEWSTACK command is
issued, that routine also uses the new data stack and cannot access elements on
the previous data stack, unless it issues a DELSTACK command. If you issue a
NEWSTACK command, you must issue a corresponding DELSTACK command to
delete the data stack that NEWSTACK created.

When there are no more elements on the new data stack, PULL obtains information
from the terminal (TSO/E address space) or the input stream (non-TSO/E address
space), even though elements remain in the previous data stack (in non-TSO/E
address spaces, the default input stream is SYSTSIN). To access elements on the
previous data stack, issue a DELSTACK command. If a new data stack was not
created, DELSTACK removes all elements from the original data stack.

For information about the PULL instruction, see 3-25.

Multiple new data stacks can be created, but only elements on the most recently
created data stack are accessible. To find out how many data stacks have been
created, use the QSTACK command. To find the number of elements on the most
recently created stack, use the QUEUED () built-in function.

If multiple language processor environments are chained together in a non-TSO/E
address space and a new data stack is created with the NEWSTACK command,
the new data stack is available only to execs that execute in the language
processor environment in which the new data stack was created. The other
environments in the chain cannot access the new data stack.

Examples

1. To protect elements placed on the data stack from a subroutine that might also
use the data stack, you can use the NEWSTACK and DELSTACK commands
as follows:

10-30 OS/390 V2R8.0 TSO/E REXX Reference

 QBUF

PUSH element1
PUSH element2

...
"NEWSTACK" /\ data stack 2 created \/
CALL sub
"DELSTACK" /\ data stack 2 deleted \/

...
PULL stackelem

...
PULL stackelem
EXIT

2. To put elements on the data stack and prevent the elements from being used
as prompts for a TSO/E command, use the NEWSTACK command as follows:

"PROFILE PROMPT"
x = PROMPT("ON")
PUSH elem1
PUSH elem2
"NEWSTACK" /\ data stack 2 created \/
"ALLOCATE" /\ prompts the user at the terminal for input. \/

...
"DELSTACK" /\ data stack 2 deleted \/

3. To use MVS batch to execute an exec named ABC, which is a member in
USERID.MYREXX.EXEC, use program IRXJCL and include the exec name
after the PARM parameter on the EXEC statement.

//MVSBATCH EXEC PGM=IRXJCL,
// PARM='ABC'
//SYSTSPRT DD DSN=USERID.IRXJCL.OUTPUT,DISP=OLD
//SYSEXEC DD DSN=USERID.MYREXX.EXEC,DISP=SHR

Exec ABC creates a new data stack and then put two elements on the new
data stack for module MODULE3.

"NEWSTACK" /\ data stack 2 created \/
PUSH elem1
PUSH elem2
ADDRESS LINK "module3"

...
"DELSTACK" /\ data stack 2 deleted \/

...

 QBUF

55─ ──QBUF ──5%

queries the number of buffers that were created on the data stack with the
MAKEBUF command. The QBUF command returns the number of buffers in the
REXX special variable RC. If you have not issued MAKEBUF to create any buffers

 Chapter 10. TSO/E REXX Commands 10-31

 QBUF

on the data stack, QBUF sets the special variable RC to 0. In this case, 0 is the
number of the buffer that is contained in every data stack.

You can use the QBUF command in REXX execs that run in both the TSO/E
address space and non-TSO/E address spaces.

QBUF returns the current number of data stack buffers created by an exec and by
other routines (functions and subroutines) the exec calls. You can issue QBUF from
the calling exec or from a called routine. For example, if an exec issues two
MAKEBUF commands and then calls a routine that issues another MAKEBUF
command, QBUF returns 3 in the REXX special variable RC.

The following table shows how QBUF sets the REXX special variable RC.

Examples

1. If an exec creates two buffers on the data stack using the MAKEBUF
command, deletes one buffer using the DROPBUF command, and then issues
the QBUF command, RC is set to 1.

"MAKEBUF" /\ buffer created \/
...

"MAKEBUF" /\ second buffer created \/
...

"DROPBUF" /\ second buffer created is deleted \/
"QBUF"
SAY 'The number of buffers created is' RC /\ RC = 1 \/

2. Suppose an exec uses MAKEBUF to create a buffer and then calls a routine
that also issues MAKEBUF. The called routine then calls another routine that
issues two MAKEBUF commands to create two buffers. If either of the called
routines or the original exec issues the QBUF command, QBUF sets the REXX
special variable RC to 4.

Return Code Meaning

0 Only buffer 0 exists on the data stack

1 One additional buffer exists on the data stack

2 Two additional buffers exist on the data stack

n n additional buffers exist on the data stack

10-32 OS/390 V2R8.0 TSO/E REXX Reference

 QELEM

"DROPBUF ð" /\ delete any buffers MAKEBUF created \/
"MAKEBUF" /\ create one buffer \/
SAY 'Buffers created = ' RC /\ RC = 1 \/
CALL sub1
"QBUF"
SAY 'Buffers created = ' RC /\ RC = 4 \/
EXIT

sub1:
"MAKEBUF" /\ create second buffer \/
SAY 'Buffers created = ' RC /\ RC = 2 \/
CALL sub2
"QBUF"
SAY 'Buffers created = ' RC /\ RC = 4 \/
RETURN

sub2:
"MAKEBUF" /\ create third buffer \/
SAY 'Buffers created = ' RC /\ RC = 3 \/
...

"MAKEBUF" /\ create fourth buffer \/
SAY 'Buffers created = ' RC /\ RC = 4 \/
RETURN

 QELEM

55─ ──QELEM ───5%

queries the number of data stack elements that are in the most recently created
data stack buffer (that is, in the buffer that was created by the MAKEBUF
command). The number of elements is returned in the REXX special variable RC.
When MAKEBUF has not been issued to create a buffer, QELEM returns the
number 0 in the special variable RC, regardless of the number of elements on the
data stack. Thus when QBUF returns 0, QELEM also returns 0.

The QELEM command can be issued from REXX execs that execute in both the
TSO/E address space and in non-TSO/E address spaces.

QELEM only returns the number of elements in a buffer that was explicitly created
using the MAKEBUF command. You can use QELEM to coordinate the use of
MAKEBUF. Knowing how many elements are in a data stack buffer can also be
useful before an exec issues the DROPBUF command, because DROPBUF
removes the most recently created buffer and all elements in it.

The QELEM command returns the number of elements in the most recently created
buffer. The QUEUED built-in function (see page 4-27) returns the total number of
elements in the data stack, not including buffers.

After the QELEM command processes, the REXX special variable RC contains one
of the following return codes:

 Chapter 10. TSO/E REXX Commands 10-33

 QELEM

Examples

1. If an exec creates a buffer on the data stack with the MAKEBUF command and
then puts three elements on the data stack, the QELEM command returns the
number 3.

"MAKEBUF" /\ buffer created \/
PUSH one
PUSH two
PUSH three
"QELEM"
SAY 'The number of elements in the buffer is' RC /\ RC = 3 \/

2. Suppose an exec creates a buffer on the data stack, puts two elements on the
data stack, creates another buffer, and then puts one element on the data
stack. If the exec issues the QELEM command, QELEM returns the number 1.
The QUEUED function, however, which returns the total number of elements on
the data stack, returns the number 3.

"MAKEBUF" /\ buffer created \/
QUEUE one
PUSH two
"MAKEBUF" /\ second buffer created \/
PUSH one
"QELEM"
SAY 'The number of elements in the most recent buffer is' RC /\ 1 \/
SAY 'The total number of elements is' QUEUED() /\ returns 3 \/

3. To check whether a data stack buffer contains elements before you remove the
buffer, use the result from QELEM and QBUF in an IF...THEN...ELSE
instruction.

"MAKEBUF"
PUSH a
"QELEM"
NUMELEM = RC /\ Assigns value of RC to variable NUMELEM \/
"QBUF"
NUMBUF = RC /\ Assigns value of RC to variable NUMBUF \/
IF (NUMELEM = ð) & (numbuf > ð) THEN
 "DROPBUF"
ELSE /\ Deletes most recently created buffer \/
 DO NUMELEM
 PULL elem
 SAY elem
 END

Return Code Meaning

0 Either the MAKEBUF command has not been issued or the buffer that
was most recently created by MAKEBUF contains no elements.

1 MAKEBUF has been issued and there is one element in the current
buffer.

2 MAKEBUF has been issued and there are two elements in the current
buffer.

3 MAKEBUF has been issued and there are three elements in the
current buffer.

n MAKEBUF has been issued and there are n elements in the current
buffer.

10-34 OS/390 V2R8.0 TSO/E REXX Reference

 QSTACK

 QSTACK

55─ ──QSTACK ──5%

queries the number of data stacks in existence for an exec that is running.
QSTACK returns the number of data stacks in the REXX special variable RC. The
value QSTACK returns indicates the total number of data stacks, including the
original data stack. If you have not issued a NEWSTACK command to create a new
data stack, QSTACK returns 1 in the special variable RC for the original data stack.

You can use the QSTACK command in REXX execs that run in both the TSO/E
address space and in non-TSO/E address spaces.

QSTACK returns the current number of data stacks created by an exec and by
other routines (functions and subroutines) the exec calls. You can issue QSTACK
from the calling exec or from a called routine. For example, if an exec issues one
NEWSTACK command and then calls a routine that issues another NEWSTACK
command, and none of the new data stacks are deleted with the DELSTACK
command, QSTACK returns 3 in the REXX special variable RC.

The following table shows how QSTACK sets the REXX special variable RC.

Examples

1. Suppose an exec creates two new data stacks using the NEWSTACK
command and then deletes one data stack using the DELSTACK command. If
the exec issues the QSTACK command, QSTACK returns 2 in the REXX
special variable RC.

"NEWSTACK" /\ data stack 2 created \/
...

"NEWSTACK" /\ data stack 3 created \/
...

"DELSTACK" /\ data stack 3 deleted \/
"QSTACK"
SAY 'The number of data stacks is' RC /\ RC = 2 \/

2. Suppose an exec creates one new data stack and then calls a routine that also
creates a new data stack. The called routine then calls another routine that
creates two new data stacks. When either of the called routines or the original
exec issues the QSTACK command, QSTACK returns 5 in the REXX special
variable RC. The data stack that is active is data stack 5.

Return Code Meaning

0 No data stack exists. See “Data Stack Routine” on page 16-32.

1 Only the original data stack exists

2 One new data stack and the original data stack exist

3 Two new data stacks and the original data stack exist

n n - 1 new data stacks and the original data stack exist

 Chapter 10. TSO/E REXX Commands 10-35

 SUBCOM

"NEWSTACK" /\ data stack 2 created \/
CALL sub1
"QSTACK"
SAY 'Data stacks =' RC /\ RC = 5 \/
EXIT

sub1:
"NEWSTACK" /\ data stack 3 created \/
CALL sub2
"QSTACK"
SAY 'Data stacks =' RC /\ RC = 5 \/
RETURN

sub2:
"NEWSTACK" /\ data stack 4 created \/
...

"NEWSTACK" /\ data stack 5 created \/
"QSTACK"
SAY 'Data stacks =' RC /\ RC = 5 \/
RETURN

 RT

55─ ──RT ──5%

RT (Resume Typing) is an immediate command you can use to resume terminal
output that was previously suppressed. The RT immediate command is available
only if an exec is running in TSO/E and you press the attention interrupt key to
enter attention mode. You can enter RT in response to the REXX attention
prompting message, IRX0920I. Terminal output that the exec generated after you
issued the HT command and before you issued the RT command is lost.

Example

You are running an exec in TSO/E and have suppressed typing with the HT
command. You now want terminal output from the exec to display at your terminal.

To resume typing, press the attention interrupt key. The system issues the REXX
attention prompting message that asks you to enter either a null line to continue or
an immediate command. Enter RT to resume typing.

 SUBCOM

55─ ──SUBCOMenvname ───5%

queries the existence of a specified host command environment. SUBCOM
searches the host command environment table for the named environment and sets
the REXX special variable RC to 0 or 1. When RC contains 0, the environment
exists. When RC contains 1, the environment does not exist.

10-36 OS/390 V2R8.0 TSO/E REXX Reference

 SUBCOM

You can use the SUBCOM command in REXX execs that run in both the TSO/E
address space and non-TSO/E address spaces.

Before an exec runs, a default host command environment is defined to process
the commands that the exec issues. You can use the ADDRESS keyword
instruction (see page 3-2) to change the environment to another environment as
long as the environment is defined in the host command environment table. Use
the SUBCOM command to determine whether the environment is defined in the
host command environment table for the current language processor environment.
You can use the ADDRESS built-in function to determine the name of the
environment to which host commands are currently being submitted (see page 4-8).

Operand: The one operand for the SUBCOM command is:

envname
the name of the host command environment for which SUBCOM is to search.

When you invoke an exec from TSO/E, the following default host command
environments are available:

� TSO (the default environment)
 � CONSOLE
 � CPICOMM
 � LU62
 � MVS
 � LINK
 � ATTACH
 � LINKPGM
 � ATTCHPGM
 � LINKMVS
 � ATTCHMVS

When you run an exec in a non-TSO/E address space, the following default host
command environments are available:

� MVS (the default environment)
 � CPICOMM
 � LU62
 � LINK
 � ATTACH
 � LINKPGM
 � ATTCHPGM
 � LINKMVS
 � ATTCHMVS

When you invoke an exec from ISPF, the following default host command
environments are available:

� TSO (the default environment)
 � CONSOLE
 � ISPEXEC
 � ISREDIT
 � CPICOMM
 � LU62
 � MVS
 � LINK

 Chapter 10. TSO/E REXX Commands 10-37

 TE

 � ATTACH
 � LINKPGM
 � ATTCHPGM
 � LINKMVS
 � ATTCHMVS

The SUBCOM command sets the REXX special variable RC to indicate the
existence of the specified environment.

Example

To check whether the ISPEXEC environment is available before using the
ADDRESS instruction to change the environment, use the SUBCOM command as
follows:

"SUBCOM ispexec"
IF RC = ð THEN
 ADDRESS ispexec
ELSE NOP

RC Value Description

0 The host command environment exists.

1 The host command environment does not exist.

 TE

55─ ──TE ──5%

TE (Trace End) is an immediate command you can use to end tracing REXX
execs. The TE immediate command is available if an exec is running in TSO/E and
you press the attention interrupt key to enter attention mode. You can enter TE in
response to the REXX attention prompting message, IRX0920I. The exec continues
processing, but tracing is off.

TE is also a TSO/E REXX command you can use in a REXX exec that runs in any
address space. That is, TE is available from the TSO and MVS host command
environments.

If you are running in interactive debug, you can also use TE without entering
attention mode to end tracing.

Example

You have an exec that calls an internal subroutine. The subroutine is not
processing correctly and you want to trace it. At the beginning of the subroutine,
you can insert a TS command to start tracing. At the end of the subroutine, before
the RETURN instruction, insert the TE command to end tracing before control
returns to the main exec.

10-38 OS/390 V2R8.0 TSO/E REXX Reference

 TS

 TS

55─ ──TS ──5%

TS (Trace Start) is an immediate command you can use to start tracing REXX
execs. Tracing lets you control the execution of an exec and debug problems. The
TS immediate command is available if an exec is running in TSO/E and you press
the attention interrupt key to enter attention mode. You can enter TS in response to
the REXX attention prompting message, IRX0920I. The exec continues processing
and tracing is started.

TS is also a TSO/E REXX command you can use in a REXX exec that runs in any
address space. That is, TS is available from the TSO and MVS host command
environments.

In TSO/E foreground, trace output is written to the terminal. In TSO/E background,
trace output is written to the output stream, SYSTSPRT. In non-TSO/E address
spaces, trace output is written to the output stream as defined by the OUTDD field
in the module name table (see page 14-21). The system default is SYSTSPRT.

To end tracing, you can use the TRACE OFF instruction or the TE immediate
command. You can also use TE in the exec to stop tracing at a specific point. If
you are running in interactive debug, you can use TE without entering attention
mode to end tracing.

For more information about tracing, see the TRACE instruction on page 3-31 and
Chapter 11, Debug Aids.

Example

You are running an exec in TSO/E and the exec is not processing correctly. To
start tracing the exec, press the attention interrupt key. The system issues the
REXX attention prompting message that asks you to enter either a null line to
continue or an immediate command. Enter TS to start tracing.

 Chapter 10. TSO/E REXX Commands 10-39

 TS

10-40 OS/390 V2R8.0 TSO/E REXX Reference

 Debug Aids

 Chapter 11. Debug Aids

In addition to the TRACE instruction, described on page 3-31, there are the
following debug aids:

� The interactive debug facility

� The TSO/E REXX immediate commands:

HE — Halt Execution
HI — Halt Interpretation
TS — Trace Start
TE — Trace End

You can use the immediate commands if a REXX exec is running in the TSO/E
address space and you press the attention interrupt key. In attention mode, you
can enter HE, HI, TS, or TE. You can also use the TS and TE immediate
commands in a REXX exec that runs in any address space. That is, TS and TE
are available from both ADDRESS MVS and ADDRESS TSO.

� The TSO/E REXX command EXECUTIL with the following operands:

HI — Halt Interpretation
TS — Trace Start
TE — Trace End

You can use the EXECUTIL command in an exec that runs in the TSO/E
address space. You can also use EXECUTIL from TSO/E READY mode and
ISPF and in a TSO/E CLIST. You can use EXECUTIL with the HI, TS, or TE
operands in a program written in a high-level programming language using the
TSO service facility. See “EXECUTIL” on page 10-19 for more information.

� The trace and execution control routine IRXIC. You can invoke IRXIC from a
REXX exec or any program that runs in any address space to use the following
TSO/E REXX immediate commands:

HI — Halt Interpretation
TS — Trace Start
TE — Trace End
HT — Halt Typing
RT — Resume Typing

See “Trace and Execution Control Routine – IRXIC” on page 12-57 for more
information.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a REXX exec.

Changing the TRACE action to one with a prefix ? (for example, TRACE ?A or the
TRACE built-in function) turns on interactive debug and indicates to the user that
interactive debug is active. You can interactively debug REXX execs in the TSO/E
address space from your terminal session.

Further TRACE instructions in the exec are ignored, and the language processor
pauses after nearly all instructions that are traced at the terminal (see the following

 Copyright IBM Corp. 1988, 1999 11-1

 Debug Aids

for exceptions). When the language processor pauses, three debug actions are
available:

1. Entering a null line (with no characters, including no blanks) makes the
language processor continue execution until the next pause for debug input.
Repeatedly entering a null line, therefore, steps from pause point to pause
point. For TRACE ?A, for example, this is equivalent to single-stepping through
the exec.

2. Entering an equal sign (=) , with no blanks, makes the language processor
re-execute the clause last traced. For example: if an IF clause is about to take
the wrong branch, you can change the value of the variable(s) on which it
depends, and then re-execute it.

After the clause has been re-executed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and
processed immediately (that is, as though DO; line ; END; had been inserted
in the exec). The same rules apply as in the INTERPRET instruction (for
example, DO-END constructs must be complete). If an instruction has a syntax
error in it, a standard message is displayed and you are prompted for input
again. Similarly, all the other SIGNAL conditions are disabled while the string is
processed to prevent unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
executed (that is, they are not affected by the prefix ! on TRACE instructions),
but the variable RC is not set.

After the string has been processed, the language processor pauses again for
further debug input, unless a TRACE instruction was entered. In this latter
case, the language processor immediately alters the tracing action (if
necessary) and then continues executing until the next pause point (if any).
Therefore, to alter the tracing action (from All to Results, for example) and then
re-execute the instruction, you must use the built-in function TRACE (see page
4-34). For example, CALL TRACE I changes the trace action to “I” and allows
re-execution of the statement after which the pause was made. Interactive
debug is turned off, when it is in effect, if a TRACE instruction uses a prefix, or
at any time, when a TRACE O or TRACE with no options is entered.

You can use the numeric form of the TRACE instruction to allow sections of the
exec to be executed without pause for debug input. TRACE n (that is, positive
result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through an exec (for example,
after using TRACE ?R to trace Results) and then enter a subroutine in which you
have no interest, you can enter TRACE O to turn tracing off. No further instructions in
the subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and, therefore, (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

11-2 OS/390 V2R8.0 TSO/E REXX Reference

 Debug Aids

You can switch tracing on (without modifying an exec) using the command
EXECUTIL TS. You can also switch tracing on or off asynchronously, (that is, while
an exec is running) using the TS and TE immediate commands. See page 11-4 for
the description of these facilities.

Because you can execute any instructions in interactive debug, you have
considerable control over execution.

Some examples:

Say expr /\ displays the result of evaluating the \/
 /\ expression. \/

name=expr /\ alters the value of a variable. \/

Trace O /\ (or Trace with no options) turns off \/
/\ interactive debug and all tracing. \/

Trace ?A /\ turns off interactive debug but continues \/
/\ tracing all clauses. \/

Trace L /\ makes the language processor pause at labels \/
/\ only. This is similar to the traditional \/
/\ "breakpoint" function, except that you \/
/\ do not have to know the exact name and \/
/\ spelling of the labels in the exec. \/

exit /\ terminates execution of the exec. \/

Do i=1 to 1ð; say stem.i; end /\ displays ten elements of the \/
/\ array stem. \/

Exceptions : Some clauses cannot safely be re-executed, and therefore, the
language processor does not pause after them, even if they are traced. These are:

� Any repetitive DO clause, on the second or subsequent time around the loop

� All END clauses (not a useful place to pause in any case)

� All THEN, ELSE, OTHERWISE, or null clauses

� All RETURN and EXIT clauses

� All SIGNAL and CALL clauses (the language processor pauses after the target
label has been traced)

� Any clause that raises a condition that CALL ON or SIGNAL ON traps (the
pause takes place after the target label for the CALL or SIGNAL has been
traced)

� Any clause that causes a syntax error. (These can be trapped by SIGNAL ON
SYNTAX, but cannot be re-executed.)

Interrupting Execution and Controlling Tracing
The following topics describe how you can interrupt the processing of a REXX exec
and how you can start and stop tracing an exec.

 Chapter 11. Debug Aids 11-3

 Debug Aids

Interrupting Exec Processing
You can interrupt the language processor during processing in several ways:

� In the TSO/E address space, you can use the HI (Halt Interpretation)
immediate command or the EXECUTIL HI command to halt the interpretation of
execs. HI and EXECUTIL HI cause the interpretation of all REXX execs that
are currently running to be halted, as though a halt condition had been raised.
This is especially useful when an exec gets into a loop and you want to end
processing.

If an exec is running, you can press the attention interrupt key and enter
attention mode. In attention mode, you can enter HI to halt the interpretation of
the exec.

You can use EXECUTIL with the HI operand in a REXX exec. You can also
use EXECUTIL HI in a TSO/E CLIST or in a program that is written in a
high-level programming language using the TSO service facility.

When an HI interrupt halts the interpretation of an exec, the data stack is
cleared. You can trap an HI interrupt by enabling the halt condition using either
the CALL ON or SIGNAL ON instruction (see Chapter 7, Conditions and
Condition Traps).

� In any address space (TSO/E and non-TSO/E), you can call the trace and
execution control routine, IRXIC, to invoke the HI immediate command and halt
the interpretation of all REXX execs that are currently running. You can invoke
IRXIC from an exec or other program in any address spaces.

� In the TSO/E address space, you can use the HE (Halt Execution) immediate
command to halt the execution of an exec. If an exec is running, you can press
the attention interrupt key and enter attention mode. In attention mode, you can
enter HE to halt the exec.

From attention mode, the HI immediate command is processed as soon as control
returns to the exec, but before the next statement in the exec is interpreted. For the
HE immediate command, the system processes the command before control
returns to the exec.

If the exec is processing an external function or subroutine written in a
programming language other than REXX or the exec is processing a host
command, when you halt exec interpretation using HI, the halt is not processed
until the function, subroutine, or command returns to the calling exec. That is, the
function, subroutine, or command completes processing before exec processing is
interrupted.

The HE immediate command is useful if an exec invokes an external function or
subroutine that is written in a programming language other than REXX and the
function or subroutine cannot return to the invoking exec (for example, because it
goes into a loop). HE is also useful for certain host commands that may hang and
cannot return to the exec, for example, the commands available under ADDRESS
MVS.

11-4 OS/390 V2R8.0 TSO/E REXX Reference

 Debug Aids

 In these cases, the HI immediate command cannot halt the exec because HI is not
processed until the function, subroutine, or command returns to the exec.
However, the HE immediate command is processed immediately and halts the
exec.

For more information, see “Using the HE Immediate Command to Halt an Exec” on
page 11-5.

Considerations for Interrupting Exec Processing
If you are running a REXX exec in TSO/E and press the attention interrupt key to
interrupt exec processing, there are several considerations of which you should be
aware.

� Considerations for interrupting a host command that is running in a REXX exec.

Unless a command provides its own attention processing, if a host command is
processing and you press the attention interrupt key, the language processor
terminates the command and returns a value of -1 in the REXX special variable
RC. In this case, the language processor does not display a message that lets
you enter an immediate command, such as TS (Trace Start) or HI (Halt
Interpretation).

� Considerations for interrupting a REXX exec that is running under ISPF.

When the language processor gives control to an ISPF or ISPF/PDF service
(for example, the SELECT service) and you press the attention interrupt key,
attention processing is under the control of ISPF. For example, if ISPF is
processing a command using the SELECT service and you press the attention
interrupt key, ISPF displays a message that the command was terminated and
then terminates the screen. In this case, the language processor does not
display a message that lets you enter an immediate command, such as TS
(Trace Start) or HI (Halt Interpretation) and ISPF sets the REXX special
variable RC.

Note that when ISPF is active and the language processor is in control,
whether or not the language processor displays the message that allows you to
enter an immediate command depends on how ISPF was started. For example,
if ISPF is started using the ISPSTART command with the TEST operand, ISPF
attention processing is disabled and, therefore, the language processor's
attention processing is also disabled.

Using the HE Immediate Command to Halt an Exec
In the TSO/E address space, you can use the HE (Halt Execution) immediate
command to halt the execution of a REXX exec. You can use the HE immediate
command only if you are running an exec in TSO/E and you press the attention
interrupt key and enter attention mode. When you enter attention mode, the system
displays the REXX attention prompting message, IRX0920I. You can enter HE in
response to the message.

If you need to stop the processing of a REXX exec, it is recommended that you use
the HI immediate command instead of HE whenever possible.

Note that unlike the other immediate commands, HE is not a valid operand on the
EXECUTIL command, nor does the trace and execution control routine, IRXIC,
support the HE command.

 Chapter 11. Debug Aids 11-5

 Debug Aids

If you have nested execs and use the HE immediate command, HE works
differently for execs you invoke from TSO/E READY mode compared to execs you
invoke from ISPF. As an example, suppose you have an exec (EXECA) that calls
another exec (EXECB). While the EXECB exec is running, you enter attention
mode and enter the HE immediate command to halt execution. The HE immediate
command works as follows:

� If you invoked the EXECA exec from ISPF, the HE immediate command halts
the execution of both the EXECB exec and the EXECA exec.

� If you invoked the EXECA exec from TSO/E READY, the HE immediate
command halts the execution of the currently running exec, which is EXECB.
The top-level exec (EXECA) may or may not be halted depending on how the
EXECA exec invoked EXECB.

– If EXECA invoked EXECB using the TSO/E EXEC command, the HE
immediate command does not halt the execution of EXECA. For example,
suppose EXECA used the following command to invoke EXECB:

ADDRESS TSO "EXEC 'winston.workds.rexx(execb)' exec"

When you enter HE while the EXECB exec is running, the EXECB exec is
halted and control returns to EXECA. In this case, the TSO/E EXEC
command terminates and the REXX special variable RC is set to 12. The
EXECA exec continues processing at the clause following the TSO/E EXEC
command.

– If EXECA invoked EXECB using either a subroutine call (CALL EXECB) or
a function call (X = EXECB(arg)), the following occurs. The EXECB exec is
halted and control returns to the calling exec, EXECA. In this case, EXECB
is prematurely halted and the calling exec (EXECA) raises the SYNTAX
condition because the function or subroutine failed.

If you use the HE immediate command and you halt the execution of an external
function, external subroutine, or a host command, note the following. The function,
subroutine, or command does not regain control to perform its normal cleanup
processing. Therefore, its resources could be left in an inconsistent state. If the
function, subroutine, or command requires cleanup processing, it should be covered
by its own recovery ESTAE, which performs any required cleanup and then
percolates.

Starting and Stopping Tracing
The following describes how to start and stop tracing an exec.

You can start tracing REXX execs in several ways:

� You can use the TRACE instruction to start tracing. For more information, see
“TRACE” on page 3-31.

� In the TSO/E address space, you can use the TS (Trace Start) immediate
command or the EXECUTIL TS command to start tracing. If an exec is running
and you press the attention interrupt key, after you enter attention mode, you
can enter TS to start tracing.

You can use EXECUTIL with the TS operand in a REXX exec. You can also
use EXECUTIL TS in a TSO/E CLIST or in a program that is written in a
high-level programming language by using the TSO service facility.

11-6 OS/390 V2R8.0 TSO/E REXX Reference

 Debug Aids

TS or EXECUTIL TS puts the REXX exec into normal interactive debug. You
can then execute REXX instructions; for example, to display variables or EXIT.
Interactive debug is helpful if an exec is looping. You can inspect the exec and
step through the execution before deciding whether or not to continue
execution.

� In any address space (TSO/E and non-TSO/E), you can use the TS (Trace
Start) immediate command in a REXX exec to start tracing. The trace output is
written to the:

– Terminal (TSO/E foreground)
– Output stream SYSTSPRT (TSO/E background)
– Output stream, which is usually SYSTSPRT (non-TSO/E address space).

In any address space, you can call the trace and execution control routine
IRXIC to invoke the TS immediate command. You can invoke IRXIC from an
exec or other program in any address space.

You can end tracing in several ways:

� You can use the TRACE OFF instruction to end tracing. For more information,
see “TRACE” on page 3-31.

� In the TSO/E address space, you can use the TE (Trace End) immediate
command or the EXECUTIL TE command to end tracing. If an exec is running
and you press the attention interrupt key, after you enter attention mode, you
can enter TE to end tracing.

You can use EXECUTIL with the TE operand in a REXX exec. You can also
use EXECUTIL TE in a TSO/E CLIST or in a program that is written in a
high-level programming language by using the TSO service facility.

TE or EXECUTIL TE has the effect of executing a TRACE O instruction. The
commands are useful if you want to end tracing when you are not in interactive
debug.

� In any address space (TSO/E and non-TSO/E), you can use the TE (Trace
End) immediate command in a REXX exec to end tracing.

In any address space, you can call the trace and execution control routine
IRXIC to invoke the TE immediate command. You can invoke IRXIC from an
exec or other program in any address spaces.

For more information about the HI, TS, and TE immediate commands and the
EXECUTIL command, see Chapter 10, TSO/E REXX Commands.

For more information about the trace and execution control routine IRXIC, see
“Trace and Execution Control Routine – IRXIC” on page 12-57.

 Chapter 11. Debug Aids 11-7

 Debug Aids

11-8 OS/390 V2R8.0 TSO/E REXX Reference

 Programming Services

Chapter 12. TSO/E REXX Programming Services

In addition to the REXX language instructions and built-in functions, and the TSO/E
external functions and REXX commands that are provided for writing REXX execs,
TSO/E provides programming services for REXX processing. Some programming
services are routines that let you interface with REXX and the language processor.

In addition to the TSO/E REXX programming services that are described in this
chapter, TSO/E also provides various routines that let you customize REXX
processing. These are described beginning in Chapter 13, TSO/E REXX
Customizing Services. TSO/E also provides replaceable routines that handle
system services. The routines are described in Chapter 16, Replaceable Routines
and Exits. Whenever you invoke a TSO/E REXX routine, there are general
conventions relating to registers that are passed on the call, parameter lists, and
return codes the routines return. “General Considerations for Calling TSO/E REXX
Routines” on page 12-3 highlights several major considerations about calling REXX
routines.

The REXX programming services TSO/E provides are summarized below and are
described in detail in the individual topics in this chapter.

IRXJCL and IRXEXEC Routines: IRXJCL and IRXEXEC are two routines that you
can use to run a REXX exec in any MVS address space. Both IRXEXEC and
IRXJCL are programming interfaces to the language processor.

You can use IRXJCL to run a REXX exec in MVS batch by specifying IRXJCL as
the program name (PGM=) on the JCL EXEC statement. You can also invoke
IRXJCL from a REXX exec or a program in any address space to run a REXX
exec.

You can invoke IRXEXEC from a REXX exec or a program in any address space to
run a REXX exec. Using IRXEXEC instead of the IRXJCL routine or, in TSO/E, the
EXEC command processor to invoke an exec provides more flexibility. For
example, you can preload the exec in storage and then use IRXEXEC to run the
exec. “Exec Processing Routines – IRXJCL and IRXEXEC” on page 12-9 describes
the IRXJCL and IRXEXEC programming interfaces in more detail.

External Functions and Subroutines, and Function Packages: You can extend
the capabilities of the REXX programming language by writing your own external
functions and subroutines that you can then use in REXX execs. You can write an
external function or subroutine in REXX. For performance reasons, you can write
external functions and subroutines in either assembler or a high-level programming
language and store them in a load library. You can also group frequently used
external functions and subroutines into a function package, which provides quick
access to the packaged functions and subroutines. When a REXX exec calls an
external function or subroutine, the function packages are searched before load
libraries or exec data sets, such as SYSEXEC and SYSPROC. The complete
search order is described on page 4-3.

If you write external functions and subroutines in any programming language other
than REXX, the language must support the system-dependent interfaces that the
language processor uses to invoke the function or subroutine. If you want to include
an external function or subroutine in a function package, the function or subroutine

 Copyright IBM Corp. 1988, 1999 12-1

 Programming Services

must be link-edited into a load module. “External Functions and Subroutines, and
Function Packages” on page 12-32 describes the system-dependent interfaces for
writing external functions and subroutines and how to create function packages.

Variable Access: TSO/E provides the IRXEXCOM variable access routine that lets
unauthorized commands and programs access and manipulate REXX variables.
Using IRXEXCOM, you can inspect, set, or drop variables. IRXEXCOM can be
called in both the TSO/E and non-TSO/E address spaces. “Variable Access
Routine – IRXEXCOM” on page 12-46 describes IRXEXCOM in detail.

Note: TSO/E also provides the IKJCT441 routine that lets authorized and
unauthorized commands and programs access REXX variables. IKJCT441
can be used only in the TSO/E address space and is described in OS/390
TSO/E Programming Services.

Maintain Host Command Environments: When a REXX exec runs, there is at
least one host command environment available for processing host commands.
When an exec begins running, an initial environment is defined. You can change
the host command environment using the ADDRESS instruction (see page 3-2).

When the language processor processes an instruction that is a host command, it
first evaluates the expression and then passes the command to the active host
command environment for processing. A specific routine defined for the host
command environment handles the command processing. TSO/E provides several
host command environments for execs that run in non-TSO/E address spaces and
in the TSO/E address space (for TSO/E and ISPF). “Commands to External
Environments” on page 2-20 describes how you issue commands to the host and
the different environments TSO/E provides for MVS (non-TSO/E), TSO/E, and
ISPF.

The valid host command environments, the routines that are invoked to handle
command processing within each environment, and the initial environment that is
available to a REXX exec when the exec begins running are defined in a host
command environment table. You can customize REXX processing to define your
own host command environment and provide a routine that handles command
processing for that environment. Chapter 13, “TSO/E REXX Customizing Services”
on page 13-1 describes how to customize REXX processing in more detail.

TSO/E also provide the IRXSUBCM routine that lets you access the entries in the
host command environment table. Using IRXSUBCM, you can add, change, and
delete entries in the table and also query the values for a particular host command
environment entry. “Maintain Entries in the Host Command Environment Table –
IRXSUBCM” on page 12-53 describes the IRXSUBCM routine in detail.

Trace and Execution Control: TSO/E provides the trace and execution control
routine, IRXIC, that lets you use the HI, HT, RT, TS, and TE commands to control
the processing of REXX execs. For example, you can invoke IRXIC from a program
written in assembler or a high-level language to control the tracing and execution of
execs. “Trace and Execution Control Routine – IRXIC” on page 12-57 describes
the IRXIC routine in detail.

Get Result Routine: TSO/E provides the get result routine, IRXRLT, that lets you
obtain the result from a REXX exec that was invoked using the IRXEXEC routine.
You can also use IRXRLT if you write external functions and subroutines in a
programming language other than REXX. IRXRLT lets your function or subroutine

12-2 OS/390 V2R8.0 TSO/E REXX Reference

 Programming Services

code obtain a large enough area of storage to return the result to the calling exec.
The IRXRLT routine also lets a compiler run-time processor obtain an evaluation
block to handle the result from a compiled REXX exec. “Get Result Routine –
IRXRLT” on page 12-60 describes the IRXRLT routine in detail.

SAY Instruction Routine: The SAY instruction routine, IRXSAY, lets you write a
character string to the same output stream as the REXX SAY keyword instruction.
“SAY Instruction Routine – IRXSAY” on page 12-68 describes the IRXSAY routine
in detail.

Halt Condition Routine: The halt condition routine, IRXHLT, lets you query or
reset the halt condition. “Halt Condition Routine – IRXHLT” on page 12-71
describes the IRXHLT routine in detail.

Text Retrieval Routine: The text retrieval routine, IRXTXT, lets you retrieve the
same text that the TSO/E REXX interpreter uses for the ERRORTEXT built-in
function and for certain options of the DATE built-in function. For example, using
IRXTXT, a program can retrieve the name of a month or the text of a syntax error
message. “Text Retrieval Routine – IRXTXT” on page 12-73 describes the IRXTXT
routine in detail.

LINESIZE Function Routine: The LINESIZE function routine, IRXLIN, lets you
retrieve the same value that the LINESIZE built-in function returns. “LINESIZE
Function Routine – IRXLIN” on page 12-79 describes the IRXLIN routine in detail.

General Considerations for Calling TSO/E REXX Routines
Each topic in this book that describes the different TSO/E REXX routines describes
how to use the routine, including entry and return specifications and parameter lists.
The following topics provide general information about calling TSO/E REXX
routines.

All TSO/E REXX routines, except for the initialization routine, IRXINIT, cannot run
without a language processor environment being available. A language processor
environment is the environment in which REXX operates, that is, in which the
language processor processes a REXX exec. REXX execs and TSO/E REXX
routines run in a language processor environment.

The system automatically initializes a language processor environment in the
TSO/E and non-TSO/E address spaces by calling the initialization routine, IRXINIT.
In TSO/E, an environment is initialized during logon processing for TSO/E READY
mode. During your TSO/E session, you can invoke an exec or use a TSO/E REXX
routine. The exec or routine runs in the environment that was created during logon
processing.

If you invoke ISPF, the system initializes another language processor environment
for the ISPF screen. If you split the ISPF screen, a third environment is initialized
for that screen. In ISPF, when you invoke an exec or TSO/E REXX routine, the
exec or routine runs in the language processor environment from which it was
invoked.

The system automatically terminates the three language processor environments it
initializes as follows:

 Chapter 12. TSO/E REXX Programming Services 12-3

 Programming Services

� When you return to one screen in ISPF, the environment for the second screen
is terminated

� When you end ISPF and return to TSO/E READY mode, the environment for
the first ISPF screen is terminated

� When you log off TSO/E, the environment for TSO/E READY mode is
terminated.

In non-TSO/E address spaces, the system does not automatically initialize a
language processor environment at a specific point, such as when the address
space is activated. When you invoke either the IRXJCL or IRXEXEC routine to run
an exec, the system automatically initializes an environment if an environment does
not already exist. The exec then runs in that environment. The exec can then
invoke a TSO/E REXX routine, such as IRXIC, and the routine runs in the same
environment in which the exec is running. Chapter 14, Language Processor
Environments describes environments in more detail, when they are initialized, and
the different characteristics that make up an environment.

You can explicitly call the initialization routine, IRXINIT, to initialize language
processor environments. Calling IRXINIT lets you customize the environment and
how execs and services are processed and used. Using IRXINIT, you can create
several different environments in an address space. IRXINIT is primarily intended
for use in non-TSO/E address spaces, but you can also use it in TSO/E.
Customization information is described in more detail in Chapter 13, TSO/E REXX
Customizing Services.

If you explicitly call IRXINIT to initialize environments, whenever you call a TSO/E
REXX routine, you can specify in which language processor environment you want
the routine to run. During initialization, IRXINIT creates several control blocks that
contain information about the environment.

The main control block is the environment block, which represents the language
processor environment. If you use IRXINIT and initialize several environments and
then want to call a TSO/E REXX routine to run in a specific environment, you can
pass the address of the environment block for the environment on the call. When
you call the TSO/E REXX routine, you can pass the address of the environment
block either in register 0 or in the environment block address parameter in the
parameter list if the routine supports the parameter. By using the TSO/E REXX
customizing services and the environment block, you can customize REXX
processing and also control in which environment you want TSO/E REXX routines
to run. For more information, see “Specifying the Address of the Environment
Block” on page 12-7.

The following information describes some general conventions about calling TSO/E
REXX routines:

� The REXX vector of external entry points is a control block that contains the
addresses of the TSO/E REXX routines and the system-supplied and
user-supplied replaceable routines. The vector lets you easily access the
address of a specific routine to invoke the routine. See “Control Blocks Created
for a Language Processor Environment” on page 14-58 for more information
about the vector.

� All calls are in 31 bit addressing mode.

� All data areas may be above 16 MB in virtual storage.

12-4 OS/390 V2R8.0 TSO/E REXX Reference

 Programming Services

� On entry to an external function or subroutine, register 0 contains the address
of the environment block. This address should be passed to any TSO/E REXX
programming service invoked from the external function or subroutine. Passing
the address of the environment block is particularly important if the environment
is reentrant because TSO/E REXX programming services cannot automatically
locate a reentrant environment. For more information on reentrant
environments, see “Using the Environment Block for Reentrant Environments”
on page 12-8.

� For most of the TSO/E REXX routines, you pass a parameter list on the call.
Register 1 contains the address of the parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last parameter address must be a binary 1. If you do not
use a parameter, you must pass either binary zeros (for numeric data or
addresses) or blanks (for character data). For more information, see “Parameter
Lists for TSO/E REXX Routines”.

� On calls to the TSO/E REXX routines, you can pass the address of an
environment block to specify in which particular language processor
environment you want the routine to run. For more information, see “Specifying
the Address of the Environment Block” on page 12-7.

� Specific return codes are defined for each TSO/E REXX routine. Some
common return codes include 0, 20, 28, and 32. For more information, see
“Return Codes for TSO/E REXX Routines” on page 12-9.

Parameter Lists for TSO/E REXX Routines
Most of the TSO/E REXX routines have parameter lists. The parameters provide
information to the routine about what type of processing you want to perform and
also provide a way for the routine to return information to the program that called it.
All the parameter lists are passed to the routines in the same manner. Figure 12-1
on page 12-6 shows the format of the parameter lists for the TSO/E REXX
routines. A description of the parameter list follows the figure.

 Chapter 12. TSO/E REXX Programming Services 12-5

 Programming Services

Parameter 1
Parameter value

Parameter value

Parameter value

Parameter n

Parameter 2

.

.

.

.

.

Parameter List Parameter 1

Parameter 2

R1

Parameter n*

* high order bit on

Figure 12-1. Overview of Parameter Lists for TSO/E REXX Routines

Register 1 contains an address that points to a parameter list. The parameter list
consists of a list of addresses. Each address in the parameter list points to a
parameter. This is illustrated on the left side of the diagram in Figure 12-1. The end
of the parameter list (the list of addresses) is indicated by the high-order bit of the
last address being set to a binary 1.

The parameters themselves are shown on the right side of the diagram in
Figure 12-1. The parameter value may be the data itself or it may be an address
that points to the data.

All of the parameters for a specific routine may not be required. That is, some
parameters may be optional. Because of this, the parameter lists are of variable
length and the end of the parameter list must be indicated by the high-order bit
being set on in the last address.

If there is an optional parameter you do not want to use and there are parameters
after it you want to use, you can specify the address of the optional parameter in
the parameter list, but set the optional parameter itself to either binary zeros (for
numeric data or addresses) or to blanks (for character data). Otherwise, you can
simply end the parameter list at the parameter before the optional parameter by
setting the high-order bit on in the preceding parameter's address.

For example, suppose a routine has seven parameters and parameters 6 and 7 are
optional. You do not want to use parameter 6, but you want to use parameter 7. In
the parameter list, specify the address of parameter 6 and set the high-order bit on
in the address of parameter 7. For parameter 6 itself, specify 0 or blanks,
depending on whether the data is numeric or character data.

As another example, suppose the routine has seven parameters, parameters 6 and
7 are optional, and you do not want to use the optional parameters (parameters 6
and 7). You can end the parameter list at parameter 5 by setting the high-order bit
of the address for parameter 5 on.

12-6 OS/390 V2R8.0 TSO/E REXX Reference

 Programming Services

The individual descriptions of each routine in this book describe the parameters, the
values you can specify for each parameter, and whether a parameter is optional.

Specifying the Address of the Environment Block
You can explicitly call the initialization routine, IRXINIT, to initialize a language
processor environment in an address space. If you explicitly call IRXINIT to
initialize an environment, you can optionally specify this environment when you
invoke any of the TSO/E REXX routines. The environment block represents the
environment in which you want the routine to run. Generally, you can specify the
address of the environment block:

� Using the environment block address parameter in the routine's parameter list
� In register 0.

If you specify the environment block address in the parameter list, TSO/E REXX
uses the address you specify and ignores the contents of register 0. However,
TSO/E does not validate the address you specify in the parameter list. Therefore,
you must ensure that you pass a correct address or unpredictable results may
occur. For more information, see “Using the Environment Block Address
Parameter”.

If you do not specify an address in the environment block address parameter, the
TSO/E REXX routine checks register 0 for the address of an environment block. If
register 0 contains the address of a valid environment block, the routine runs in the
environment represented by that environment block. If the address is not valid, the
routine locates the current non-reentrant environment and runs in that environment.
If register 0 contains a 0, the routine immediately searches for the last
non-reentrant environment created, thereby eliminating the processing required to
check whether register 0 contains a valid environment block address.

If you use IRXINIT to initialize reentrant environments, see “Using the Environment
Block for Reentrant Environments” on page 12-8 for information about running in
reentrant environments.

Using the Environment Block Address Parameter
The parameter lists of most of the TSO/E REXX routines contain the environment
block address parameter. This parameter lets you specify the address of the
environment block that represents the environment in which you want the routine to
run. If you use the environment block address parameter, the routine uses the
address you specify and ignores the contents of register 0. Additionally, the routine
does not check the address you specify. Therefore, you must ensure that you pass
a correct environment block address or unpredictable results may occur. For
example, if you specify an invalid address, the routine may return with a return
code of 28, which indicates a language processor environment could not be
located. In other cases, processing could abend.

You could also specify an address for an environment that exists, but the address
may be for a different environment than the one you want to use. In this case, the
routine may run successfully, but the results will not be what you expected. For
example, suppose you have four environments initialized in an address space;
environments 1, 2, 3, and 4. You want to invoke the trace and execution control
routine, IRXIC, to halt the interpretation of execs in environment 2. However, when
you invoke IRXIC, you specify the address of the environment block for
environment 4, instead of environment 2. IRXIC completes successfully, but the

 Chapter 12. TSO/E REXX Programming Services 12-7

 Programming Services

interpretation of execs is halted in environment 4, rather than in environment 2.
This is a subtle problem that may be difficult to determine. Therefore, if you use the
environment block address parameter, you must ensure the address you specify is
correct.

If you do not want to pass an address in the environment block address parameter,
specify a value of 0. Also, the parameter lists for the TSO/E REXX routines are of
variable length. That is, register 1 points to a list of addresses and each address in
the list points to a parameter. The end of the parameter list is indicated by the
high-order bit being on in the last address in the parameter list. If you do not want
to use the environment block address parameter and there are no other parameters
after it that you want to use, you can simply end the parameter list at a preceding
parameter. For more information about parameter lists, see “Parameter Lists for
TSO/E REXX Routines” on page 12-5.

If you are using the environment block address parameter and you are having
problems debugging an application, you may want to set the parameter to 0 for
debugging purposes. This lets you determine whether any problems are a result of
this parameter being specified incorrectly.

Using the Environment Block for Reentrant Environments
If you want to use a reentrant environment, you must explicitly call the initialization
routine, IRXINIT, to initialize the environment. TSO/E REXX automatically initializes
non-reentrant environments only. When you invoke IRXINIT to initialize a reentrant
environment, you must set the RENTRANT flag on (see page 14-18).

An application program would use a reentrant environment when it wants to isolate
itself and its characteristics from other application programs. For example, an
application program may provide a storage management routine, but does not want
any other program to use the storage management routine. To ensure this, you
would use IRXINIT to initialize the environment and set the RENTRANT flag on.
When the RENTRANT flag is on, the environment is not added to the existing chain
of environments. Instead, the environment is an independent entry isolated from all
other environments.

The system routines do not locate reentrant environments. Additionally, if you use
IRXINIT to find an environment, IRXINIT finds non-reentrant environments only, not
reentrant environments. You can use a reentrant environment that you have
initialized only by explicitly passing the address of the environment block for the
reentrant environment when you call a TSO/E REXX programming routine. If you
want to invoke a TSO/E REXX routine to run in a reentrant environment, you must
pass the address of the environment block for the reentrant environment on the call
to the routine. You can pass the address either in the parameter list (in the
environment block address parameter) or in register 0.

If you do not explicitly pass an environment block address, the routine locates the
current non-reentrant environment and runs in that environment.

Each task that is using REXX must have its own language processor environment.
Two tasks cannot simultaneously use the same language processor environment
for REXX processing.

12-8 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Return Codes for TSO/E REXX Routines
The TSO/E REXX routines return a return code in register 15 that indicates whether
processing was successful. The parameter lists for most of the routines also have a
return code parameter that lets you specify a fullword field in which to receive the
return code. The return code parameter lets high-level languages more easily
obtain return code information. If you provide this parameter, the routine returns the
return code in both the return code parameter and in register 15. If the parameter
list you pass to the routine is invalid, the return code is returned in register 15 only.

Each TSO/E REXX routine has specific return codes. The individual topics in this
book describe the return codes for each routine. Figure 12-2 shows the common
return codes that most of the TSO/E REXX routines use.

Figure 12-2. Common Return Codes for TSO/E REXX Routines

Return Code Description

0 Successful processing.

20 Error occurred. Processing was unsuccessful. The requested service
was either partially completed or was terminated. An error message
may be written to the error message field in the environment block. If
the NOPMSGS flag is off for the environment, the message is also
written to the output DD that is defined for the environment or to the
terminal.

For some errors, an alternate message may also be issued. Alternate
messages are printed only if the ALTMSGS flag is on for the
environment. The NOPMSGS and ALTMSGS flags are described in
the topic “Flags and Corresponding Masks” on page 14-15.

If multiple errors occurred and multiple error messages were issued,
all error messages are written to the output DD or to the terminal.
Additionally, the first error message is stored in the environment
block.

28 A service was requested, but a valid language processor environment
could not be located. The requested service is not performed.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Exec Processing Routines – IRXJCL and IRXEXEC
This topic provides information about the IRXJCL and IRXEXEC routines, which
you can use to run REXX execs. You can use IRXJCL to run a REXX exec in MVS
batch from JCL. You can also call IRXJCL from a REXX exec or a program that is
running in any address space to run an exec.

You can call the IRXEXEC routine from a REXX exec or program that is running in
any address space to run an exec. IRXEXEC provides more flexibility than IRXJCL.
With IRXJCL, you can pass the name of the exec and one argument on the call.
Using IRXEXEC, you can, for example, pass multiple arguments or preload the
exec in storage.

 Chapter 12. TSO/E REXX Programming Services 12-9

 IRXJCL and IRXEXEC

The following topics describe each routine. If you use either IRXJCL or IRXEXEC
to run a REXX exec in TSO/E foreground or background, note that you cannot
invoke the REXX exec as authorized.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point
name is IRXEX.

The IRXJCL Routine
You can use IRXJCL to run a REXX exec in MVS batch. You can also call IRXJCL
from a REXX exec or a program in any address space to run an exec.

A program can access IRXJCL using either the CALL or LINK macro instructions,
specifying IRXJCL as the entry point name. You can obtain the address of the
IRXJCL routine from the REXX vector of external entry points. “Format of the REXX
Vector of External Entry Points” on page 14-64 describes the vector.

Using IRXJCL to Run a REXX Exec in MVS Batch
To run an exec in MVS batch, specify IRXJCL as the program name (PGM=) on
the JCL EXEC statement. Specify the member name of the exec and one argument
you want to pass to the exec in the PARM field on the EXEC statement. You can
specify only the name of a member of a PDS. You cannot specify the name of a
sequential data set. The PDS must be allocated to the DD specified in the
LOADDD field of the module name table. The default is SYSEXEC. Figure 12-3
shows example JCL to invoke the exec MYEXEC.

//STEP1 EXEC PGM=IRXJCL,PARM='MYEXEC A1 b2 C3 d4'
//\
//STEPLIB
//\ Next DD is the data set equivalent to terminal input
//SYSTSIN DD DSN=xxx.xxx.xxx,DISP=SHR,...
//\
//\ Next DD is the data set equivalent to terminal output
//SYSTSPRT DD DSN=xxx.xxx.xxx,DISP=OLD,...
//\
//\ Next DD points to a library of execs
//\ that include MYEXEC
//SYSEXEC DD DSN=xxx.xxx.xxx,DISP=SHR

Figure 12-3. Example of Invoking an Exec from a JCL EXEC Statement Using IRXJCL

Note: If you want output to be routed to a printer, specify the //SYSTSPRT DD
statement as:

//SYSTSPRT DD SYSOUT=A

As Figure 12-3 shows, the exec MYEXEC is loaded from DD SYSEXEC.
SYSEXEC is the default setting for the name of the DD from which an exec is to be
loaded. In the example, one argument is passed to the exec. The argument can
consist of more than one token. In this case, the argument is:

A1 b2 C3 d4

When the PARSE ARG keyword instruction is processed in the exec (for example,
PARSE ARG EXVARS), the value of the variable EXVARS is set to the argument
specified on the JCL EXEC statement. The variable EXVARS is set to:

12-10 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

A1 b2 C3 d4

The MYEXEC exec can perform any of the functions that an exec running in a
non-TSO/E address space can perform. See “Writing Execs That Run in
Non-TSO/E Address Spaces” on page 8-4 for more information about the services
you can use in execs that run in non-TSO/E address spaces.

IRXJCL returns a return code as the step completion code. However, the step
completion code is limited to a maximum of 4095, in decimal. If the return code is
greater than 4095 (decimal), the system uses the rightmost three digits of the
hexadecimal representation of the return code and converts it to decimal for use as
the step completion code. See “Return Codes” on page 12-12 for more information.

Invoking IRXJCL From a REXX Exec or a Program
You can also call IRXJCL from an exec or a program to run a REXX exec. On the
call to IRXJCL, you pass the address of a parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXJCL to
run. On the call to IRXJCL, you can optionally specify the address of the
environment block for the environment in register 0.

If you do not pass an environment block address or if IRXJCL determines the
address is not valid, IRXJCL locates the current environment and runs in that
environment. “Chains of Environments and How Environments Are Located” on
page 14-36 describes how environments are located. If a current environment
does not exist or the current environment was initialized on a different task and
the TSOFL flag is off in that environment, a new language processor
environment is initialized. The exec runs in the new environment. Before
IRXJCL returns, the language processor environment that was created is
terminated. Otherwise, it runs in the located current environment.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

Entry Specifications: For the IRXJCL routine, the contents of the registers on
entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameters: In register 1, you pass the address of a parameter list, which
consists of one address. The high-order bit of the address in the parameter list
must be set to 1 to indicate the end of the parameter list. Figure 12-4 describes the
parameter for IRXJCL.

 Chapter 12. TSO/E REXX Programming Services 12-11

 IRXJCL and IRXEXEC

Figure 12-5 shows an example PL/I program that invokes IRXJCL to run a REXX
exec. Note that the example is for PL/I Version 2.

Figure 12-4. Parameter for Calling the IRXJCL Routine

Parameter Number of
Bytes

Description

Parameter 1 variable A buffer, which consists of a halfword length
field followed by a data field. The first two
bytes of the buffer is the length field that
contains the length of the data that follows.
The length does not include the two bytes that
specify the length itself.

The data field contains the name of the exec,
followed by one or more blanks, followed by
the argument (if any) to be passed to the exec.
You can pass only one argument on the call.

JCLXMP1 : Procedure Options (Main);
/\ Function: Call a REXX exec from a PL/I program using IRXJCL \/

DCL IRXJCL EXTERNAL OPTIONS(RETCODE, ASSEMBLER);
DCL 1 PARM_STRUCT, /\ Parm to be passed to IRXJCL \/

5 PARM_LNG BIN FIXED (15), /\ Length of the parameter \/
5 PARM_STR CHAR (3ð); /\ String passed to IRXJCL \/

DCL PLIRETV BUILTIN; /\ Defines the return code built-in\/
PARM_LNG = LENGTH(PARM_STR); /\ Set the length of string \/

/\ \/
PARM_STR = 'JCLXMP2 This is an arg to exec'; /\ Set string value

In this case, call the exec named
JCLXMP2 and pass argument:
'This is an arg to exec' \/

FETCH IRXJCL; /\ Load the address of entry point \/
CALL IRXJCL (PARM_STRUCT); /\ Call IRXJCL to execute the REXX

exec and pass the argument \/
PUT SKIP EDIT ('Return code from IRXJCL was:', PLIRETV) (a, f(4));

/\ Print out the return code from
 exec JCLXMP2. \/
END ; /\ End of program \/

Figure 12-5. Example PL/I Version 2 Program Using IRXJCL

Return Specifications: For the IRXJCL routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
If IRXJCL encounters an error, it returns a return code. If you invoke IRXJCL from
JCL to run an exec in MVS batch, IRXJCL returns the return code as the step
condition code. If you call IRXJCL from an exec or program, IRXJCL returns the
return code in register 15. Figure 12-6 describes the return codes.

12-12 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Notes:

1. No distinction is made between the REXX exec returning a value of 0, 20, or
20021 on the RETURN or EXIT instruction and IRXJCL returning a return code
of 0, 20, or 20021.

2. IRXJCL returns a return code as the step completion code. However, the step
completion code is limited to a maximum of 4095, in decimal. If the return code
is greater than 4095 (decimal), the system uses the rightmost three digits of the
hexadecimal representation of the return code and converts it to decimal for
use as the step completion code. For example, suppose the exec returns a
return code of 8002, in decimal, on the RETURN or EXIT instruction. The value
8002 (decimal) is X'1F42' in hexadecimal. The system takes the rightmost
three digits of the hexadecimal value (X'F42') and converts it to decimal
(3906) to use as the step completion code. The step completion code that is
returned is 3906, in decimal.

Figure 12-6. Return Codes for IRXJCL Routine

Return Code Description

0 Processing was successful. Exec processing completed.

20 Processing was not successful. The exec was not processed.

20021 An invalid parameter was specified on the JCL EXEC statement or
the parameter list passed on the call to IRXJCL was incorrect. Some
possible errors could be that a parameter was either blank or null or
the name of the exec was not valid (more than eight characters long).

If you run an exec in MVS batch and a return code of 20021 is
returned, the value 3637, in decimal, is returned as the step
completion code. For more information, see note 2 on page 12-13
below.

Other Any other return code not equal to 0, 20, or 20021 is the return code
from the REXX exec on the RETURN or EXIT keyword instruction.
For more information, see the two notes below.

The IRXEXEC Routine
Use the IRXEXEC routine to run an exec in any MVS address space.

Note: To permit FORTRAN programs to call IRXEXEC, TSO/E provides an
alternate entry point for the IRXEXEC routine. The alternate entry point
name is IRXEX.

Most users do not need to use IRXEXEC. In TSO/E, you can invoke execs
implicitly or explicitly using the TSO/E EXEC command. You can also run execs in
TSO/E background. If you want to invoke an exec from a program that is written in
a high-level programming language, you can use the TSO service facility to invoke
the EXEC command. You can run an exec in MVS batch using JCL and the
IRXJCL routine.

You can also call the IRXJCL routine from a REXX exec or a program that is
running in any address space to invoke an exec. However, the IRXEXEC routine
gives you more flexibility. For example, you can preload the REXX exec in storage
and pass the address of the preloaded exec to IRXEXEC. This is useful if you want
to run an exec multiple times to avoid the exec being loaded and freed whenever it

 Chapter 12. TSO/E REXX Programming Services 12-13

 IRXJCL and IRXEXEC

is invoked. You may also want to use your own load routine to load and free the
exec.

If you use the TSO/E EXEC command, you can pass only one argument to the
exec. The argument can consist of several tokens. Similarly, if you call IRXJCL
from an exec or program, you can only pass one argument. By using IRXEXEC,
you can pass multiple arguments to the exec and each argument can consist of
multiple tokens. If you pass multiple arguments, you must not set bit 0 (the
command bit) in parameter 3.

Note: Use the EXEC command to invoke a REXX exec that uses ISPF services.
The EXEC command allows ISPF variables to be resolved. There are cases
where a REXX exec invoked using the programming routines IRXJCL and
IRXEXEC does not have access to ISPF variables. For more information
about ISPF variables, see OS/390 ISPF Services Guide.

A program can access IRXEXEC using either the CALL or LINK macro instructions,
specifying IRXEXEC as the entry point name. You can obtain the address of the
IRXEXEC routine from the REXX vector of external entry points. “Format of the
REXX Vector of External Entry Points” on page 14-64 describes the vector.

If you use IRXEXEC, one parameter on the call is the user field. You can use this
field for your own processing.

12-14 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, the following information provides several considerations about
calling IRXEXEC.

When you call IRXEXEC, you can specify the environment in which you want
IRXEXEC to run. On the call to IRXEXEC, you can optionally specify the
address of the environment block for the environment in one of the following:

� the ECTENVBK field of the ECT. The ECT address is in the command
processor parameter list (CPPL). Parameter 5 of the IRXEXEC routine
specifies the address of the CPPL. For more information about the address
of the CPPL, see the description of parameter 5 in Figure 12-7 on
page 12-15.

� the parameter list

 � register 0.

If you do not pass an environment block address or IRXEXEC determines the
address is not valid, IRXEXEC locates the current environment and runs in that
environment. “Chains of Environments and How Environments Are Located” on
page 14-36 describes how environments are located. If a current environment
does not exist or the current environment was initialized on a different task and
the TSOFL flag is off in that environment, a new language processor
environment is initialized. The exec runs in the new environment. Before
IRXEXEC returns, the language processor environment that was created is
terminated. Otherwise, it runs in the located current environment.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXEXEC routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-7 describes the parameters for IRXEXEC.

 Chapter 12. TSO/E REXX Programming Services 12-15

 IRXJCL and IRXEXEC

Figure 12-7 (Page 1 of 5). Parameters for IRXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 1 4 Specifies the address of the exec block
(EXECBLK). The exec block is a control block
that describes the exec to be loaded. It
contains information needed to process the
exec, such as the DD from which the exec is to
be loaded and the name of the initial host
command environment when the exec starts
running. “The Exec Block (EXECBLK)” on
page 12-20 describes the format of the exec
block.

If the exec is preloaded and you pass the
address of the preloaded exec in parameter 4,
specify an address of 0 for this parameter. If
you specify both parameter 1 and parameter 4,
IRXEXEC uses the value in parameter 4 and
ignores this parameter (parameter 1).

Parameter 2 4 Specifies the address of the arguments for the
exec. The arguments are arranged as a vector
of address/length pairs followed by
X'FFFFFFFFFFFFFFFF'. “Format of
Argument List” on page 12-22 describes the
format of the arguments.

12-16 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-7 (Page 2 of 5). Parameters for IRXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 3 4 A fullword of bits that IRXEXEC uses as flags.
IRXEXEC uses bits 0, 1, 2, and 3 only. The
remaining bits are reserved. Bits 0, 1, and 2
are mutually exclusive.

PARSE SOURCE returns a token indicating
how the exec was invoked. The bit you set on
in bit positions 0, 1, or 2 indicates the token
that PARSE SOURCE uses. For example, if
you set bit 2 on, PARSE SOURCE returns the
token SUBROUTINE.

If you set bit 1 on, the exec must return a
result. If you set either bit 0 or 2 on, the exec
can optionally return a result.

Use bit 3 to indicate how IRXEXEC should
return information about a syntax error in the
exec.

The description of each bit is as follows:

� Bit 0 - This bit must be set on if the exec is
being invoked as a “command”; that is, the
exec is not being invoked from another
exec as an external function or subroutine.
If you pass more than one argument to the
exec, do not set bit 0 on.

� Bit 1 - This bit must be set on if the exec is
being invoked as an external function (a
function call).

� Bit 2 - This bit must be set on if the exec is
being invoked as a subroutine for example,
when the CALL keyword instruction is
used.

� Bit 3 - This bit must be set on if you want
IRXEXEC to return extended return codes
in the range 20001–20099.

If a syntax error occurs, IRXEXEC returns
a value in the range 20001–20099 in the
evaluation block, regardless of the setting
of bit 3. If bit 3 is on and a syntax error
occurs, IRXEXEC returns with a return
code in the range 20001–20099 that
matches the value returned in the
evaluation block. If bit 3 is off and a syntax
error occurs, IRXEXEC returns with return
code 0.

For more information, see “How IRXEXEC
Returns Information About Syntax Errors”
on page 12-29.

 Chapter 12. TSO/E REXX Programming Services 12-17

 IRXJCL and IRXEXEC

Figure 12-7 (Page 3 of 5). Parameters for IRXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 4 4 Specifies the address of the in-storage control
block (INSTBLK), which defines the structure of
a preloaded exec in storage. The INSTBLK
contains pointers to each statement in the exec
and the length of each statement. “The
In-Storage Control Block (INSTBLK)” on
page 12-23 describes the control block.

This parameter is required if the caller of
IRXEXEC has preloaded the exec. Otherwise,
this parameter must be 0. If you specify this
parameter, IRXEXEC ignores parameter 1
(address of the exec block).

Parameter 5 4 Specifies the address of the command
processor parameter list (CPPL) if you call
IRXEXEC from the TSO/E address space. If
you do not pass the address of the CPPL (you
specify an address of 0), TSO/E builds the
CPPL without a command buffer.

If you call IRXEXEC from a non-TSO/E
address space, specify an address of 0.

Parameter 6 4 Specifies the address of an evaluation block
(EVALBLOCK). IRXEXEC uses the evaluation
block to return the result from the exec that
was specified on either the RETURN or EXIT
instruction. “The Evaluation Block
(EVALBLOCK)” on page 12-27 describes the
format of the evaluation block, how IRXEXEC
uses the parameter, and whether you should
provide an EVALBLOCK on the call.

If you do not want to provide an evaluation
block, specify an address of 0. If you do not
provide an evaluation block, you must use the
get result routine, IRXRLT, to obtain the result
from the exec.

12-18 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-7 (Page 4 of 5). Parameters for IRXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 7 4 Specifies the address of an 8-byte field that
defines a work area for the IRXEXEC routine.
In the 8-byte field, the:

� First four bytes contain the address of the
work area

� Second four bytes contain the length of the
work area.

The work area is passed to the language
processor to use for processing the exec. If the
work area is too small, IRXEXEC returns with a
return code of 20 and a message is issued that
indicates an error. The minimum length
required for the work area is X'1800' bytes.

If you do not want to pass a work area, specify
an address of 0. In this case, IRXEXEC
obtains storage for its work area or calls the
replaceable storage routine specified in the
GETFREER field for the environment, if you
provided a storage routine.

Parameter 8 4 Specifies the address of a user field. IRXEXEC
does not use or check this pointer or the user
field. You can use this field for your own
processing.

If you do not want to use a user field, specify
an address of 0.

Parameter 9 4 The address of the environment block that
represents the environment in which you want
IRXEXEC to run. This parameter is optional.

If you specify a non-zero value for the
environment block address parameter,
IRXEXEC uses the value you specify and
ignores register 0. However, IRXEXEC does
not check whether the address is valid.
Therefore, you must ensure the address you
specify is correct or unpredictable results can
occur. For more information, see “Specifying
the Address of the Environment Block” on
page 12-7.

 Chapter 12. TSO/E REXX Programming Services 12-19

 IRXJCL and IRXEXEC

Figure 12-7 (Page 5 of 5). Parameters for IRXEXEC Routine

Parameter Number of
Bytes

Description

Parameter 10 4 A 4-byte field that IRXEXEC uses to return the
return code.

The return code parameter is optional. If you
use this parameter, IRXEXEC returns the
return code in the parameter and also in
register 15. Otherwise, IRXEXEC uses register
15 only. If the parameter list is invalid, the
return code is returned in register 15 only.
“Return Codes” on page 12-30 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

The Exec Block (EXECBLK)
The exec block (EXECBLK) is a control block that describes the exec to be loaded.
If the exec is not preloaded, you must build the exec block and pass the address in
parameter 1 on the call to IRXEXEC. You need not pass an exec block if the exec
is preloaded.

Note: If you want to preload the exec, you can use the system-supplied exec load
routine IRXLOAD or your own exec load replaceable routine (see page
16-5).

TSO/E provides a mapping macro IRXEXECB for the exec block. The mapping
macro is in SYS1.MACLIB. Figure 12-8 describes the format of the exec block.

Figure 12-8 (Page 1 of 3). Format of the Exec Block (EXECBLK)

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ACRYN An eight-character field that
identifies the exec block. It must
contain the character string
‘IRXEXECB’.

8 4 LENGTH Specifies the length of the exec
block in bytes.

12 4 — Reserved.

16 8 MEMBER Specifies the member name of the
exec if the exec is in a partitioned
data set. If the exec is in a
sequential data set, this field must
be blank.

12-20 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-8 (Page 2 of 3). Format of the Exec Block (EXECBLK)

Offset
(Decimal)

Number
of Bytes

Field Name Description

24 8 DDNAME Specifies the name of the DD from
which the exec is loaded. An exec
cannot be loaded from a DD that
has not been allocated. The ddname
you specify must be allocated to a
data set containing REXX execs or
to a sequential data set that
contains an exec.

If this field is blank, the exec is
loaded from the DD specified in the
LOADDD field of the module name
table (see page 14-21). The default
is SYSEXEC.

32 8 SUBCOM Specifies the name of the initial host
command environment when the
exec starts running.

If this field is blank, the environment
specified in the INITIAL field of the
host command environment table is
used. For TSO/E and ISPF, the
default is TSO. For a non-TSO/E
address space, the default is MVS.
The table is described in “Host
Command Environment Table” on
page 14-25.

40 4 DSNPTR Specifies the address of a data set
name that the PARSE SOURCE
instruction returns. The name
usually represents the name of the
exec load data set. The name can
be up to 54 characters long (44
characters for the fully qualified data
set name, 8 characters for the
member name, and 2 characters for
the left and right parentheses).

If you do not want to specify a data
set name, specify an address of 0.

44 4 DSNLEN Specifies the length of the data set
name that is pointed to by the
address at offset +40. The length
can be 0-54. If no data set name is
specified, the length is 0.

 Chapter 12. TSO/E REXX Programming Services 12-21

 IRXJCL and IRXEXEC

An exec cannot be loaded from a data set that has not been allocated. The
ddname you specify (at offset +24 in the exec block) must be allocated to a data
set containing REXX execs or to a sequential data set that contains an exec.

The fields at offset +40 and +44 in the exec block are used only for input to the
PARSE SOURCE instruction and are for informational purposes only.

Loading of the exec is done as follows:

� If the exec is preloaded, loading is not performed.

� If you specify a ddname in the exec block, IRXEXEC loads the exec from that
DD. You also specify the name of the member in the exec block.

� If you do not specify a ddname in the exec block, IRXEXEC loads the exec
from the DD specified in the LOADDD field in the module name table for the
language processor environment (see page 14-21). The default is SYSEXEC. If
you customize the environment values TSO/E provides or use the initialization
routine IRXINIT, the DD may be different. See Chapter 14, Language
Processor Environments for customizing information.

Figure 12-8 (Page 3 of 3). Format of the Exec Block (EXECBLK)

Offset
(Decimal)

Number
of Bytes

Field Name Description

| 48| 4| EXTNAME_PTR| Pointer to the extended execname.
| This field can be used to pass an
| execname if greater than eight
| characters. For example, this field
| may be used to pass
| pathname/filename of an HFS
| (Hierarchical File System) file to a
| replaceable load routine that
| handles HFS files (This name is not
| used by the TSO/E REXX load
| routine.)

| (This field is only valid if PTF for
| APAR OW28404 is applied.)

| 52| 4| EXTNAME_LEN| Length of the extended name
| pointed to by EXTNAME_PTR, or 0
| if no extended name is specified.
| The maximum length of an extended
| name is 4096 (x'1000'). Any length
| larger than this maximum value
| should be treated as 0 (that is, as
| no extended name specified).

| 56| 8| —| Reserved

Format of Argument List
Parameter 2 points to the arguments for the exec. The arguments are arranged as
a vector of address/length pairs, one for each argument. The first four bytes are the
address of the argument string. The second four bytes are the length of the
argument string, in bytes. The vector must end in X'FFFFFFFFFFFFFFFF'. There
is no limit on the number of arguments you can pass. Figure 12-9 shows the
format of the argument list. TSO/E provides a mapping macro IRXARGTB for the
vector. The mapping macro is in SYS1.MACLIB.

12-22 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-9. Format of the Argument List

Offset
(Dec)

Number of
Bytes

Field Name Description

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING_LENGTH Length of argument 3

...
...

x 4 ARGSTRING_PTR Address of argument n

x+4 4 ARGSTRING_LENGTH Length of argument n

x+8 8 — X'FFFFFFFFFFFFFFFF'

The In-Storage Control Block (INSTBLK)
Parameter 4 points to the in-storage control block (INSTBLK). The in-storage
control block defines the structure of a preloaded exec in storage. The INSTBLK
contains pointers to each record in the exec and the length of each record.

If you preload the exec in storage, you must pass the address of the in-storage
control block (parameter 4). You must provide the storage, format the control block,
and free the storage after IRXEXEC returns. IRXEXEC only reads information from
the in-storage control block. IRXEXEC does not change any of the information.

To preload an exec into storage, you can use the exec load replaceable routine
IRXLOAD. If you provide your own exec load replaceable routine, you can use your
routine to preload the exec. “Exec Load Routine” on page 16-5 describes the
replaceable routine.

If the exec is not preloaded, you must specify an address of 0 for the in-storage
control block parameter (parameter 4).

The in-storage control block consists of a header and the records in the exec,
which are arranged as a vector of address/length pairs. Figure 12-10 shows the
format of the in-storage control block header. Figure 12-11 on page 12-27 shows
the format of the vector of records. TSO/E provides a mapping macro IRXINSTB for
the in-storage control block. The mapping macro is in SYS1.MACLIB.

Figure 12-10 (Page 1 of 4). Format of the Header for the In-Storage Control Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ACRONYM An eight-character field that
identifies the control block. The field
must contain the characters
‘IRXINSTB’.

 Chapter 12. TSO/E REXX Programming Services 12-23

 IRXJCL and IRXEXEC

Figure 12-10 (Page 2 of 4). Format of the Header for the In-Storage Control Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

8 4 HDRLEN Specifies the length of the in-storage
control block header only. The value
must be 128 bytes.

12 4 — Reserved.

16 4 ADDRESS Specifies the address of the vector
of records. See Figure 12-11 on
page 12-27 for the format of the
address/length pairs.

If this field is 0, the exec contains no
records.

20 4 USEDLEN Specifies the length of the
address/length vector of records in
bytes. This is not the number of
records. The value is the number of
records multiplied by 8.

If this field is 0, the exec contains no
records.

12-24 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-10 (Page 3 of 4). Format of the Header for the In-Storage Control Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

| 24| 8| MEMBER| Specifies the name of the exec. This
| is the name of the member in the
| partitioned data set from which the
| exec was loaded. If the exec was
| loaded from a sequential data set,
| this field is blank. If the exec was
| loaded using an extended
| execname specification (as pointed
| to by EXTNAME_PTR) this field can
| be left blank. (See the
| EXTNAME_PTR field below.)

| The PARSE SOURCE instruction
| returns the folded member name in
| token3 of the PARSE SOURCE
| string. If this field is blank or if an
| extended execname is specified
| then the name that PARSE
| SOURCE returns in token3 is either:

| 1. A question mark (?), if no
| extended name is specified.

| 2. The extended execname pointed
| to by EXTNAME_PTR, if
| specified. An extended name is
| not folded to uppercase within
| the PARSE SOURCE string.
| Any blanks in the extended
| name are changed to null
| characters (x'00') when the
| extended name is placed in the
| PARSE SOURCE string.

| Note: If EXTNAME_PTR and
| MEMBER are both specified,
| EXTNAME_PTR is used to
| build the PARSE SOURCE
| string token3.

32 8 DDNAME Specifies the name of the DD that
represents the exec load data set
from which the exec was loaded.

40 8 SUBCOM Specifies the name of the initial host
command environment when the
exec starts running.

48 4 — Reserved.

52 4 DSNLEN Specifies the length of the data set
name that is specified at offset +56.
If a data set name is not specified,
this field must be 0.

 Chapter 12. TSO/E REXX Programming Services 12-25

 IRXJCL and IRXEXEC

At offset +16 in the in-storage control block header, the field points to the vector of
records that are in the exec. The records are arranged as a vector of
address/length pairs. Figure 12-11 on page 12-27 shows the format of the
address/length pairs.

Figure 12-10 (Page 4 of 4). Format of the Header for the In-Storage Control Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

| 56| 54| DSNAME| A 54-byte field that contains the
| name of the data set, if known, from
| which the exec was loaded. The
| name can be up to 54 characters
| long (44 characters for the fully
| qualified data set name, 8
| characters for the member name,
| and 2 characters for the left and
| right parentheses).

| 110| 2| —| Reserved.

| 112| 4| EXTNAME_PTR| Pointer to the extended execname.
| The extended execname can be
| used instead of the MEMBER field
| to return the exec name of the
| loaded exec if the name is longer
| than eight characters or is case
| sensitive. For example, this field can
| be used to return the
| pathname/filename specification of
| an exec loaded from a Hierarchical
| File System (HFS) file.

| If specified, the PARSE SOURCE
| instruction returns the name pointed
| to by this field, without folding to
| uppercase, instead of the MEMBER
| name. (Any blanks within an
| extended name are changed to null
| characters (x'00') when moved into
| the PARSE SOURCE string.) See
| the discussion of PARSE SOURCE
| under MEMBER field above.

| (Note: The extended execname is
| not currently used by default TSO/E
| REXX load routine).

| (This field is valid only if PTF for
| OW28404 is applied.)

| 116| 4| EXTNAME_LEN| Length of extended execname
| pointed to by EXTNAME_PTR, or 0
| if no extended name is specified.
| The maximum length of an extended
| name is 4096 (x'1000'). If a length
| larger than the maximum value is
| specified, the extended name is
| ignored.

| 120| 8| —| Reserved.

12-26 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

The addresses point to the text of the record to be processed. This can be one or
more REXX clauses, parts of a clause that are continued with the REXX
continuation character (the continuation character is a comma), or a combination of
these. The address is the actual address of the record. The length is the length of
the record in bytes.

Figure 12-11. Vector of Records for the In-Storage Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 STMT@ Address of record 1

4 4 STMTLEN Length of record 1

8 4 STMT@ Address of record 2

12 4 STMTLEN Length of record 2

16 4 STMT@ Address of record 3

20 4 STMTLEN Length of record 3

...
...

x 4 STMT@ Address of record n

x+4 4 STMTLEN Length of record n

The Evaluation Block (EVALBLOCK)
The evaluation block is a control block that IRXEXEC uses to return the result from
the exec. The exec can return a result on either the RETURN or EXIT instruction.
For example, the REXX instruction

RETURN var1

returns the value of the variable VAR1. IRXEXEC returns the value of VAR1 in the
evaluation block.

If the exec you are running will return a result, specify the address of an evaluation
block when you call IRXEXEC (parameter 6). You must obtain the storage for the
control block yourself.

If the exec does not return a result or you want to ignore the result, you need not
allocate an evaluation block. On the call to IRXEXEC, you must pass all of the
parameters. Therefore, specify an address of 0 for the evaluation block.

If the result from the exec fits into the evaluation block, the data is placed into the
block (EVDATA field) and the length of the block is updated (ENVLEN field). If the
result does not fit into the area provided in the evaluation block, IRXEXEC:

� Places as much of the result that will fit into the evaluation block in the
EVDATA field

� Sets the length of the result field (EVLEN) to the negative of the length that is
required to store the complete result.

The result is not lost. The system has its own evaluation block that it uses to store
the result. If the evaluation block you passed to IRXEXEC is too small to hold the
complete result, you can then use the IRXRLT (get result) routine. Allocate another
evaluation block that is large enough to hold the result and call IRXRLT. On the call

 Chapter 12. TSO/E REXX Programming Services 12-27

 IRXJCL and IRXEXEC

to the IRXRLT routine, you pass the address of the new evaluation block. IRXRLT
copies the result from the exec that was stored in the system's evaluation block into
your evaluation block and returns. “Get Result Routine – IRXRLT” on page 12-60
describes the routine in more detail.

If you call IRXEXEC and do not pass the address of an evaluation block, and the
exec returns a result, you can use the IRXRLT routine after IRXEXEC completes to
obtain the result.

To summarize, if you call IRXEXEC to run an exec that returns a result and you
pass the address of an evaluation block that is large enough to hold the result,
IRXEXEC returns the result in the evaluation block. In this case, IRXEXEC does
not store the result in its own evaluation block.

If IRXEXEC runs an exec that returns a result, the result is stored in the system's
evaluation block if:

� The result did not fit into the evaluation block that you passed on the call to
IRXEXEC, or

� You did not specify the address of an evaluation block on the call.

You can then obtain the result by allocating a large enough evaluation block and
calling the IRXRLT routine to get the result. The result is available until one of the
following occurs:

� IRXRLT is called and successfully obtains the result

� Another REXX exec runs in the same language processor environment, or

� The language processor environment is terminated.

Note: The language processor environment is the environment in which the
language processor processes the exec. See Chapter 14, Language
Processor Environments for more information about the initialization and
termination of environments and customization services.

The evaluation block consists of a header and data, which contains the result.
Figure 12-12 shows the format of the evaluation block. Additional information about
each field is described after the table.

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYS1.MACLIB.

Figure 12-12 (Page 1 of 2). Format of the Evaluation Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 4 EVPAD1 A fullword that must contain X'00'. This
field is reserved and is not used.

4 4 EVSIZE Specifies the total size of the evaluation
block in doublewords.

8 4 EVLEN On entry, this field is not used and must
be set to X'00'. On return, it specifies the
length of the result, in bytes, that is
returned. The result is returned in the
EVDATA field at offset +16.

12-28 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

If the result does not fit into the EVDATA field, IRXEXEC stores as much of the
result as it can into the field and sets the length field (EVLEN) to the negative of
the required length for the result. You can then use the IRXRLT routine to obtain
the result. See “Get Result Routine – IRXRLT” on page 12-60 for more information.

On return, if the result has a length of 0, the length field (EVLEN) is 0, which
means the result is null. If no result is returned on the EXIT or RETURN instruction,
the length field contains X'80000000'.

If you invoke the exec as a “command” (bit 0 is set on in parameter 3), the result
the exec returns must be a numeric value. The result can be from -2,147,483,648
to +2,147,483,647. If the result is not numeric or is greater than or less than the
valid values, this indicates a syntax error and the value 20026 is returned in the
EVDATA field.

Figure 12-12 (Page 2 of 2). Format of the Evaluation Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

12 4 EVPAD2 A fullword that must contain X'00'. This
field is reserved and is not used.

16 n EVDATA The field in which IRXEXEC returns the
result from the exec. The length of the
field depends on the total size specified
for the control block in the EVSIZE field.
The total size of the EVDATA field is:

EVSIZE \ 8 - 16

It is recommended that you use 250 bytes
for the EVDATA field.

For information about the values
IRXEXEC returns, if the language
processor detects a syntax error in the
exec, see “How IRXEXEC Returns
Information About Syntax Errors” on
page 12-29.

How IRXEXEC Returns Information About Syntax Errors
If the language processor detects a syntax error in the exec, IRXEXEC returns the
following:

� A value of 20000 plus the REXX error number in the EVDATA field of the
evaluation block.

� A value of 5 for the length of the result in the EVLEN field of the evaluation
block.

The REXX error numbers are in the range 1-99. Therefore, the range of values that
IRXEXEC can return for a syntax error are 20001–20099. The REXX error numbers
correspond to the REXX message numbers. For example, error 26 corresponds to
the REXX message IRX0026I. For error 26, IRXEXEC returns the value 20026 in
the EVDATA field. The REXX error messages are described in OS/390 TSO/E
Messages.

The exec you run may also return a value on the RETURN or EXIT instruction in
the range 20001–20099. IRXEXEC returns the value from the exec in the EVDATA

 Chapter 12. TSO/E REXX Programming Services 12-29

 IRXJCL and IRXEXEC

field of the evaluation block. To determine whether the value in the EVDATA field is
the value from the exec or the value related to a syntax error, use bit 3 in
parameter 3 of the parameter list. Bit 3 lets you enable the extended return codes
in the range 20001–20099.

If you set bit 3 off, and the exec processes successfully but the language processor
detects a syntax error, the following occurs. IRXEXEC returns a return code of 0 in
register 15. IRXEXEC also returns a value of 20000 plus the REXX error number in
the EVDATA field of the evaluation block. In this case, you cannot determine
whether the exec returned the 200xx value or whether the value represents a
syntax error.

If you set bit 3 on and the exec processes successfully but the language processor
detects a syntax error, the following occurs. IRXEXEC sets a return code in register
15 equal to 20000 plus the REXX error message. That is, the return code in
register 15 is in the range 20001–20099. IRXEXEC also returns the 200xx value in
the EVDATA field of the evaluation block. If you set bit 3 on and the exec
processes without a syntax error, IRXEXEC returns with a return code of 0 in
register 15. If IRXEXEC returns a value of 20001–20099 in the EVDATA field of the
evaluation block, that value must be the value that the exec returned on the
RETURN or EXIT instruction.

By setting bit 3 on in parameter 3 of the parameter list, you can check the return
code from IRXEXEC to determine whether a syntax error occurred.

 Return Specifications
For the IRXEXEC routine, the contents of the registers on return are:

Register 0 Address of the environment block.

If IRXEXEC returns with return code 100 or 104, register 0 contains
the abend and reason code. “Return Codes” describes the return
codes and how IRXEXEC returns the abend and reason codes for
return codes 100 and 104.

Registers 1-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-13 shows the return codes for the IRXEXEC routine. IRXEXEC returns
the return code in register 15. If you specify the return code parameter (parameter
10), IRXEXEC also returns the return code in the parameter.

12-30 OS/390 V2R8.0 TSO/E REXX Reference

 IRXJCL and IRXEXEC

Figure 12-13 (Page 1 of 2). IRXEXEC Return Codes

Return Code Description

0 Processing was successful. The exec has completed processing.

If the exec returns a result, the result may or may not fit into the
evaluation block. You must check the length field (EVLEN).

On the call to IRXEXEC, you can set bit 3 in parameter 3 of the
parameter list to indicate how IRXEXEC should handle
information about syntax errors. If IRXEXEC returns with return
code 0 and bit 3 is on, the language processor did not detect a
syntax error. In this case, the value IRXEXEC returns in the
EVDATA field of the evaluation block is the value the exec
returned.

If IRXEXEC returns with return code 0 and bit 3 is off, the
language processor may or may not have detected a syntax
error. If IRXEXEC returns a value of 20001–20099 in the
evaluation block, you cannot determine whether the value
represents a syntax error or the value was returned by the exec.

For more information, see “How IRXEXEC Returns Information
About Syntax Errors” on page 12-29.

20 Processing was not successful. An error occurred. The exec has
not been processed. The system issues an error message that
describes the error.

32 Processing was not successful. The parameter list is not valid.
The parameter list contains either too few or too many
parameters, or the high-order bit of the last address in the
parameter list is not set to 1 to indicate the end of the parameter
list.

36 Processing was not successful. Either:

� A CPPL was passed (parm5) with an ECT address of 0, or

� Both an environment block address and a CPPL were
passed to IRXEXEC, but the ECT associated with the passed
environment block does not match the ECT whose address
was passed in the CPPL.

For information about how an ECT is associated with a REXX
environment, see the description of parameter 10 passed to
IRXINIT during REXX environment initialization in Figure 15-1 on
page 15-2.

100 Processing was not successful. A system abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the
abend. In addition, register 0 contains the abend code and the
abend reason code. The abend code is returned in the two
low-order bytes of register 0. The abend reason code is returned
in the high-order two bytes of register 0. If the abend reason
code is greater than two bytes, only the two low-order bytes of
the abend reason code are returned. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

 Chapter 12. TSO/E REXX Programming Services 12-31

 Functions, Subroutines, Function Packages

Note: The language processor environment is the environment in which the exec
runs. If IRXEXEC cannot locate an environment in which to process the
exec, an environment is automatically initialized. If an environment was
being initialized and an error occurred during the initialization process,
IRXEXEC returns with return code 20, but an error message is not issued.

Figure 12-13 (Page 2 of 2). IRXEXEC Return Codes

Return Code Description

104 Processing was not successful. A user abend occurred during
IRXEXEC processing.

The system issues one or more messages that describe the
abend. In addition, register 0 contains the abend code and the
abend reason code. The abend code is returned in the two
low-order bytes of register 0. The abend reason code is returned
in the two high-order bytes of register 0. If the abend reason
code is greater than two bytes, only the two low-order bytes of
the abend reason code are returned. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

20001–20099 Processing was successful. The exec completed processing, but
the language processor detected a syntax error. The return code
that IRXEXEC returns in register 15 is the value 20000 plus the
REXX error number. The REXX error numbers are from 1 to 99
and correspond to the REXX message numbers. For example,
error 26 corresponds to the REXX message IRX0026I. The
REXX error messages are described in OS/390 TSO/E
Messages.

IRXEXEC returns a return code of 20001–20099 only if bit 3 in
parameter 3 is set on when you call IRXEXEC. IRXEXEC also
returns the same 200xx value in the EVDATA field of the
evaluation block.

For more information about syntax errors, see “How IRXEXEC
Returns Information About Syntax Errors” on page 12-29.

External Functions and Subroutines, and Function Packages
You can write your own external functions and subroutines, which allow you to
extend the capabilities of the REXX language. You can write external functions or
subroutines that supplement the built-in functions or TSO/E external functions that
are provided. You can also write a function to replace one of the functions that is
provided. For example, if you want a new substring function that performs
differently from the SUBSTR built-in function, you can write your own substring
function and name it STRING. Users at your installation can then use the STRING
function in their execs.

You can write external functions or subroutines in REXX. You can store the exec
containing the function or subroutine in:

� The same PDS from which the calling exec is loaded

� An alternative exec library as defined by ALTLIB (TSO/E address space only).

� A data set that is allocated to SYSEXEC (SYSEXEC is the default load
ddname used for storing REXX execs)

� A data set that is allocated to SYSPROC (TSO/E address space only).

12-32 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

You can also write an external function or subroutine in assembler or a high-level
programming language. You can then store the function or subroutine in a load
library, which allows for faster access of the function or subroutine. By default, load
libraries are searched before any exec libraries, such as SYSEXEC and
SYSPROC. The language in which you write the exec must support the
system-dependent interfaces that the language processor uses to invoke the
function or subroutine.

For faster access of a function or subroutine, and therefore better performance, you
can group frequently used external functions and subroutines in function packages.
A function package is basically a number of external functions and subroutines that
are grouped or packaged together. To include an external function or subroutine in
a function package, the function or subroutine must be link-edited into a load
module. If you write a function or subroutine as a REXX exec and the exec is
interpreted (that is, the TSO/E REXX interpreter executes the exec), you cannot
include the function or subroutine in a function package. However, if you write the
function or subroutine in REXX and the REXX exec is compiled, you can include
the exec in a function package because the compiled exec can be link-edited into a
load module. For information about compiled execs, see the appropriate compiler
publications.

When the language processor is processing an exec and encounters a function call
or a call to a subroutine, the language processor searches the function packages
before searching load libraries or exec libraries, such as SYSEXEC and
SYSPROC. “Search Order” on page 4-3 describes the complete search order.

The topics in this section describe:

� The system-dependent interfaces that the language processor uses to invoke
external functions or subroutines. If you write a function or subroutine in a
programming language other than REXX, the language must support the
interface.

� How to define function packages.

Interface for Writing External Function and Subroutine Code
This topic describes the system interfaces for writing external functions and
subroutines that are load modules. You can write the function or subroutine in
assembler or any high-level programming language that can be invoked by using
the MVS Link Macro and is capable of handling the REXX function interface as
documented below (that documentation is in terms of an assembler programming
interface). This means that the high-level language must be capable of properly
handling the documented register interface, including the handling of parameters
passed via register 1 pointing to an EFPL parameter list, exactly as shown.

Note that for some high-level languages, it may be necessary to write an assembler
stub routine which can take the defined REXX function interface (registers,
parameters, AMODE, etc.) and manipulate these into a format which can be
handled by the specific high-level language routine that is being invoked. For
example, for C programs you may need to use an assembler-to-C interface stub to
first create a C environment before the stub can pass control to your C-routine. Or,
you may need to pass parameters in some different way which your high-level
language understands. Refer to language specific documentation for a description
of any language specific interface requirements, or for a description of how an
assembler stub program can pass control to a routine in the high-level language.

 Chapter 12. TSO/E REXX Programming Services 12-33

 Functions, Subroutines, Function Packages

The interface to the code is the same whether the code is called as a function or as
a subroutine. The only difference is how the language processor handles the result
after your code completes and returns control to the language processor. Before
your code gets control, the language processor allocates a control block called the
evaluation block (EVALBLOCK). The address of the evaluation block is passed to
the function or subroutine code. The function or subroutine code places the result
into the evaluation block, which is returned to the language processor. If the code
was called as a subroutine, the result in the evaluation block is placed into the
REXX special variable RESULT. If the code was called as a function, the result in
the evaluation block is used in the interpretation of the REXX instruction that
contained the function.

An external function or subroutine receives the address of an environment block in
register 0. This environment block address should be passed on any TSO/E REXX
programming services invoked from the external function or subroutine. This is
particularly important if the environment is reentrant because TSO/E REXX
programming services cannot automatically locate a reentrant environment. For
more information about reentrant environments, see “Using the Environment Block
for Reentrant Environments” on page 12-8.

The following topics describe the contents of the registers when the function or
subroutine code gets control and the parameters the code receives.

 Entry Specifications
The code for the external function or subroutine receives control in an unauthorized
state. The contents of the registers are:

Register 0 Address of the environment block of the exec that invoked the
external function or subroutine.

Register 1 Address of the external function parameter list (EFPL)

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
When the external function or subroutine gets control, register 1 points to the
external function parameter list (EFPL). Figure 12-14 describes the parameter list.
TSO/E provides a mapping macro, IRXEFPL, for the external function parameter
list. The mapping macro is in SYS1.MACLIB.

12-34 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

Figure 12-14. External Function Parameter List

Offset
(Decimal)

Number of
Bytes

Description

0 4 Reserved.

4 4 Reserved.

8 4 Reserved.

12 4 Reserved.

16 4 An address that points to the parsed argument list.
Each argument is represented by an
address/length pair. The argument list is terminated
by X'FFFFFFFFFFFFFFFF'. Figure 12-15 on
page 12-35 shows the format of the argument list.

If there were no arguments included on the function
or subroutine call, the address points to
X'FFFFFFFFFFFFFFFF'.

20 4 An address that points to a fullword. The fullword
contains the address of an evaluation block
(EVALBLOCK). You use the evaluation block to
return the result of the function or subroutine.
Figure 12-16 on page 12-36 describes the
evaluation block.

 Argument List
Figure 12-15 shows the format of the parsed argument list the function or
subroutine code receives at offset +16 (decimal) in the external function parameter
list. The figure is an example of three arguments. TSO/E provides a mapping
macro IRXARGTB for the argument list. The mapping macro is in SYS1.MACLIB.

In the argument list, each argument consists of the address of the argument and its
length. The argument list is terminated by X'FFFFFFFFFFFFFFFF'.

Figure 12-15. Format of the Argument List — Three Arguments

Offset
(Dec)

Number
of
Bytes

Field Name Description

0 4 ARGSTRING_PTR Address of argument 1

4 4 ARGSTRING_LENGTH Length of argument 1

8 4 ARGSTRING_PTR Address of argument 2

12 4 ARGSTRING_LENGTH Length of argument 2

16 4 ARGSTRING_PTR Address of argument 3

20 4 ARGSTRING_LENGTH Length of argument 3

24 8 — X'FFFFFFFFFFFFFFFF'

 Chapter 12. TSO/E REXX Programming Services 12-35

 Functions, Subroutines, Function Packages

 Evaluation Block
Before the function or subroutine code is called, the language processor allocates a
control block called the evaluation block (EVALBLOCK). The address of a fullword
containing the address of the evaluation block is passed to your function or
subroutine code at offset +20 in the external function parameter list. The function or
subroutine code computes the result and returns the result in the evaluation block.

The evaluation block consists of a header and data, in which you place the result
from your function or subroutine code. Figure 12-16 shows the format of the
evaluation block.

TSO/E provides a mapping macro IRXEVALB for the evaluation block. The
mapping macro is in SYS1.MACLIB.

Note: The IRXEXEC routine also uses an evaluation block to return the result
from an exec that is specified on either the RETURN or EXIT instruction.
The format of the evaluation block that IRXEXEC uses is identical to the
format of the evaluation block passed to your function or subroutine code.
“The Evaluation Block (EVALBLOCK)” on page 12-27 describes the control
block for IRXEXEC.

The function or subroutine code must compute the result, move the result into the
EVDATA field (at offset +16), and update the EVLEN field (at offset +8) to the
length of the result being returned in EVDATA. The function should NOT change
the EVSIZE field of the evaluation block which is passed to the function. The

Figure 12-16. Format of the Evaluation Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 4 EVPAD1 A fullword that contains X'00'. This field
is reserved and is not used.

4 4 EVSIZE Specifies the total size of the evaluation
block in doublewords. This field can be
used by the function to determine the size
of the EVDATA area available to return
data (as shown below), but this field
should NOT be changed by the function.

8 4 EVLEN On entry, this field is set to X'80000000',
which indicates no result is currently
stored in the evaluation block. On return,
specify the length of the result, in bytes,
that your code is returning. The result is
returned in the EVDATA field at offset
+16.

12 4 EVPAD2 A fullword that contains X'00'. This field
is reserved and is not used.

16 n EVDATA The field in which you place the result
from the function or subroutine code. The
length of the field depends on the total
size specified for the control block in the
EVSIZE field. The total size of the
EVDATA field is:

EVSIZE \ 8 - 16

12-36 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

EVDATA field of the evaluation block that TSO/E passes to your code is 250 bytes.
Because the evaluation block is passed to the function or subroutine code, the
EVDATA field in the evaluation block may be too small to hold the complete result.
If the evaluation block is too small, you can call the IRXRLT (get result) routine to
obtain a larger evaluation block. Call IRXRLT using the GETBLOCK function.
IRXRLT creates the new evaluation block and returns the address of the new block.
Your code can then place the result in the new evaluation block. You must also
change the parameter at offset +20 in the external function parameter list to point
to the new evaluation block. For information about using IRXRLT, see “Get Result
Routine – IRXRLT” on page 12-60.

Functions must return a result. Subroutines may optionally return a result. If a
subroutine does not return a result, it must return a data length of X'80000000' in
the EVLEN field in the evaluation block.

 Return Specifications
When your function or subroutine code returns control, the contents of the registers
must be:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Your function or subroutine code must return a return code in register 15.
Figure 12-17 shows the return codes.

Figure 12-17. Return Codes From Function or Subroutine Code (in Register 15)

Return Code Description

0 Function or subroutine code processing was successful.

If the called routine is a function, the function must return a value
in the EVDATA field of the evaluation block. The value replaces
the function call. If the function does not return a result in the
evaluation block, a syntax error occurs with error number 44.

If the called routine is a subroutine, the subroutine can optionally
return a value in the EVDATA field of the evaluation block. The
REXX special variable RESULT is set to the returned value.

Non-zero Function or subroutine code processing was not successful. The
language processor stops processing the REXX exec that called
your function or subroutine with an error code of 40, unless you
trap the error with a SYNTAX trap.

 Function Packages
Function packages are basically several external functions and subroutines that are
grouped or packaged together. When the language processor processes a function
call or a call to a subroutine, the language processor searches the function
packages before searching load libraries or exec libraries, such as SYSEXEC and
SYSPROC. Grouping frequently used external functions and subroutines in a
function package allows for faster access to the function and subroutine, and
therefore, better performance. “Search Order” on page 4-3 describes the complete
search order the language processor uses to locate a function or subroutine.

 Chapter 12. TSO/E REXX Programming Services 12-37

 Functions, Subroutines, Function Packages

TSO/E supports three types of function packages. Basically, there are no
differences between the three types, although the intent of the design is as follows:

� User packages, which are function packages that an individual user may write
to replace or supplement certain system-provided functions. When the function
packages are searched, the user packages are searched before the local and
system packages.

� Local packages, which are function packages that a system support group or
application group may write. Local packages may contain functions and
subroutines that are available to a specific group of users or to the entire
installation. Local packages are searched after the user packages and before
the system packages.

� System packages, which are function packages that an installation may write
for system-wide use or for use in a particular language processor environment.
System packages are searched after any user and local packages.

To provide function packages, there are several steps you must perform:

1. You must first write the individual external functions and subroutines you want
to include in a function package. If you want to include an external function or
subroutine in a function package, the function or subroutine must be link-edited
into a load module. If you write the function or subroutine in REXX and the
REXX exec is interpreted (that is, the TSO/E REXX interpreter executes the
exec), you cannot include the function or subroutine in a function package.
However, if you write the external function or subroutine in REXX and the
REXX exec is compiled, you can include the function or subroutine in a function
package because the compiled exec can be link-edited into a load module. For
information about compiled execs, see the appropriate compiler publications.

If you write the external function or subroutine in a programming language
other than REXX, the language you use must support the system-dependent
interfaces that the language processor uses to invoke the function or
subroutine. “Interface for Writing External Function and Subroutine Code” on
page 12-33 describes the interfaces.

2. After you write the individual functions and subroutines, you must write the
directory for the function package. You need a directory for each individual
function package.

The function package directory is contained in a load module. The directory
contains a header followed by individual entries that define the names and/or
the addresses of the entry points of your function or subroutine code. “Directory
for Function Packages” on page 12-40 describes the directory for function
packages.

3. The name of the entry point at the beginning of the directory (the function
package name) must be specified in the function package table for a language
processor environment. “Function Package Table” on page 14-28 describes the
format of the table. After you write the directory, you must define the directory
name in the function package table. There are several ways you can do this
depending on the type of function package you are defining (user, local, or
system) and whether you are providing only one or several user and local
function packages.

If you are providing a local or user function package, you can name the
function package directory IRXFLOC (local package) or IRXFUSER (user
package). TSO/E provides these two “dummy” directory names in the three

12-38 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

default parameters modules IRXPARMS, IRXTSPRM, and IRXISPRM. By
naming your local function package directory IRXFLOC and your user function
package directory IRXFUSER, the external functions and subroutines in the
packages are automatically available to REXX execs that run in non-TSO/E
and the TSO/E address space.

If you write your own system function package or more than one local or user
function package, you must provide a function package table containing the
name of your directory. You must also provide your own parameters module
that points to your function package table. Your parameters module then
replaces the default parameters module that the system uses to initialize a
default language processor environment. “Specifying Directory Names in the
Function Package Table” on page 12-45 describes how to define directory
names in the function package table.

Note: If you explicitly call the IRXINIT routine, you can pass the address of a
function package table containing your directory names on the call.

TSO/E provides the IRXEFMVS and IRXEFPCK system function packages. The
two function packages provide the TSO/E external functions, which are described in
“TSO/E External Functions” on page 4-41. The IRXEFMVS and IRXEFPCK system
function packages are defined in the default parameters modules TSO/E provides
(see page 14-31).

Other IBM products may also provide system function packages that you can use
for REXX processing in TSO/E and MVS. If you install a product that provides a
system function package for TSO/E REXX, you must change the function package
table and provide your own parameters modules. The product itself supplies the
individual functions in the function package and the directory for their function
package. To use the functions, you must do the following:

1. Change the function package table. The function package table contains
information about the user, local, and system function packages for a particular
language processor environment. Figure 14-9 on page 14-29 shows the format
of the table. Add the name of the function package directory to the entries in
the table. You must also change the SYSTEM_TOTAL and SYSTEM_USED
fields in the table header (offsets +28 and +32). Increment the value in each
field by 1 to indicate the additional function package supplied by the IBM
product.

2. Provide your own IRXTSPRM, IRXISPRM, or IRXPARMS parameters module.
The function package table is part of the parameters module that the system
uses to initialize language processor environments. You need to code one or
more parameters modules depending on whether you want the function
package available to REXX execs that run in ISPF only, TSO/E only, TSO/E
and ISPF, non-TSO/E only, or any address space.

Chapter 14, Language Processor Environments describes environments, their
characteristics, and the format of the parameters modules. In the same chapter,
“Changing the Default Values for Initializing an Environment” on page 14-41
describes how to provide your own parameters modules.

 Chapter 12. TSO/E REXX Programming Services 12-39

 Functions, Subroutines, Function Packages

Directory for Function Packages
After you write the code for the functions and subroutines you want to group in a
function package, you must write a directory for the function package. You need a
directory for each individual function package you want defined.

The function package directory is contained in a load module. The name of the
entry point at the beginning of the directory is the function package directory name.
The name of the directory is specified only on the CSECT. In addition to the name
of the entry point, the function package directory defines each entry point for the
individual functions and subroutines that are part of the function package. The
directory consists of two parts; a header followed by individual entries for each
function and subroutine included in the function package. Figure 12-18 shows the
format of the directory header. Figure 12-19 on page 12-41 illustrates the rows of
entries in the function package directory. TSO/E provides a mapping macro,
IRXFPDIR, for the function package directory header and entries. The mapping
macro is in SYS1.MACLIB.

In the function package table for the three default parameters modules
(IRXPARMS, IRXTSPRM, and IRXISPRM), TSO/E provides two “dummy” function
package directory names:

� IRXFLOC for a local function package
� IRXFUSER for a user function package

If you create a local or user function package, you can name the directory
IRXFLOC and IRXFUSER, respectively. By using IRXFLOC and IRXFUSER, you
need not create a new function package table containing your directory names.

If you are creating a system function package or several local or user packages,
you must define the directory names in a function package table. “Specifying
Directory Names in the Function Package Table” on page 12-45 describes how to
do this in more detail.

You must link-edit the external function or subroutine code and the directory for the
function package into a load module. You can link-edit the code and directory into
separate load modules or into the same load module. Place the data set with the

Figure 12-18. Format of the Function Package Directory Header

Offset
(Decimal)

Number of
Bytes

Description

0 8 An 8-byte character field that must contain the
character string ‘IRXFPACK’.

8 4 Specifies the length, in bytes, of the header. This is
the offset from the beginning of the header to the
first entry in the directory. This must be a fullword
binary number equivalent to decimal 24.

12 4 The number of functions and subroutines defined in
the function package (the number of rows in the
directory). The format is a fullword binary number.

16 4 A fullword of X'00'.

20 4 Specifies the length, in bytes, of an entry in the
directory (length of a row). This must be a fullword
binary number equivalent to decimal 32.

12-40 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

load modules in the search sequence for an MVS LOAD. For example, the data set
can be in the data set concatenation for either a STEPLIB or JOBLIB, or you can
install the data set in the LINKLST or LPALIB. Refer to subsection “Programming
Considerations” on page 12-46 for information on how to link-edit these load
modules.

Note: For best performance, link-edit the code for individual functions or
subroutines in the same load module as the function package directory.
Because the function package directory is always loaded during REXX
environment initialization and remains in storage, the functions and
subroutines are loaded once and are in storage when you need them. If the
code for your external function or subroutine is link-edited into a load
module separate from the function package directory, that load module will
be loaded prior to each invocation of the function or subroutine and then
deleted after that function or subroutine has completed.

In the TSO/E address space, you can use the EXECUTIL command with the
RENAME operand to dynamically change entries in a function package (see page
10-19 for information about EXECUTIL). If you plan to use the EXECUTIL
command to change entries in the function package you provide, you should not
install the function package in the LPALIB.

Format of Entries in the Directory: Figure 12-19 shows two rows (two entries) in
a function package directory. The first entry starts immediately after the directory
header. Each entry defines a function or subroutine in the function package. The
individual fields are described following the table.

 Chapter 12. TSO/E REXX Programming Services 12-41

 Functions, Subroutines, Function Packages

The following describes each entry (row) in the directory.

FUNC-NAME
The eight character name of the external function or subroutine. This is the
name that is used in the REXX exec. The name must be in uppercase, left
justified, and padded to the right with blanks.

If this field is blank, the entry is ignored.

ADDRESS
A 4-byte field that contains the address, in storage, of the entry point of the
function or subroutine code. This address is used only if the code has
already been loaded.

If the address is 0, the sys-name and, optionally, the sys-dd fields are
used. An MVS LOAD will be issued for sys-name from the DD sys-dd.

If the address is specified, the sys-name and sys-dd fields for the entry are
ignored.

Reserved
A 4-byte field that is reserved.

Figure 12-19. Format of Entries in Function Package Directory

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 FUNC-NAME The name of the first function or
subroutine (entry) in the directory.

8 4 ADDRESS The address of the entry point of
the function or subroutine code
(for the first entry).

12 4 — Reserved.

16 8 SYS-NAME The name of the entry point in a
load module that corresponds to
the function or subroutine code
(for the first entry).

24 8 SYS-DD The ddname from which the
function or subroutine code is
loaded (for the first entry).

32 8 FUNC-NAME The name of the second function
or subroutine (entry) in the
directory.

40 4 ADDRESS The address of the entry point of
the function or subroutine code
(for the second entry).

44 4 — Reserved.

48 8 SYS-NAME The name of the entry point in a
load module that corresponds to
the function or subroutine code
(for the second entry).

56 8 SYS-DD The ddname from which the
function or subroutine code is
loaded (for the second entry).

12-42 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

SYS-NAME
An 8-byte character name of the entry point in a load module that
corresponds to the function or subroutine code to be called for the
func-name. The name must be in uppercase, left justified, and padded to
the right with blanks.

If the address is specified, this field can be blank. If an address of 0 is
specified and this field is blank, the entry is ignored.

SYS-DD
An 8-byte character name of the DD from which the function or subroutine
code is loaded. The name must be in uppercase, left justified, and padded
to the right with blanks.

If the address is 0 and this field is blank, the module is loaded from the link
list.

Example of a Function Package Directory: Figure 12-20 on page 12-44 shows
an example of a function package directory. The example is explained following the
figure.

 Chapter 12. TSO/E REXX Programming Services 12-43

 Functions, Subroutines, Function Packages

IRXFUSER CSECT
DC CL8'IRXFPACK' String identifying directory
DC FL4'24' Length of header
DC FL4'4' Number of rows in directory
DC FL4'ð' Word of zeros
DC FL4'32' Length of directory entry

\ Start of definition of first entry
DC CL8'MYF1 ' Name used in exec
DC FL4'ð' Address of preloaded code

 DC FL4'ð' Reserved field
DC CL8'ABCFUN1 ' Name of entry point
DC CL8'FUNCTDD1' DD from which to load entry point

\ Start of definition of second entry
DC CL8'MYF2 ' Name used in exec
DC FL4'ð' Address of preloaded code

 DC FL4'ð' Reserved field
DC CL8'ABCFUN2 ' Name of entry point
DC CL8' ' DD from which to load entry point

\ Start of definition of third entry
DC CL8'MYS3 ' Name used in exec
DC AL4(ABCSUB3) Address of preloaded code

 DC FL4'ð' Reserved field
DC CL8' ' Name of entry point
DC CL8' ' DD from which to load entry point

\ Start of definition of fourth entry
DC CL8'MYF4 ' Name used in exec
DC VL4(ABCFUNC4) Address of preloaded code

 DC FL4'ð' Reserved field
DC CL8' ' Name of entry point
DC CL8' ' DD from which to load entry point

 SPACE 2
ABCSUB3 EQU \
\ Subroutine code for subroutine MYS3
\
\ End of subroutine code
 END IRXFUSER

- - - - - New Object Module - - - - -

ABCFUNC4 CSECT
\ Function code for function MYF4
\
\ End of function code
 END ABCFUNC4

Figure 12-20. Example of a Function Package Directory

In Figure 12-20, the name of the function package directory is IRXFUSER, which is
one of the “dummy” function package directory names TSO/E provides in the
default parameters modules. Four entries are defined in this function package:

� MYF1, which is an external function
� MYF2, which is an external function
� MYS3, which is an external subroutine

12-44 OS/390 V2R8.0 TSO/E REXX Reference

 Functions, Subroutines, Function Packages

� MYF4, which is an external function

If the external function MYF1 is called in an exec, the load module with entry point
ABCFUN1 is loaded from DD FUNCTDD1. If MYF2 is called in an exec, the load
module with entry point ABCFUN2 is loaded from the linklist because the sys-dd
field is blank.

The load modules for MYS3 and MYF4 do not have to be loaded. The MYS3
subroutine has been assembled as part of the same object module as the function
package directory. The MYF4 function has been assembled in a different object
module, but has been link-edited as part of the same load module as the directory.
The assembler, linkage editor, and loader have resolved the addresses.

If the name of the directory is not IRXFLOC or IRXFUSER, you must specify the
directory name in the function package table for an environment. “Specifying
Directory Names in the Function Package Table” describes how you can do this.

When a language processor environment is initialized, either by default or when
IRXINIT is explicitly called, the load modules containing the function package
directories for the environment are automatically loaded. External functions or
subroutines that are link-edited as separate, stand-alone load modules and are not
defined in any function package, are loaded prior to each invocation of the
functions or subroutines and then deleted after that function or subroutine has
completed.

For best performance, link-edit the code for individual functions or subroutines in
the same load module as the function package directory. Because the function
package directory is always loaded during REXX environment initialization, the
functions and subroutines are loaded once and are in storage when you need
them.

Specifying Directory Names in the Function Package Table
After you write the function and subroutine code and the directory, you must define
the directory name in the function package table. The function package table
contains information about the user, local, and system function packages that are
available to REXX execs running in a specific language processor environment.
Each environment that is initialized has its own function package table. “Function
Package Table” on page 14-28 describes the format of the table.

The parameters module (and the PARMBLOCK that is created) defines the
characteristics for a language processor environment and contains the address of
the function package table (in the PACKTB field). In the three default modules that
TSO/E provides (IRXPARMS, IRXTSPRM, and IRXISPRM), the function package
table contains two “dummy” function package directory names:

� IRXFLOC for a local function package
� IRXFUSER for a user function package

If you name your local function package directory IRXFLOC and your user function
package directory IRXFUSER, the external functions and subroutines in your
package are then available to execs that run in non-TSO/E, TSO/E, and ISPF.
There is no need for you to provide a new function package table.

If you provide a system function package or several local or user packages, you
must then define the directory name in a function package table. To do this, you

 Chapter 12. TSO/E REXX Programming Services 12-45

 Variable Access (IRXEXCOM)

must provide your own function package table. You must also provide your own
IRXPARMS, IRXTSPRM, and/or IRXISPRM load module depending on whether
you want the function package available to execs running in non-TSO/E, TSO/E, or
ISPF.

You first write the code for the function package table. You must include the default
entries provided by TSO/E. The IRXPARMS, IRXTSPRM, and IRXISPRM modules
contain the default directory names IRXEFMVS, IRXFLOC, and IRXFUSER. In
addition, the IRXTSPRM and IRXISPRM modules also contain the default
IRXEFPCK directory name. “Function Package Table” on page 14-28 describes the
format of the function package table.

You must then write the code for one or more parameters modules. The module
you provide depends on whether the function package should be made available to
execs that run in ISPF only, TSO/E only, TSO/E and ISPF, non-TSO/E only, or any
address space. “Changing the Default Values for Initializing an Environment” on
page 14-41 describes how to create the code for your own parameters module and
which modules you should provide.

 Programming Considerations
Link-edit function packages and function package directories with a reusability
attribute (RENT for reenterable or REUS for serially reusable). If you are going to
use the RENAME operand of EXECUTIL, the function package directory must be
linked as serially reusable only (not reenterable).

Variable Access Routine – IRXEXCOM
The language processor provides an interface whereby called commands and
programs can easily access and manipulate the current generation of REXX
variables. Any variable can be inspected, set, or dropped; if required, all active
variables can be inspected in turn. Names are checked for validity by the interface
code, and optionally substitution into compound symbols is carried out according to
normal REXX rules. Certain other information about the program that is running is
also made available through the interface.

TSO/E REXX provides two variable access routines you can call to access and
manipulate REXX exec variables:

 � IRXEXCOM
 � IKJCT441

The IRXEXCOM variable access routine lets unauthorized commands and
programs access and manipulate REXX variables. IRXEXCOM can be used in both
the TSO/E and non-TSO/E address spaces. IRXEXCOM can be used only if a
REXX exec has been enabled for variable access in the language processor
environment. That is, an exec must have been invoked, but is not currently being
processed. For example, you can invoke an exec that calls a routine and the
routine can then invoke IRXEXCOM. When the routine calls IRXEXCOM, the REXX
exec is enabled for variable access, but it is not being processed. If a routine calls
IRXEXCOM and an exec has not been enabled, IRXEXCOM returns with an error.

Note: To permit FORTRAN programs to call IRXEXCOM, TSO/E provides an
alternate entry point for the IRXEXCOM routine. The alternate entry point
name is IRXEXC.

12-46 OS/390 V2R8.0 TSO/E REXX Reference

 Variable Access (IRXEXCOM)

A program can access IRXEXCOM using either the CALL or LINK macro
instructions, specifying IRXEXCOM as the entry point name. You can obtain the
address of the IRXEXCOM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 14-64 describes the
vector.

If a program uses IRXEXCOM, it must create a parameter list and pass the
address of the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXEXCOM
to run. On the call to IRXEXCOM, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

The IKJCT441 routine lets authorized and unauthorized commands and programs
access REXX variables. IKJCT441 can be used in the TSO/E address space only.
You can use IKJCT441 to access REXX or CLIST variables depending on whether
the program that calls IKJCT441 was called by a REXX exec or a CLIST. OS/390
TSO/E Programming Services describes IKJCT441.

 Entry Specifications
For the IRXEXCOM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-21 describes the parameters for IRXEXCOM.

 Chapter 12. TSO/E REXX Programming Services 12-47

 Variable Access (IRXEXCOM)

Figure 12-21. Parameters for IRXEXCOM

Parameter Number of
Bytes

Description

Parameter 1 8 An 8-byte character field that must contain the
character string ‘IRXEXCOM’.

Parameter 2 4 Parameter 2 and parameter 3 must be
identical, that is, they must be at the same
location in storage. This means that in the
parameter list pointed to by register 1, the
address at offset +4 and the address at offset
+8 must be the same. Both addresses in the
parameter list may be set to 0.

Parameter 3 4 Parameter 2 and parameter 3 must be
identical, that is, they must be at the same
location in storage. This means that in the
parameter list pointed to by register 1, the
address at offset +4 and the address at offset
+8 must be the same. Both addresses in the
parameter list may be set to 0.

Parameter 4 32 The first shared variable (request) block
(SHVBLOCK) in a chain of one or more
request blocks. The format of the SHVBLOCK
is described in The Shared Variable (Request)
Block - SHVBLOCK.

Parameter 5 4 The address of the environment block that
represents the environment in which you want
IRXEXCOM to run. This parameter is optional.

If you specify a non-zero value for the
environment block address parameter,
IRXEXCOM uses the value you specify and
ignores register 0. However, IRXEXCOM does
not check whether the address is valid.
Therefore, you must ensure the address you
specify is correct or unpredictable results can
occur. For more information, see “Specifying
the Address of the Environment Block” on
page 12-7.

Parameter 6 4 A 4-byte field that IRXEXCOM uses to return
the return code.

The return code parameter is optional. If you
use this parameter, IRXEXCOM returns the
return code in the parameter and also in
register 15. Otherwise, IRXEXCOM uses
register 15 only. If the parameter list is invalid,
the return code is returned in register 15 only.
“Return Codes” on page 12-52 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

12-48 OS/390 V2R8.0 TSO/E REXX Reference

 Variable Access (IRXEXCOM)

The Shared Variable (Request) Block - SHVBLOCK
Parameter 4 is the first shared variable (request) block in a chain of one or more
blocks. Each SHVBLOCK in the chain must have the structure shown in
Figure 12-22.

\\
\ SHVBLOCK: Layout of shared-variable PLIST element
\\
SHVBLOCK DSECT
SHVNEXT DS A Chain pointer (ð if last block)
SHVUSER DS F Available for private use, except during
\ "Fetch Next" when it identifies the
\ length of the buffer pointed to by SHVNAMA.
SHVCODE DS CL1 Individual function code indicating
\ the type of variable access request
\ (S,F,D,s,f,d,N, or P)
SHVRET DS XL1 Individual return code flags

DS H'ð' Reserved, should be zero
SHVBUFL DS F Length of 'fetch' value buffer
SHVNAMA DS A Address of variable name
SHVNAML DS F Length of variable name
SHVVALA DS A Address of value buffer
SHVVALL DS F Length of value
SHVBLEN EQU \-SHVBLOCK (length of this block = 32)
 SPACE
\
\ Function Codes (Placed in SHVCODE):
\
\ (Note that the symbolic name codes are lowercase)
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVSTORE EQU C'S' Set variable from given value
SHVDROPV EQU C'D' Drop variable
SHVSYSET EQU C's' Symbolic name Set variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYDRO EQU C'd' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch "next" variable
SHVPRIV EQU C'P' Fetch private information
 SPACE
\
\ Return Code Flags (Stored in SHVRET):
\
SHVCLEAN EQU X'ðð' Execution was OK
SHVNEWV EQU X'ð1' Variable did not exist
SHVLVAR EQU X'ð2' Last variable transferred (for "N")
SHVTRUNC EQU X'ð4' Truncation occurred during "Fetch"
SHVBADN EQU X'ð8' Invalid variable name
SHVBADV EQU X'1ð' Value too long
SHVBADF EQU X'8ð' Invalid function code (SHVCODE)

Figure 12-22. Request Block (SHVBLOCK)

Figure 12-23 on page 12-50 describes the SHVBLOCK. TSO/E provides a
mapping macro, IRXSHVB, for the SHVBLOCK. The mapping macro is in
SYS1.MACLIB. The services you can perform using IRXEXCOM are specified in
the SHVCODE field of each SHVBLOCK. “Function Codes (SHVCODE)” on
page 12-50 describes the values you can use.

 Chapter 12. TSO/E REXX Programming Services 12-49

 Variable Access (IRXEXCOM)

“Return Codes” on page 12-52 describes the return codes from the IRXEXCOM
routine.

Figure 12-23. Format of the SHVBLOCK

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 4 SHVNEXT Specifies the address of the next
SHVBLOCK in the chain. If this is the only
SHVBLOCK in the chain or the last one in
a chain, this field is 0.

4 4 SHVUSER Specifies the length of a buffer pointed to
by the SHVNAMA field. This field is
available for the user's own use, except
for a “FETCH NEXT” request. A FETCH
NEXT request uses this field.

8 1 SHVCODE A 1-byte character field that specifies the
function code, which indicates the type of
variable access request. “Function Codes
(SHVCODE)” describes the valid codes.

9 1 SHVRET Specifies the return code flag, whose
values are shown in Figure 12-22 on
page 12-49.

10 2 --- Reserved.

12 4 SHVBUFL Specifies the length of the “Fetch” value
buffer.

16 4 SHVNAMA Specifies the address of the variable
name.

20 4 SHVNAML Specifies the length of the variable name.
The maximum length of a variable name
is 250 characters.

24 4 SHVVALA Specifies the address of the value buffer.

28 4 SHVVALL Specifies the length of the value. This is
set for a “Fetch”.

Function Codes (SHVCODE)
The function code is specified in the SHVCODE field in the SHVBLOCK.

Three function codes (S, F, and D) may be given either in lowercase or in
uppercase:

Lowercase (The Symbolic interface). The names must be valid REXX symbols
(in mixed case if desired), and normal REXX substitution will occur
in compound variables.

Uppercase (The Direct interface). No substitution or case translation takes
place. Simple symbols must be valid REXX variable names (that is,
in uppercase and not starting with a digit or a period), but in
compound symbols any characters (including lowercase, blanks,
and so on) are permitted following a valid REXX stem.

Note: The Direct interface should be used in preference to the Symbolic
interface whenever generality is desired.

12-50 OS/390 V2R8.0 TSO/E REXX Reference

 Variable Access (IRXEXCOM)

The other function codes, N and P, must always be given in uppercase. The
specific actions for each function code are as follows:

S and s Set variable. The SHVNAMA/SHVNAML address/length pair
describes the name of the variable to be set, and
SHVVALA/SHVVALL describes the value which is to be
assigned to it. The name is validated to ensure that it does
not contain invalid characters, and the variable is then set
from the value given. If the name is a stem, all variables
with that stem are set, just as though this were a REXX
assignment. SHVNEWV is set if the variable did not exist
before the operation.

F and f Fetch variable. The SHVNAMA/SHVNAML address/length
pair describes the name of the variable to be fetched.
SHVVALA specifies the address of a buffer into which the
data is copied, and SHVBUFL contains the length of the
buffer. The name is validated to ensure that it does not
contain invalid characters, and the variable is then located
and copied to the buffer. The total length of the variable is
put into SHVVALL, and if the value was truncated (because
the buffer was not big enough), the SHVTRUNC bit is set. If
the variable is shorter than the length of the buffer, no
padding takes place. If the name is a stem, the initial value
of that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the
operation. In this case, the value copied to the buffer is the
derived name of the variable (after substitution, and so on)
— see page 2-18.

D and d Drop variable. The SHVNAMA/SHVNAML address/length
pair describes the name of the variable to be dropped.
SHVVALA/SHVVALL are not used. The name is validated
to ensure that it does not contain invalid characters, and the
variable is then dropped, if it exists. If the name given is a
stem, all variables starting with that stem are dropped.

N Fetch Next variable. This function may be used to search
through all the variables known to the language processor
(that is, all those of the current generation, excluding those
“hidden” by PROCEDURE instructions). The order in which
the variables are revealed is not specified.

The language processor maintains a pointer to its list of
variables, which is reset to point to the first variable in the
list whenever:

� A host command is issued, or
� Any function other than “N” is processed using the

IRXEXCOM interface.

Whenever an N (Next) function is processed, the name and
value of the next variable available are copied to two
buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the
name is to be copied, and SHVUSER contains the length of
that buffer. The total length of the name is put into

 Chapter 12. TSO/E REXX Programming Services 12-51

 Variable Access (IRXEXCOM)

SHVNAML, and if the name was truncated (because the
buffer was not big enough) the SHVTRUNC bit is set. If the
name is shorter than the length of the buffer, no padding
takes place. The value of the variable is copied to the user's
buffer area using exactly the same protocol as for the Fetch
operation.

If SHVRET has SHVLVAR set, the end of the list of known
variables has been found, the internal pointers have been
reset, and no valid data has been copied to the user
buffers. If SHVTRUNC is set, either the name or the value
has been truncated.

By repeatedly executing the N function (until the SHVLVAR
flag is set), a user program may locate all the REXX
variables of the current generation.

P Fetch private information. This interface is identical to the F
fetch interface, except that the name refers to certain fixed
information items that are available to the current REXX
program. Only the first letter of each name is checked
(though callers should supply the whole name), and the
following names are recognized:

ARG Fetch primary argument string. The first
argument string that would be parsed by the
ARG instruction is copied to the user's
buffer.

SOURCE Fetch source string. The source string, as
described for PARSE SOURCE on page
3-21, is copied to the user's buffer.

VERSION Fetch version string. The version string, as
described for PARSE VERSION on page
3-23, is copied to the user's buffer.

 Return Specifications
For the IRXEXCOM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

The output from IRXEXCOM is stored in each SHVBLOCK.

 Return Codes
Figure 12-24 shows the return codes for the IRXEXCOM routine. IRXEXCOM
returns the return code in register 15. If you specify the return code parameter
(parameter 6), IRXEXCOM also returns the return code in the parameter.

Figure 12-22 on page 12-49 shows the return code flags that are stored in the
SHVRET field in the SHVBLOCK.

12-52 OS/390 V2R8.0 TSO/E REXX Reference

 IRXSUBCM Routine

Figure 12-24. Return Codes from IRXEXCOM (In Register 15)

Return Code Description

-2 Processing was not successful. Insufficient storage was available for a
requested SET. Processing was terminated. Some of the request
blocks (SHVBLOCKs) may not have been processed and their
SHVRET bytes will be unchanged.

-1 Processing was not successful. Entry conditions were not valid for
one of the following reasons:

� The values in the parameter list may have been incorrect, for
example, parameter 2 and parameter 3 may not have been
identical

� A REXX exec was not currently running

� Another task is accessing the variable pool

� A REXX exec is currently running, but is not enabled for variable
access.

0 Processing was successful.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

n Any other return code not equal to -2, -1, 0, 28, or 32 is a composite
formed by the logical OR of SHVRETs, excluding SHVNEWV and
SHVLVAR.

Maintain Entries in the Host Command Environment Table –
IRXSUBCM

Use the IRXSUBCM routine to maintain entries in the host command environment
table. The table contains the names of the valid host command environments that
REXX execs can use to process host commands. In an exec, you can use the
ADDRESS instruction to direct a host command to a specific environment for
processing. The host command environment table also contains the name of the
routine that is invoked to handle the processing of commands for each specific
environment. “Host Command Environment Table” on page 14-25 describes the
table in more detail.

Note: To permit FORTRAN programs to call IRXSUBCM, TSO/E provides an
alternate entry point for the IRXSUBCM routine. The alternate entry point
name is IRXSUB.

Using IRXSUBCM, you can add, delete, update, or query entries in the table. You
can also use IRXSUBCM to dynamically update the host command environment
table while a REXX exec is running.

A program can access IRXSUBCM using either the CALL or LINK macro
instructions, specifying IRXSUBCM as the entry point name. You can obtain the
address of the IRXSUBCM routine from the REXX vector of external entry points.
“Format of the REXX Vector of External Entry Points” on page 14-64 describes the
vector.

 Chapter 12. TSO/E REXX Programming Services 12-53

 IRXSUBCM Routine

If a program uses IRXSUBCM, it must create a parameter list and pass the address
of the parameter list in register 1.

IRXSUBCM changes or queries the host command environment table for the
current language processor environment, that is, for the environment in which it
runs (see “General Considerations for Calling TSO/E REXX Routines” on
page 12-3 for information). IRXSUBCM affects only the environment in which it
runs. Changes to the table take effect immediately and remain in effect until the
language processor environment is terminated.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXSUBCM
to run. On the call to IRXSUBCM, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

If the environment in which IRXSUBCM runs is part of a chain of environments
and you use IRXSUBCM to change the host command environment table, the
following applies:

� The changes do not affect the environments that are higher in the chain or
existing environments that are lower in the chain.

� The changes are propagated to any language processor environment that is
created on the chain after IRXSUBCM updates the table.

 Entry Specifications
For the IRXSUBCM routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-25 describes the parameters for IRXSUBCM.

12-54 OS/390 V2R8.0 TSO/E REXX Reference

 IRXSUBCM Routine

Figure 12-25. Parameters for IRXSUBCM

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the
function must be left justified and padded to the
right with blanks. The valid functions are:

 � ADD
 � DELETE
 � UPDATE
 � QUERY

Each function is described after the table in
Functions.

Parameter 2 4 The address of a string. On both input and output,
the string has the same format as an entry in the
host command environment table. “Format of a
Host Command Environment Table Entry” on
page 12-56 describes the entry in more detail.

Parameter 3 4 The length of the string (entry) that is pointed to by
parameter 2.

Parameter 4 8 The name of the host command environment. The
name must be left justified and padded to the right
with blanks. The host command environment name
can contain alphabetic (a-z, A-Z), national (@, $,
#), or numeric (0-9) characters and is translated to
uppercase before it is stored in the host command
table.

Parameter 5 4 The address of the environment block that
represents the environment in which you want
IRXSUBCM to run. This parameter is optional.

If you specify a non-zero value for the environment
block address parameter, IRXSUBCM uses the
value you specify and ignores register 0. However,
IRXSUBCM does not check whether the address is
valid. Therefore, you must ensure the address you
specify is correct or unpredictable results can
occur. For more information, see “Specifying the
Address of the Environment Block” on page 12-7.

Parameter 6 4 A 4-byte field that IRXSUBCM uses to return the
return code.

The return code parameter is optional. If you use
this parameter, IRXSUBCM returns the return code
in the parameter and also in register 15. Otherwise,
IRXSUBCM uses register 15 only. If the parameter
list is invalid, the return code is returned in register
15 only. “Return Codes” on page 12-57 describes
the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on in
the preceding parameter's address. For more
information about parameter lists, see “Parameter
Lists for TSO/E REXX Routines” on page 12-5.

 Chapter 12. TSO/E REXX Programming Services 12-55

 IRXSUBCM Routine

 Functions
Parameter 1 contains the name of the function IRXSUBCM is to perform. The
functions are:

ADD
Adds an entry to the table using the values specified on the call. IRXSUBCM
does not check for duplicate entries. If a duplicate entry is added and then
IRXSUBCM is called to delete the entry, IRXSUBCM deletes the duplicate entry
and leaves the original one.

DELETE
Deletes the last occurrence of the specified entry from the table.

UPDATE
Updates the specified entry with the new values specified on the call. The entry
name itself (the name of the host command environment) is not changed.

QUERY
Returns the values associated with the last occurrence of the entry specified on
the call.

Format of a Host Command Environment Table Entry
Parameter 2 points to a string that has the same format as an entry (row) in the
host command environment table. Figure 12-26 shows the format of an entry.
TSO/E provides a mapping macro IRXSUBCT for the table entries. The mapping
macro is in SYS1.MACLIB. “Host Command Environment Table” on page 14-25
describes the table in more detail.

Figure 12-26. Format of an Entry in the Host Command Environment Table

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 8 NAME The name of the host command
environment. The name must contain
alphabetic (a-z, A-Z), national (@, $, #),
or numeric (0-9) characters and is
translated to uppercase before it is stored
in the host command table.

8 8 ROUTINE The name of the host command
environment routine that is invoked to
handle the processing of host commands
in the specified environment. The host
command environment routine is one of
the replaceable routines. See “Host
Command Environment Routine” on
page 16-28 for information about writing
the routine. The routine must contain
alphabetic (a-z, A-Z), national (@, $, #),
or numeric (0-9) characters, must begin
with an alphabetic or national character,
and is translated to uppercase before it is
stored in the host command table.

16 16 TOKEN A user token that is passed to the routine
when it is invoked.

12-56 OS/390 V2R8.0 TSO/E REXX Reference

 IRXIC Routine

For the ADD, UPDATE, and QUERY functions, the length of the string (parameter
3) must be the length of the entry.

For the DELETE function, the address of the string (parameter 2) and the length of
the string (parameter 3) must be 0.

 Return Specifications
For the IRXSUBCM routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-27 shows the return codes for the IRXSUBCM routine. IRXSUBCM
returns the return code in register 15. If you specify the return code parameter
(parameter 6), IRXSUBCM also returns the return code in the parameter.

Note: IRXSUBCM does not support the use of DBCS characters in host command
environment names.

Figure 12-27. Return Codes for IRXSUBCM

Return Code Description

0 Processing was successful.

8 Processing was not successful. The specified entry was not found in
the table. A return code of 8 is used only for the DELETE, UPDATE,
and QUERY functions.

20 Processing was not successful. An error occurred. A message that
explains the error is also issued.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Trace and Execution Control Routine – IRXIC
Use the IRXIC routine to control the tracing and execution of REXX execs. A
program can call IRXIC to use the following REXX immediate commands:

� HI (Halt Interpretation) — to halt the interpretation of REXX execs

� HT (Halt Typing) — to suppress terminal output that REXX execs generate

� RT (Resume Typing) — to restore terminal output you previously suppressed

� TS (Trace Start) — to start tracing of REXX execs

� TE (Trace End) — to end tracing of REXX execs.

The immediate commands are described in Chapter 10, TSO/E REXX Commands.

A program can access IRXIC using either the CALL or LINK macro instructions,
specifying IRXIC as the entry point name. You can obtain the address of the IRXIC

 Chapter 12. TSO/E REXX Programming Services 12-57

 IRXIC Routine

routine from the REXX vector of external entry points. “Format of the REXX Vector
of External Entry Points” on page 14-64 describes the vector.

If a program uses IRXIC, the program must create a parameter list and pass the
address of the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXIC to run.
On the call to IRXIC, you can optionally specify the address of the environment
block for the environment in either the parameter list or in register 0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

IRXIC affects only the language processor environment in which it runs.

 Entry Specifications
For the IRXIC routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-28 describes the parameters for IRXIC.

Figure 12-28 (Page 1 of 2). Parameters for IRXIC

Parameter Number of
Bytes

Description

Parameter 1 4 The address of the name of the command you
want IRXIC to process. The valid command names
are HI, HT, RT, TS, and TE. The command names
are described below.

Parameter 2 4 The length of the command name that parameter 1
points to.

12-58 OS/390 V2R8.0 TSO/E REXX Reference

 IRXIC Routine

The valid command names that you can specify are:

HI (Halt Interpretation)
The halt condition is set. Between instructions, the language processor
checks whether it should halt the interpretation of REXX execs. If HI has
been issued, the language processor stops interpreting REXX execs. HI is
reset if a halt condition is enabled or when no execs are running in the
environment.

HT (Halt Typing)
When the halt typing condition is set, output that REXX execs generate is
suppressed (for example, the SAY instruction does not display its output).
HT does not affect output from any other part of the system and does not
affect error messages. HT is reset when the last exec running in the
environment ends.

RT (Resume Typing)
Resets the halt typing condition. Output from REXX execs is restored.

TS (Trace Start)
Starts tracing of REXX execs.

TE (Trace End)
Ends tracing of REXX execs.

Figure 12-28 (Page 2 of 2). Parameters for IRXIC

Parameter Number of
Bytes

Description

Parameter 3 4 The address of the environment block that
represents the environment in which you want
IRXIC to run. This parameter is optional.

If you specify a non-zero value for the environment
block address parameter, IRXIC uses the value you
specify and ignores register 0. However, IRXIC
does not check whether the address is valid.
Therefore, you must ensure the address you
specify is correct or unpredictable results can
occur. For more information, see “Specifying the
Address of the Environment Block” on page 12-7.

Parameter 4 4 A 4-byte field that IRXIC uses to return the return
code.

The return code parameter is optional. If you use
this parameter, IRXIC returns the return code in the
parameter and also in register 15. Otherwise,
IRXIC uses register 15 only. If the parameter list is
invalid, the return code is returned in register 15
only. “Return Codes” on page 12-60 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on in
the preceding parameter's address. For more
information about parameter lists, see “Parameter
Lists for TSO/E REXX Routines” on page 12-5.

 Chapter 12. TSO/E REXX Programming Services 12-59

 Get Result Routine - IRXRLT

 Return Specifications
For the IRXIC routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-29 shows the return codes for the IRXIC routine. IRXIC returns the
return code in register 15. If you specify the return code parameter (parameter 4),
IRXIC also returns the return code in the parameter.

Figure 12-29. Return Codes for IRXIC

Return Code Description

0 Processing was successful.

20 Processing was not successful. An error occurred. The system issues
a message that explains the error.

28 Processing was not successful. IRXIC could not locate a language
processor environment.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Get Result Routine – IRXRLT
Use the IRXRLT (get result) routine to obtain:

� The result from an exec that was processed by calling the IRXEXEC routine.

You can call the IRXEXEC routine to run a REXX exec. The exec can return a
result using the RETURN or EXIT instruction. When you call IRXEXEC, you
can optionally pass the address of an evaluation block that you have allocated.
If the exec returns a result, IRXEXEC places the result in the evaluation block.
“The IRXEXEC Routine” on page 12-13 describes IRXEXEC in detail.

The evaluation block that you pass to IRXEXEC may be too small to hold the
complete result. If so, IRXEXEC places as much of the result that will fit into
the evaluation block and sets the length field in the block to the negative of the
length required for the complete result. If you call IRXEXEC and the complete
result cannot be returned, you can allocate a larger evaluation block, and call
the IRXRLT routine and pass the address of the new evaluation block to obtain
the complete result. You can also call IRXEXEC and not pass the address of
an evaluation block. If the exec returns a result, you can then use the IRXRLT
routine to obtain the result.

� A larger evaluation block to return the result from an external function or
subroutine that you have written in a programming language other than REXX.

You can write your own external functions and subroutines. You can write
external functions and subroutines in REXX or in any programming language
that supports the system-dependent interfaces. If you write your function or

12-60 OS/390 V2R8.0 TSO/E REXX Reference

 Get Result Routine - IRXRLT

subroutine in a programming language other than REXX, when your code is
called, it receives the address of an evaluation block that the language
processor has allocated. Your code returns the result it calculates in the
evaluation block. “Interface for Writing External Function and Subroutine Code”
on page 12-33 describes the system interfaces for writing external functions
and subroutines and how you use the evaluation block.

If the evaluation block that your function or subroutine code receives is too
small to store the result, you can call the IRXRLT routine to obtain a larger
evaluation block. You can then use the new evaluation block to store the result
from your function or subroutine.

� An evaluation block that a compiler run-time processor can use to handle the
result from a compiled REXX exec.

A compiler run-time processor can also use IRXRLT to obtain an evaluation
block to handle the result from a compiled REXX exec that is currently running.
The evaluation block that IRXRLT returns has the same format as the
evaluation block for IRXEXEC or for external functions or subroutines. For
information about when a compiler run-time processor might require an
evaluation block, see OS/390 TSO/E Customization.

For information about the format of the evaluation block, see “The IRXEXEC
Routine” on page 12-13 and “Interface for Writing External Function and Subroutine
Code” on page 12-33.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXRLT to
run. On the call to IRXRLT, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXRLT routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Chapter 12. TSO/E REXX Programming Services 12-61

 Get Result Routine - IRXRLT

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-30 describes the parameters for IRXRLT.

Figure 12-30 (Page 1 of 2). Parameters for IRXRLT

Parameter Number
of Bytes

Description

Parameter 1 8 The function to be performed. The name of the
function must be left justified, in uppercase, and
padded to the right with blanks. The valid functions are
summarized below and are described in “Functions” on
page 12-64.

GETBLOCK
Obtain a larger evaluation block for the
external function or subroutine that is running.
The GETBLOCK function is valid only when
an exec is currently running.

GETRLT
Obtain the result from the last REXX exec that
was processed in the current language
processor environment. The GETRLT function
is valid only if an exec is not currently running.

GETRLTE
Obtain the result from the last REXX exec that
was processed in the current language
processor environment. The GETRLTE
function is the same as GETRLT, except that
GETRLTE provides support when REXX
execs are nested.

GETEVAL
Obtain an evaluation block to handle the
result from a compiled REXX exec. The
GETEVAL function is intended for use only by
a compiler run-time processor and is valid
only when a compiled exec is currently
running.

12-62 OS/390 V2R8.0 TSO/E REXX Reference

 Get Result Routine - IRXRLT

Figure 12-30 (Page 2 of 2). Parameters for IRXRLT

Parameter Number
of Bytes

Description

Parameter 2 4 The address of the evaluation block. On input, this
parameter is used only for the GETRLT and GETRLTE
functions. The parameter is not used for the
GETBLOCK and GETEVAL functions. On input, specify
the address of an evaluation block that is large enough
to hold the result from the exec.

On output, this parameter is used only for the
GETBLOCK and GETEVAL functions. The parameter
is not used for the GETRLT and GETRLTE functions.

� On output for the GETBLOCK function, the
parameter returns the address of a larger
evaluation block that the function or subroutine
code can use to return a result.

� On output for the GETEVAL function, the
parameter returns the address of an evaluation
block that the compiler run-time processor can use
for the compiled exec that is currently running.

Parameter 3 4 The length, in bytes, of the data area in the evaluation
block. This parameter is used on input for the
GETBLOCK and GETEVAL functions only. Specify the
size needed to store the result from the exec that is
currently running.

This parameter is not used for the GETRLT and
GETRLTE functions.

Parameter 4 4 The address of the environment block that represents
the environment in which you want IRXRLT to run.
This parameter is optional.

If you specify a non-zero value for the environment
block address parameter, IRXRLT uses the value you
specify and ignores register 0. However, IRXRLT does
not check whether the address is valid. Therefore, you
must ensure the address you specify is correct or
unpredictable results can occur. For more information,
see “Specifying the Address of the Environment Block”
on page 12-7.

Parameter 5 4 A 4-byte field that IRXRLT uses to return the return
code.

The return code parameter is optional. If you use this
parameter, IRXRLT returns the return code in the
parameter and also in register 15. Otherwise, IRXRLT
uses register 15 only. If the parameter list is invalid,
the return code is returned in register 15 only. “Return
Codes” on page 12-66 describes the return codes.

If you do not want to use the return code parameter,
you can end the parameter list at a preceding
parameter. Set the high-order bit on in the preceding
parameter's address. For more information about
parameter lists, see “Parameter Lists for TSO/E REXX
Routines” on page 12-5.

 Chapter 12. TSO/E REXX Programming Services 12-63

 Get Result Routine - IRXRLT

 Functions
Parameter 1 contains the name of the function IRXRLT is to perform. The functions
are described below.

GETBLOCK
Use the GETBLOCK function to obtain a larger evaluation block for the external
function or subroutine that is running.

You can write external functions and subroutines in REXX or in any
programming language that supports the system-dependent interfaces. If you
write an external function or subroutine in a programming language other than
REXX, when your code is called, it receives the address of an evaluation block.
Your code can use the evaluation block to return the result.

For your external function or subroutine code, if the value of the result does not
fit into the evaluation block your code receives, you can call IRXRLT to obtain a
larger evaluation block. Call IRXRLT with the GETBLOCK function. When you
call IRXRLT, specify the length of the data area that you require in parameter
3. IRXRLT allocates a new evaluation block with the specified data area size
and returns the address of the new evaluation block in parameter 2. IRXRLT
also frees the original evaluation block that was not large enough for the
complete result. Your code can then use the new evaluation block to store the
result. See “Interface for Writing External Function and Subroutine Code” on
page 12-33 for more information about writing external functions and
subroutines and the format of the evaluation block.

Note that you can use the GETBLOCK function only when an exec is currently
running in the language processor environment.

GETRLT and GETRLTE
You can use either the GETRLT or GETRLTE function to obtain the result from
the last REXX exec that was processed in the language processor
environment. If you use the IRXEXEC routine to run an exec and then need to
invoke IRXRLT to obtain the result from the exec, invoke IRXRLT with the
GETRLT or GETRLTE function. You can use the GETRLT function only if an
exec is not currently running in the language processor environment. You can
use the GETRLTE function regardless of whether an exec is currently running
in the environment, which provides support for nested REXX execs.

When you call IRXEXEC, you can allocate an evaluation block and pass the
address of the evaluation block to IRXEXEC. IRXEXEC returns the result from
the exec in the evaluation block. If the evaluation block is too small, IRXEXEC
returns the negative length of the area required for the result. You can allocate
another evaluation block that has a data area large enough to store the result
and call IRXRLT and pass the address of the new evaluation block in
parameter 2. IRXRLT returns the result from the exec in the evaluation block.

You can call IRXEXEC to process an exec that returns a result and not pass
the address of an evaluation block on the call. To obtain the result, you can
use IRXRLT after IRXEXEC returns. You must allocate an evaluation block and
pass the address on the call to IRXRLT.

If you call IRXRLT to obtain the result (GETRLT or GETRLTE function) and the
evaluation block you pass to IRXRLT is not large enough to store the result,
IRXRLT:

� Places as much of the result that will fit into the evaluation block

12-64 OS/390 V2R8.0 TSO/E REXX Reference

 Get Result Routine - IRXRLT

� Sets the length of the result field in the evaluation block to the negative of
the length required for the complete result.

If IRXRLT cannot return the complete result, the result is not lost. The result is
still stored in a system evaluation block. You can then allocate a larger
evaluation block and call IRXRLT again specifying the address of the new
evaluation block. This is more likely to occur if you had called IRXEXEC without
an evaluation block and then use IRXRLT to obtain the result from the exec
that executed. It can also occur if you miscalculate the area required to store
the complete result.

The result from the exec is available until one of the following occurs:

� You successfully obtain the result using the IRXRLT routine

� Another REXX exec is invoked in the same language processor
environment

� The language processor environment is terminated.

Note: The language processor environment is the environment in which REXX
execs and routines run. See “General Considerations for Calling TSO/E
REXX Routines” on page 12-3 for information. Chapter 14, Language
Processor Environments provides more details about environments and
customization services.

You can use the GETRLT function to obtain the result from a REXX exec only
if an exec is not currently running in the language processor environment. For
example, suppose you use the IRXEXEC routine to run an exec and the result
from the exec does not fit into the evaluation block. After IRXEXEC returns
control, you can invoke the IRXRLT routine with the GETRLT function to get
the result from the exec. At this point, the REXX exec is no longer running in
the environment.

You can use the GETRLTE function regardless of whether a REXX exec is
currently running in the language processor environment. For example,
GETRLTE is useful in the following situation. Suppose you have an exec that
calls an external function that is written in assembler. The external function
(assembler program) uses the IRXEXEC routine to invoke a REXX exec.
However, the result from the invoked exec is too large to be returned to the
external function in the evaluation block. The external function can allocate a
larger evaluation block and then use IRXRLT with the GETRLTE function to
obtain the result from the exec. At this point, the original exec that called the
external function is still running in the language processor environment.
GETRLTE obtains the result from the last exec that completed in the
environment, which, in this case, is the exec the external function invoked.

For more information about running an exec using the IRXEXEC routine and
the evaluation block, see “The IRXEXEC Routine” on page 12-13.

GETEVAL
The GETEVAL function is intended for use by a compiler run-time processor.
GETEVAL lets a compiler run-time processor obtain an evaluation block
whenever it has to handle the result from a compiled REXX exec that is
currently running. The GETEVAL function is supported only when a compiled
exec is currently running in the language processor environment.

Note that if you write an external function or subroutine in a programming
language other than REXX and your function or subroutine code requires a

 Chapter 12. TSO/E REXX Programming Services 12-65

 Get Result Routine - IRXRLT

larger evaluation block, you should use the GETBLOCK function, not the
GETEVAL function.

 Return Specifications
For the IRXRLT get result routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
IRXRLT returns a return code in register 15. If you specify the return code
parameter (parameter 5), IRXRLT also returns the return code in the parameter.

Figure 12-31 shows the return codes if you call IRXRLT with the GETBLOCK
function. Additional information about certain return codes is provided after the
tables.

Figure 12-32 shows the return codes if you call IRXRLT with the GETRLT or
GETRLTE function.

Figure 12-33 shows the return codes if you call IRXRLT with the GETEVAL
function.

Figure 12-31. IRXRLT Return Codes for the GETBLOCK Function

Return Code Description

0 Processing was successful. IRXRLT allocated a new evaluation block
and returned the address of the evaluation block.

20 Processing was not successful. A new evaluation block was not
allocated.

28 Processing was not successful. A valid language processor
environment could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Figure 12-32. IRXRLT Return Codes for the GETRLT and GETRLTE Functions

Return Code Description

0 Processing was successful. A return code of 0 indicates that IRXRLT
completed successfully. However, the complete result may not have
been returned.

20 Processing was not successful. IRXRLT could not perform the
requested function. The result is not returned.

28 Processing was not successful. A valid language processor
environment could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

12-66 OS/390 V2R8.0 TSO/E REXX Reference

 Get Result Routine - IRXRLT

Return Code 0 for the GETRLT and GETRLTE Functions: If you receive a return
code of 0 for the GETRLT or GETRLTE function, IRXRLT completed successfully
but the complete result may not have been returned. IRXRLT returns a return code
of 0 if:

� The entire result was stored in the evaluation block.

� The data field (EVDATA) in the evaluation block was too small. IRXRLT stores
as much of the result as it can and sets the length field (EVLEN) in the
evaluation block to the negative value of the length that is required.

� No result was available.

Return Code 20: If you receive a return code of 20 for the GETBLOCK, GETRLT,
GETRLTE, or GETEVAL function, you may have incorrectly specified the function
name in parameter 1.

If you receive a return code of 20 for the GETBLOCK function, some possible
errors could be:

� The length you requested (parameter 3) was not valid. Either the length was a
negative value or exceeded the maximum value. The maximum is 16 MB minus
the length of the evaluation block header.

� The system could not obtain storage.

� You called IRXRLT with the GETBLOCK function and an exec was not running
in the language processor environment.

If you receive a return code of 20 for the GETRLT function, some possible errors
could be:

� The address of the evaluation block (parameter 2) was 0

� The evaluation block you allocated was not valid. For example, the EVLEN field
was less than 0.

If you receive a return code of 20 for the GETEVAL function, some possible errors
could be:

� The length you requested (parameter 3) was not valid. Either the length was a
negative value or exceeded the maximum value. The maximum is 16 MB minus
the length of the evaluation block header.

� The system could not obtain storage.

Figure 12-33. IRXRLT Return Codes for the GETEVAL Function

Return Code Description

0 Processing was successful. IRXRLT allocated an evaluation block and
returned the address of the evaluation block.

20 Processing was not successful. An evaluation block was not
allocated.

28 Processing was not successful. A valid language processor
environment could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

 Chapter 12. TSO/E REXX Programming Services 12-67

 IRXSAY Routine

� You called IRXRLT with the GETEVAL function and a compiled exec was not
currently running in the language processor environment. The GETEVAL
function is intended for a compiler run-time processor and can be used only
when a compiled REXX exec is currently running.

SAY Instruction Routine – IRXSAY
The SAY instruction routine, IRXSAY, lets you write a character string to the same
output stream as the REXX keyword instruction SAY. For example, in TSO/E
foreground, you can write a string to the terminal. “SAY” on page 3-28 describes
the SAY keyword instruction.

A program can access IRXSAY using either the CALL or LINK macro instructions,
specifying IRXSAY as the entry point name. You can obtain the address of the
IRXSAY routine from the REXX vector of external entry points. “Format of the
REXX Vector of External Entry Points” on page 14-64 describes the vector.

If a program uses IRXSAY, it must create a parameter list and pass the address of
the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXSAY to
run. On the call to IRXSAY, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXSAY routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-34 describes the parameters for IRXSAY.

12-68 OS/390 V2R8.0 TSO/E REXX Reference

 IRXSAY Routine

Figure 12-34. Parameters for IRXSAY

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the
function must be in uppercase, left justified,
and padded to the right with blanks. The valid
functions are:

 � WRITE
 � WRITEERR

“Functions” on page 12-70 describes the
functions in more detail.

Parameter 2 4 The address of an input buffer containing a
string. The caller supplies the string, which is a
string of bytes that you want IRXSAY to write
to the output stream.

There are no restrictions on the contents of the
string. However, the target device for
displaying the data may limit the characters
you can specify.

Parameter 3 4 The length, in bytes, of the string that is
pointed to by parameter 2.

Parameter 4 4 The address of the environment block that
represents the environment in which you want
IRXSAY to run. This parameter is optional.

If you specify a non-zero value for the
environment block address parameter, IRXSAY
uses the value you specify and ignores register
0. However, IRXSAY does not check whether
the address is valid. Therefore, you must
ensure the address you specify is correct or
unpredictable results can occur. For more
information, see “Specifying the Address of the
Environment Block” on page 12-7.

Parameter 5 4 A 4-byte field that IRXSAY uses to return the
return code.

The return code parameter is optional. If you
use this parameter, IRXSAY returns the return
code in the parameter and also in register 15.
Otherwise, IRXSAY uses register 15 only. If
the parameter list is invalid, the return code is
returned in register 15 only. “Return Codes” on
page 12-70 describes the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

 Chapter 12. TSO/E REXX Programming Services 12-69

 IRXSAY Routine

 Functions
Parameter 1 contains the name of the function IRXSAY is to perform. The functions
are:

WRITE
Specifies that you want IRXSAY to write the input string you provide to the
output stream. In environments that are not integrated into TSO/E, the output is
directed to the file specified in the OUTDD field in the module name table. The
default OUTDD file is SYSTSPRT.

In environments that are integrated into TSO/E, the output is directed to a
terminal (TSO/E foreground) or to SYSTSPRT (TSO/E background).

WRITEERR
Specifies that you want IRXSAY to write the input string you provide to the
output stream to which error messages are written.

The settings for the NOMSGWTO and NOMSGIO flags control message
processing in a language processor environment. The flags are described in
“Flags and Corresponding Masks” on page 14-15.

 Return Specifications
For the IRXSAY routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-35 shows the return codes for the IRXSAY routine. IRXSAY returns the
return code in register 15. If you specify the return code parameter (parameter 5),
IRXSAY also returns the return code in the parameter.

Figure 12-35. Return Codes for IRXSAY

Return Code Description

0 Processing was successful. The input string was written to the output
stream.

8 Processing was successful. However, the input string was not written
to the output stream because Halt Typing (HT) is in effect.

20 Processing was not successful. An error occurred and the requested
function is not performed. The system may issue a message that
describes the error.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

12-70 OS/390 V2R8.0 TSO/E REXX Reference

 IRXHLT Routine

Halt Condition Routine – IRXHLT
The halt condition routine, IRXHLT, lets you query or reset the halt condition. Using
IRXHLT, you can determine whether a halt condition has been set, for example,
with the HI immediate command. You can also reset the halt condition.

A program can access IRXHLT using either the CALL or LINK macro instructions,
specifying IRXHLT as the entry point name. You can obtain the address of the
IRXHLT routine from the REXX vector of external entry points. “Format of the
REXX Vector of External Entry Points” on page 14-64 describes the vector.

If a program uses IRXHLT, it must create a parameter list and pass the address of
the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXHLT to
run. On the call to IRXHLT, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXHLT routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-36 describes the parameters for IRXHLT.

 Chapter 12. TSO/E REXX Programming Services 12-71

 IRXHLT Routine

Figure 12-36. Parameters for IRXHLT

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the
function must be left justified, in uppercase,
and padded to the right with blanks. The valid
functions are:

 � TESTHLT
 � CLEARHLT

“Functions” on page 12-72 describes the
functions in more detail.

Parameter 2 4 The address of the environment block that
represents the environment in which you want
IRXHLT to run. This parameter is optional.

If you specify an environment block address,
IRXHLT uses the value you specify and
ignores register 0. However, IRXHLT does not
check whether the address is valid. Therefore,
you must ensure the address you specify is
correct or unpredictable results can occur.

You can also use register 0 to specify the
address of an environment block. If you use
register 0, IRXHLT checks whether the address
is valid. For more information, see “Specifying
the Address of the Environment Block” on
page 12-7.

Parameter 3 4 A 4-byte field that IRXHLT uses to return the
return code.

The return code parameter is optional. If you
use this parameter, IRXHLT returns the return
code in the parameter and also in register 15.
Otherwise, IRXHLT uses register 15 only.
“Return Codes” on page 12-73 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

 Functions
Parameter 1 contains the name of the function IRXHLT is to perform. The functions
are:

TESTHLT
Determines whether the halt condition has been set. For example, the halt
condition may be set by the HI immediate command, the EXECUTIL HI
command, or the trace and execution control routine, IRXIC.

Return codes 0 and 4 from IRXHLT indicate whether the halt condition has
been set. See “Return Codes” on page 12-73 for more information.

12-72 OS/390 V2R8.0 TSO/E REXX Reference

 IRXTXT Routine

CLEARHLT
Resets the halt condition.

 Return Specifications
For the IRXHLT routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-37 shows the return codes for the IRXHLT routine. IRXHLT returns the
return code in register 15. If you specify the return code parameter (parameter 3),
IRXHLT also returns the return code in the parameter.

Figure 12-37. Return Codes for IRXHLT

Return Code Description

0 Processing was successful. For the TESTHLT function, a return code
of 0 indicates the halt condition was tested and the condition has not
been set. This means that REXX exec processing will continue.

For the CLEARHLT function, a return code of 0 indicates the halt
condition was successfully reset.

4 Processing was successful. A return code of 4 is used only for the
TESTHLT function. The return code indicates the halt condition was
tested and the condition has been set. This means that REXX
processing will be halted, for example, just as if EXECUTIL HI were
processed.

20 Processing was not successful. An error occurred and the requested
function is not performed. IRXHLT returns a return code of 20 if the
function you specify in parameter 1 is invalid.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Text Retrieval Routine – IRXTXT
The text retrieval routine, IRXTXT, lets you retrieve the same text the TSO/E REXX
interpreter uses for several options of the DATE built-in function and for the
ERRORTEXT built-in function. Using IRXTXT, you can retrieve the:

� English names for the days of the week, in mixed case (for example, Thursday)

� English names for the months of the year, in mixed case (for example, August)

� Abbreviated English names for the months of the year, in mixed case (for
example, Aug)

� Text of a REXX syntax error message. For example, for error number 26
(message IRX0026I), the message text is:

Invalid whole number

 Chapter 12. TSO/E REXX Programming Services 12-73

 IRXTXT Routine

A program can access IRXTXT using either the CALL or LINK macro instructions,
specifying IRXTXT as the entry point name. You can obtain the address of the
IRXTXT routine from the REXX vector of external entry points. “Format of the
REXX Vector of External Entry Points” on page 14-64 describes the vector.

If a program uses IRXTXT, it must create a parameter list and pass the address of
the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXTXT to
run. On the call to IRXTXT, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXTXT routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-38 describes the parameters for IRXTXT.

12-74 OS/390 V2R8.0 TSO/E REXX Reference

 IRXTXT Routine

Figure 12-38 (Page 1 of 2). Parameters for IRXTXT

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name of the
function must be left justified, in uppercase,
and padded to the right with blanks. The valid
functions are:

 � DAY
 � MTHLONG
 � MTHSHORT
 � SYNTXMSG

“Functions and Text Units” on page 12-76
describes the functions in more detail.

Parameter 2 4 A fullword binary field that contains the text unit
corresponding to the function in parameter 1.
The text unit you specify depends on the
function you use in parameter 1 and the
corresponding value you want IRXTXT to
return. “Functions and Text Units” on
page 12-76 describes the text units in more
detail.

Parameter 3 4 The address of an area in storage to hold the
text that IRXTXT retrieves.

Parameter 4 4 The length of the area in storage that is
pointed to by parameter 3. It is recommended
that you provide a large buffer area to hold the
result, for example, 250 bytes. If the buffer is
too small to hold the returned text, IRXTXT
returns with return code 20.

On output, IRXTXT updates parameter 4 to
contain the length of the actual text it returns.

Parameter 5 4 The address of the environment block that
represents the environment in which you want
IRXTXT to run. This parameter is optional.

If you specify a non-zero value for the
environment block address parameter, IRXTXT
uses the value you specify and ignores register
0. However, IRXTXT does not check whether
the address is valid. Therefore, you must
ensure the address you specify is correct or
unpredictable results can occur. For more
information, see “Specifying the Address of the
Environment Block” on page 12-7.

 Chapter 12. TSO/E REXX Programming Services 12-75

 IRXTXT Routine

Figure 12-38 (Page 2 of 2). Parameters for IRXTXT

Parameter Number of
Bytes

Description

Parameter 6 4 A 4-byte field that IRXTXT uses to return the
return code.

The return code parameter is optional. If you
use this parameter, IRXTXT returns the return
code in the parameter and also in register 15.
Otherwise, IRXTXT uses register 15 only. If the
parameter list is invalid, the return code is
returned in register 15 only. “Return Codes” on
page 12-78 describes the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

Functions and Text Units
Parameter 1 contains the name of the function IRXTXT is to perform. Parameter 2
specifies the text unit you want IRXTXT to retrieve for the particular function. The
functions and their corresponding text units you can request are described below:

DAY
The DAY function returns the English name of a day of the week, in mixed
case. The names that IRXTXT retrieves are the same values the TSO/E REXX
interpreter uses for the DATE(Weekday) function.

The name of the day that IRXTXT retrieves depends on the text unit you
specify in parameter 2. Figure 12-39 shows the text units for parameter 2 and
the corresponding day IRXTXT retrieves for each text unit. For example, if you
want IRXTXT to return the value Saturday, you would specify text unit 3.

MTHLONG
The MTHLONG function returns the English name of a month, in mixed case.
The names that IRXTXT retrieves are the same values the TSO/E REXX
interpreter uses for the DATE(Month) function.

Figure 12-39. Text Unit and Day Returned - DAY Function

Text Unit Name of Day Returned

1 Thursday

2 Friday

3 Saturday

4 Sunday

5 Monday

6 Tuesday

7 Wednesday

12-76 OS/390 V2R8.0 TSO/E REXX Reference

 IRXTXT Routine

The name of the month that IRXTXT retrieves depends on the text unit you
specify in parameter 2. Figure 12-40 on page 12-77 shows the text units for
parameter 2 and the corresponding name of the month IRXTXT retrieves for
each text unit. For example, if you wanted IRXTXT to return the value April,
you would specify text unit 4.

MTHSHORT
The MTHSHORT function returns the first three characters of the English name
of a month, in mixed case. The names that IRXTXT retrieves are the same
values the TSO/E REXX interpreter uses for the month in the DATE(Normal)
function.

The abbreviated name of the month that IRXTXT retrieves depends on the text
unit you specify in parameter 2. Figure 12-41 shows the text units for
parameter 2 and the corresponding abbreviated names of the month that
IRXTXT retrieves for each text unit. For example, if you wanted IRXTXT to
return the value Sep, you would specify text unit 9.

Figure 12-40. Text Unit and Month Returned - MTHLONG Function

Text Unit Name of Month Returned

1 January

2 February

3 March

4 April

5 May

6 June

7 July

8 August

9 September

10 October

11 November

12 December

Figure 12-41 (Page 1 of 2). Text Unit and Abbreviated Month Returned - MTHSHORT
Function

Text Unit Abbreviated Name of Month Returned

1 Jan

2 Feb

3 Mar

4 Apr

5 May

6 Jun

7 Jul

8 Aug

9 Sep

10 Oct

 Chapter 12. TSO/E REXX Programming Services 12-77

 IRXTXT Routine

SYNTXMSG
The SYNTXMSG function returns the message text for a specific REXX syntax
error message. The text that IRXTXT retrieves is the same text the
ERRORTEXT function returns.

The message text that IRXTXT retrieves depends on the text unit you specify in
parameter 2. For the text unit, specify the error number corresponding to the
error message. For example, error number 26 corresponds to message
IRX0026I. The message text for IRX0026I is:

Invalid whole number

This is the value the SYNTXMSG function returns if you specify text unit 26.

The values 1-99 are reserved for error numbers. However, not all of the values
are used for REXX syntax error messages. If you specify a text unit in the
range 1-99 and the value is not supported, IRXTXT returns a string of length 0.

Figure 12-41 (Page 2 of 2). Text Unit and Abbreviated Month Returned - MTHSHORT
Function

Text Unit Abbreviated Name of Month Returned

11 Nov

12 Dec

 Return Specifications
For the IRXTXT routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-42 shows the return codes for the IRXTXT routine. IRXTXT returns the
return code in register 15. If you specify the return code parameter (parameter 6),
IRXTXT also returns the return code in the parameter.

Figure 12-42 (Page 1 of 2). Return Codes for IRXTXT

Return Code Description

0 Processing was successful. IRXTXT retrieved the text you requested
and placed the text into the buffer area.

20 Processing was not successful. An error occurred and the requested
function is not performed. IRXTXT does not retrieve the text. You may
receive a return code of 20 if the:

� Buffer is too small to hold the complete text

� Function you specified for parameter 1 is invalid

� Text unit you specified for parameter 2 is invalid for the particular
function you requested in parameter 1.

28 Processing was not successful. A language processor environment
could not be located.

12-78 OS/390 V2R8.0 TSO/E REXX Reference

 IRXLIN Routine

Figure 12-42 (Page 2 of 2). Return Codes for IRXTXT

Return Code Description

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

LINESIZE Function Routine – IRXLIN
The LINESIZE function routine, IRXLIN, lets you obtain the same value that the
LINESIZE built-in function returns. “LINESIZE” on page 4-25 describes the built-in
function.

A program can access IRXLIN using either the CALL or LINK macro instructions,
specifying IRXLIN as the entry point name. You can obtain the address of the
IRXLIN routine from the REXX vector of external entry points. “Format of the REXX
Vector of External Entry Points” on page 14-64 describes the vector.

If a program uses IRXLIN, it must create a parameter list and pass the address of
the parameter list in register 1.

Environment Customization Considerations

If you use the IRXINIT initialization routine to initialize language processor
environments, you can specify the environment in which you want IRXLIN to
run. On the call to IRXLIN, you can optionally specify the address of the
environment block for the environment in either the parameter list or in register
0.

For more information about specifying environments and how routines
determine the environment in which to run, see “Specifying the Address of the
Environment Block” on page 12-7.

 Entry Specifications
For the IRXLIN routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Chapter 12. TSO/E REXX Programming Services 12-79

 IRXLIN Routine

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 12-43 describes the parameters for IRXLIN.

Figure 12-43 (Page 1 of 2). Parameters for IRXLIN

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function
name must be left justified, in uppercase, and
padded to the right with blanks. The only valid
function is LINESIZE, which returns the same
value that the LINESIZE built-in function
returns.

Parameter 2 4 IRXLIN returns the LINESIZE value in this
parameter. IRXLIN returns the same value that
the LINESIZE built-in function returns.
“LINESIZE” on page 4-25 describes the built-in
function.

The value IRXLIN returns in this parameter is
valid only if the return code is 0.

Parameter 3 4 The address of the environment block that
represents the environment in which you want
IRXLIN to run. This parameter is optional.

If you specify an environment block address,
IRXLIN uses the value you specify and ignores
register 0. However, IRXLIN does not check
whether the address is valid. Therefore, you
must ensure the address you specify is correct
or unpredictable results can occur.

You can also use register 0 to specify the
address of an environment block. If you use
register 0, IRXLIN checks whether the address
is valid. For more information, see “Specifying
the Address of the Environment Block” on
page 12-7.

12-80 OS/390 V2R8.0 TSO/E REXX Reference

 IRXLIN Routine

Figure 12-43 (Page 2 of 2). Parameters for IRXLIN

Parameter Number of
Bytes

Description

Parameter 4 4 A 4-byte field that IRXLIN uses to return the
return code.

The return code parameter is optional. If you
use this parameter, IRXLIN returns the return
code in the parameter and also in register 15.
Otherwise, IRXLIN uses register 15 only.
“Return Codes” on page 12-81 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

 Return Specifications
For the IRXLIN routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 12-44 shows the return codes for the IRXLIN routine. IRXLIN returns the
return code in register 15. If you specify the return code parameter (parameter 4),
IRXLIN also returns the return code in the parameter.

Figure 12-44. Return Codes for IRXLIN

Return Code Description

0 Processing was successful. IRXLIN returned the LINESIZE value in
parameter 2.

20 Processing was not successful. You may have specified a not valid
function (parameter 1). The only valid function is LINESIZE.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

 Chapter 12. TSO/E REXX Programming Services 12-81

 IRXLIN Routine

12-82 OS/390 V2R8.0 TSO/E REXX Reference

 Customizing Services

Chapter 13. TSO/E REXX Customizing Services

In addition to the instructions, functions, and commands for writing a REXX exec
and the programming services that interface with REXX and the language
processor, TSO/E also provides customizing services for REXX processing. The
customizing services let you change how REXX execs are processed and how
system services are accessed and used.

The REXX language itself, which consists of instructions and built-in functions, is
address space independent. The language processor, which interprets a REXX
exec, processes the REXX language instructions and functions in the same manner
in any address space. However, when a REXX exec executes, the language
processor must interface with different host services, such as I/O and storage. MVS
address spaces differ in how they access and use system services, for example,
how they use and manage I/O and storage. Although these differences exist, the
language processor must run in an environment that is not dependent on the
address space in which it is executing an exec. The environment must allow REXX
execs to execute independently of the way in which an address space handles
system services. The TSO/E REXX customizing routines and services provide an
interface between the language processor and underlying host services and allow
you to customize the environment in which the language processor processes
REXX execs.

TSO/E REXX customizing services include the following:

Environment Characteristics
TSO/E provides various routines and services that allow you to customize
the environment in which the language processor executes a REXX exec.
This environment is known as the language processor environment and
defines various characteristics relating to how execs are processed and
how system services are accessed and used. TSO/E provides default
environment characteristics that you can change and also provides a
routine you can use to define your own environment.

Replaceable Routines
When a REXX exec executes, various system services are used, such as
services for loading and freeing an exec, performing I/O, obtaining and
freeing storage, and handling data stack requests. TSO/E provides routines
that handle these types of system services. The routines are known as
replaceable routines because you can provide your own routine that
replaces the system routine.

Exit Routines
You can provide exit routines to customize various aspects of REXX
processing.

The topics in this chapter introduce the major interfaces and customizing services.
The following chapters describe the customizing services in more detail:

� Chapter 14, Language Processor Environments describes how you can
customize the environment in which the language processor executes a REXX
exec and accesses and uses system services.

 Copyright IBM Corp. 1988, 1999 13-1

 Customizing Services

� Chapter 15, Initialization and Termination Routines describes the IRXINIT and
IRXTERM routines that TSO/E provides to initialize and terminate language
processor environments.

� Chapter 16, Replaceable Routines and Exits describes the routines you can
provide that access system services, such as I/O and storage, and the exits
you can use to customize REXX processing.

Flow of REXX Exec Processing
Figure 13-1 shows the processing of a REXX exec in any MVS address space.

Locate environment

Load exec

Message ID

User ID

Storage

Data stack services

I/O

Load exec

TSO/E services

MVS services

Replaceable
Routines

Execute host commands

Execute the exec.
(Language processor)

Free exec

Terminate environment
if one was initialized

No environment?
Initialize a new
environment.

Figure 13-1. Overview of REXX Exec Processing in Any Address Space

As shown in the figure, before the language processor executes a REXX exec, a
language processor environment must exist. After an environment is located or
initialized, the exec is loaded into storage and is then executed. While an exec is
executing, the language processor may need to access different system services,
for example, to handle data stack requests or for I/O processing. The system
services are handled by routines that are known as replaceable routines. The
following topics describe the initialization and termination of language processor
environments, the loading and freeing of an exec, and the replaceable routines. In
addition, there are several exits you can provide to customize REXX processing.
The exits are summarized on page 16-44.

13-2 OS/390 V2R8.0 TSO/E REXX Reference

 Customizing Services

Initialization and Termination of a Language Processor Environment
Before the language processor can process a REXX exec, a language processor
environment must exist. A language processor environment is the environment in
which the language processor “interprets” or processes the exec. This environment
defines characteristics relating to how the exec is processed and how the language
processor accesses system services.

A language processor environment defines various characteristics, such as:

� The search order used to locate commands and external functions and
subroutines

� The ddnames for reading and writing data and from which REXX execs are
loaded

� The host command environments you can use in an exec to execute host
commands (that is, the environments you can specify using the ADDRESS
instruction)

� The function packages (user, local, and system) that are available to execs that
execute in the environment and the entries in each package

� Whether execs that execute in the environment can use the data stack or can
perform I/O operations

� The names of routines that handle system services, such as I/O operations,
loading of an exec, obtaining and freeing storage, and data stack requests.
These routines are known as replaceable routines.

Note: The concept of a language processor environment is different from that of a
host command environment. The language processor environment is the
environment in which a REXX exec executes. This includes how an exec is
loaded, how commands, functions, and subroutines are located, and how
requests for system services are handled. A host command environment is
the environment to which the language processor passes commands for
execution. The host command environment handles the execution of host
commands. The host command environments that are available to a REXX
exec are one characteristic of a language processor environment. For more
information about executing host commands from a REXX exec, see
“Commands to External Environments” on page 2-20.

TSO/E automatically initializes a language processor environment in both the
TSO/E and non-TSO/E address spaces by calling the initialization routine IRXINIT.
TSO/E terminates a language processor environment by calling the termination
routine IRXTERM.

In the TSO/E address space, IRXINIT is called to initialize a default language
processor environment when a user logs on and starts a TSO/E session. When a
user invokes ISPF, another language processor environment is initialized. The ISPF
environment is a separate environment from the one that is initialized when the
TSO/E session is started. Similarly, if you enter split screen mode in ISPF, another
language processor environment is initialized for the second ISPF screen.
Therefore, at this point, three separate language processor environments exist. If
the user invokes a REXX exec from the second ISPF screen, the exec executes
within the language processor environment that was initialized for that second
screen. If the user invokes the exec from TSO/E READY mode, it executes within
the environment that was initialized when the user first logged on.

 Chapter 13. TSO/E REXX Customizing Services 13-3

 Customizing Services

When the user returns to a single ISPF screen, the IRXTERM routine is called to
automatically terminate the language processor environment that is associated with
the second ISPF screen. Similarly, when the user exits from ISPF and returns to
TSO/E READY mode, the system calls IRXTERM to terminate the environment
associated with the ISPF screen. When the user logs off from TSO/E, that
language processor environment is then terminated.

In non-TSO/E address spaces, a language processor environment is not
automatically initialized at a specific point, such as when the address space is
activated. An environment is initialized when either the IRXEXEC or IRXJCL
routines are called to execute a REXX exec, if an environment does not already
exist.

As described above, many language processor environments can exist in an
address space. A language processor environment is associated with an MVS task
and environments can be chained together. This is discussed in more detail in
Chapter 14, “Language Processor Environments” on page 14-1.

Whenever a REXX exec is invoked in any address space, the system first
determines whether a language processor environment exists. If an environment
does exist, the REXX exec executes in that environment. If an environment does
not exist, the system automatically initializes one by calling the IRXINIT routine. For
example, if you are logged on to TSO/E and issue the TSO/E EXEC command to
execute a REXX exec, the system checks whether a language processor
environment exists. An environment was initialized when you logged on to TSO/E,
therefore, the exec executes in that environment. If you execute a REXX exec in
MVS batch by specifying IRXJCL as the program name (PGM=) on the JCL EXEC
statement, a language processor environment is initialized for the execution of the
exec. When the exec completes processing, the environment is terminated.

If either IRXJCL or IRXEXEC is called from a program, the system first determines
whether a language processor environment already exists. If an environment exists,
the exec executes in that environment. If an environment does not exist, an
environment is initialized. When the exec completes, the environment is terminated.
“Chains of Environments and How Environments Are Located” on page 14-36
describes how the system locates a previous environment in the TSO/E and
non-TSO/E address spaces.

TSO/E provides default values that are used to define a language processor
environment. The defaults are provided in three parameters modules that are load
modules. The load modules contain the default characteristics for initializing
language processor environments for TSO/E (READY mode), ISPF, and
non-TSO/E address spaces. The parameters modules are:

� IRXTSPRM (for TSO/E)
� IRXISPRM (for ISPF)
� IRXPARMS (for non-TSO/E)

You can provide your own parameters modules to change the default values that
are used to initialize a language processor environment. Your load modules are
then used instead of the default modules provided by TSO/E. The parameters
modules are described in detail in Chapter 14, Language Processor Environments.

You can also explicitly invoke IRXINIT to initialize a language processor
environment and define the environment characteristics on the call. Although

13-4 OS/390 V2R8.0 TSO/E REXX Reference

 Customizing Services

IRXINIT is primarily intended for use in non-TSO/E address spaces, you can call it
in any address space. When you call IRXINIT, you specify any or all of the
characteristics you want defined for the language processor environment. Using
IRXINIT gives you the flexibility to define your own environment, and therefore,
customize how REXX execs execute within the environment and how system
services are handled. If you explicitly call IRXINIT, you must use the IRXTERM
routine to terminate that environment. The system does not automatically terminate
an environment that you initialized by explicitly calling IRXINIT. Chapter 15,
“Initialization and Termination Routines” on page 15-1 describes the IRXINIT and
IRXTERM routines.

Types Of Language Processor Environments
There are two types of language processor environments; environments that are
integrated into TSO/E and environments that are not integrated into TSO/E. If an
environment is integrated into TSO/E, REXX execs that run in the environment can
use TSO/E commands and services. If an environment is not integrated into
TSO/E, execs that run in the environment cannot use TSO/E commands and
services.

When a language processor environment is automatically initialized in the TSO/E
address space, the environment is integrated into TSO/E. When an environment is
automatically initialized in a non-TSO/E address space, the environment is not
integrated into TSO/E. Environments that are initialized in non-TSO/E address
spaces cannot be integrated into TSO/E. Environments that are initialized in the
TSO/E address space may or may not be integrated into TSO/E.

Many TSO/E customizing routines and services are only available to language
processor environments that are not integrated into TSO/E. “Types of Environments
– Integrated and Not Integrated Into TSO/E” on page 14-8 describes the types of
language processor environments in more detail.

Loading and Freeing a REXX Exec
After a language processor environment has been located or one has been
initialized, the exec must be loaded into storage in order for the language processor
to process it. After the exec executes, it must be freed. The exec load routine loads
and frees REXX execs. The default exec load routine is IRXLOAD.

The exec load routine is one of the replaceable routines that you can provide to
customize REXX processing. You can provide your own exec load routine that
either replaces the system default or that performs pre-processing and then calls
the default routine IRXLOAD. The name of the load routine is defined for each
language processor environment. You can only provide your own load routine in
language processor environments that are not integrated into TSO/E.

Note: If you use the IRXEXEC routine to execute a REXX exec, you can preload
the exec in storage and pass the address of the preloaded exec on the call
to IRXEXEC. In this case, the exec load routine is not called to load the
exec. “Exec Processing Routines – IRXJCL and IRXEXEC” on page 12-9
describes the IRXEXEC routine and how you can preload an exec.

 Chapter 13. TSO/E REXX Customizing Services 13-5

 Customizing Services

Processing of the REXX Exec
After the REXX exec is loaded into storage, the language processor is called to
process (interpret) the exec. During processing, the exec can issue commands, call
external functions and subroutines, and request various system services. When the
language processor processes a command, it first evaluates the expression and
then passes the command to the host for execution. The specific host command
environment handles command execution. When the exec calls an external function
or subroutine, the language processor searches for the function or subroutine. This
includes searching any function packages that are defined for the language
processor environment in which the exec is executing.

When system services are requested, specific routines are called to perform the
requested service (for example, obtaining and freeing storage, I/O, and data stack
requests). TSO/E provides routines for these services that are known as
replaceable routines because you can provide your own routine that replaces the
system routine. “Overview of Replaceable Routines” summarizes the routines.

Overview of Replaceable Routines
When a REXX exec executes, various system services are used, such as services
for loading and freeing the exec, I/O, obtaining and freeing storage, and handling
data stack requests. TSO/E provides routines that handle these types of system
services. These routines are known as replaceable routines because you can
provide your own routine that replaces the system routine. You can only provide
your own replaceable routines in language processor environments that are not
integrated into TSO/E (see page 14-8).

Your routine can check the request for a system service, change the request if
needed, and then call the system-supplied routine to actually perform the service.
Your routine can also terminate the request for a system service or perform the
request itself instead of calling the system-supplied routine.

Replaceable routines are defined on a language processor environment basis and
are specified in the parameters module for an environment (see page 14-10).

Figure 13-2 provides a brief description of the functions your replaceable routine
must perform. Chapter 16, “Replaceable Routines and Exits” on page 16-1
describes each replaceable routine in detail, its input and output parameters, and
return codes.

Figure 13-2 (Page 1 of 2). Overview of Replaceable Routines

Replaceable Routine Description

Exec load The exec load routine is called to load a REXX exec into
storage and to free the exec when it is no longer needed.

Read input and write
output (I/O)

The I/O routine is called to read a record from or write a
record to a specified ddname. For example, this routine is
called for the SAY instruction, for the PULL instruction
(when the data stack is empty), and for the EXECIO
command. The routine is also called to open and close a
data set.

13-6 OS/390 V2R8.0 TSO/E REXX Reference

 Customizing Services

To provide your own replaceable routine, you must do the following:

� Write the code for the routine. Chapter 16, “Replaceable Routines and Exits”
on page 16-1 describes each routine in detail.

� Define the routine name to a language processor environment.

If you use IRXINIT to initialize a new environment, you can pass the names of
your routines on the call.

Chapter 14, “Language Processor Environments” on page 14-1 describes the
concepts of replaceable routines and their relationship to language processor
environments in more detail.

The replaceable routines that TSO/E provides are external interfaces that you can
call from a program in any address space. For example, a program can call the
system-supplied data stack routine to perform data stack operations. If you provide
your own replaceable data stack routine, a program can call your routine to perform
data stack operations. You can call a system-supplied or user-supplied replaceable
routine only if a language processor environment exists in which the routine can
execute.

Figure 13-2 (Page 2 of 2). Overview of Replaceable Routines

Replaceable Routine Description

Data stack This routine is called to handle any requests for data
stack services. For example, it is called for the PULL,
PUSH, and QUEUE instructions and for the MAKEBUF
and DROPBUF commands.

Storage management This routine is called to obtain and free storage.

User ID This routine is called to obtain the user ID. The result that
it obtains is returned by the USERID built-in function.

Message identifier This routine determines if the message identifier
(message ID) is displayed with a REXX error message.

Host command
environment

This routine is called to handle the execution of a host
command for a particular host command environment.

 Exit Routines
TSO/E also provides several exit routines you can use to customize REXX
processing. Several exits have fixed names. Other exits do not have a fixed name.
You supply the name of these exits on the call to IRXINIT or by changing the
appropriate default parameters modules that TSO/E provides. Chapter 16,
“Replaceable Routines and Exits” on page 16-1 describes the exits in more detail.
A summary of each exit follows.

� IRXINITX -- Pre-environment initialization exit routine. The exit receives control
whenever IRXINIT is called to initialize a new language processor environment.
It gets control before IRXINIT evaluates any parameters.

� IRXITTS or IRXITMV -- Post-environment initialization exit routines. IRXITTS is
for environments that are integrated into TSO/E and IRXITMV is for
environments that are not integrated into TSO/E. The IRXITTS or IRXITMV exit
receives control whenever IRXINIT is called to initialize a new language

 Chapter 13. TSO/E REXX Customizing Services 13-7

 Customizing Services

processor environment. It receives control after IRXINIT initializes a new
environment but before IRXINIT completes.

� IRXTERMX -- Environment termination exit routine. The exit receives control
whenever IRXTERM is called to terminate a language processor environment. It
gets control before IRXTERM starts termination processing.

� Attention handling exit routine -- The exit receives control whenever a REXX
exec is executing in the TSO/E address space (in a language processor
environment that is integrated into TSO/E) and an attention interruption occurs.

� Exec initialization -- The exit receives control after the variable pool for a REXX
exec has been initialized but before the language processor processes the first
clause in the exec.

� Exec termination -- The exit receives control after a REXX exec has completed
processing but before the variable pool has been terminated.

� Exit for the IRXEXEC routine (exec processing exit) -- The exit receives control
whenever the IRXEXEC routine is called to execute a REXX exec. The
IRXEXEC routine can be explicitly called by a user or called by the system to
execute an exec. IRXEXEC is always called by the system to handle exec
execution. For example, if you use IRXJCL to execute an exec in MVS batch,
IRXEXEC is called to execute the exec. If you provide an exit for IRXEXEC, the
exit is invoked.

The exit routines for REXX processing are different from the replaceable routines
that are described in the previous topic. You can provide replaceable routines only
in language processor environments that are not integrated into TSO/E. Except for
the attention handling exit, you can provide exits in any type of language processor
environment (integrated and not integrated into TSO/E). Note that for
post-environment initialization, you use IRXITTS for environments that are
integrated into TSO/E and IRXITMV for environments that are not integrated into
TSO/E.

You can use the attention handling exit only in an environment that is integrated
into TSO/E.

13-8 OS/390 V2R8.0 TSO/E REXX Reference

 Language Processor Environments

Chapter 14. Language Processor Environments

As described in Chapter 13, TSO/E REXX Customizing Services, a language
processor environment is the environment in which the language processor
“interprets” or processes a REXX exec. Such an environment must exist before an
exec can run.

The topics in this chapter explain language processor environments and the default
parameters modules in more detail. They explain the various tasks you can perform
to customize the environment in which REXX execs run. This chapter describes:

� Different aspects of a language processor environment and the characteristics
that make up such an environment. The chapter explains when the system
invokes the initialization routine, IRXINIT, to initialize an environment and the
values IRXINIT uses to define the environment. The chapter describes the
values TSO/E provides in the default parameters modules and how to change
the values. It also describes what values you can and cannot specify in the
TSO/E address space (TSOFL flag is on) and in non-TSO/E address spaces
(TSOFL flag is off).

� The various control blocks that are defined when a language processor
environment is initialized and how you can use the control blocks for REXX
processing.

� How language processor environments are chained together.

� How the data stack is used in different language processor environments.

Note: The control blocks created for a language processor environment provide
information about the environment. You can obtain information from the
control blocks. However, you must not change any of the control blocks. If
you do, unpredictable results may occur.

Overview of Language Processor Environments
The language processor environment defines various characteristics that relate to
how execs are processed and how system services are accessed and used. Some
of the environment characteristics include the following:

� The language in which the system displays REXX messages

� The ddnames from which input is read, to which output is written, and from
which REXX execs are fetched

� The names of several replaceable routines that you can provide for system
services, such as I/O processing, loading REXX execs, and processing data
stack requests

� The names of exit routines that the system invokes at different points in REXX
processing, such as when the IRXEXEC routine is invoked or when a user
enters attention mode in TSO/E

� The names of host command environments and the corresponding routines that
process commands for each host command environment

� The function packages that are available to execs that run in the environment

� The subpool the system uses for storage allocation

 Copyright IBM Corp. 1988, 1999 14-1

 Language Processor Environments

� The name of the address space

� Bit settings (flags) that define many characteristics, such as:

– Whether the environment is integrated into TSO/E (that is, whether execs
running in the environment can use TSO/E commands and services)

– The search order for commands and for functions and subroutines

– Whether the system displays primary and alternate messages

“Characteristics of a Language Processor Environment” on page 14-9 describes
the environment characteristics.

The REXX language itself is address space independent. For example, if an exec
includes a DO loop, the language processor processes the DO loop in the same
manner regardless of whether the exec runs in TSO/E or in a non-TSO/E address
space. However, when the language processor processes a REXX exec, various
host services are used, such as I/O and storage. MVS address spaces differ in how
they access and use system services, such as I/O and storage management.
Although these differences exist, the REXX exec must run in an environment that is
not dependent on the particular address space in which the exec was invoked.
Therefore, a REXX exec runs in a language processor environment, which is an
environment that can be customized to support how each address space accesses
and uses host services.

When a language processor environment is initialized, different routines can be
defined that the system invokes for system services, such as obtaining and freeing
storage and handling I/O requests. The language processor environment provides
for consistency across MVS address spaces by ensuring that REXX execs run
independently of the way in which the system accesses system services. At the
same time, the language processor environment provides flexibility to handle the
differences between the address spaces and also lets you customize how REXX
execs are processed and how the system accesses and uses system services.

Initialization of an Environment: The initialization routine, IRXINIT, initializes
language processor environments. The system calls IRXINIT in both TSO/E and
non-TSO/E address spaces to automatically initialize an environment. Because the
system automatically initializes language processor environments, users need not
be concerned with setting up such an environment, changing any values, or even
that the environment exists. The language processor environment allows application
programmers and system programmers to customize the system interfaces
between the language processor and host services. “When Environments are
Automatically Initialized in TSO/E” on page 14-5 describes when the system
automatically initializes an environment in the TSO/E address space. “When
Environments are Automatically Initialized in MVS” on page 14-7 describes when
the system initializes environments in non-TSO/E address spaces.

When the system calls IRXINIT to automatically initialize an environment, the
system uses default values. TSO/E provides three default parameters modules
(load modules) that contain the parameter values IRXINIT uses to initialize three
different types of language processor environments. The three default parameters
modules are:

� IRXTSPRM (for a TSO/E session)
� IRXISPRM (for ISPF)
� IRXPARMS (for non-TSO/E address spaces)

14-2 OS/390 V2R8.0 TSO/E REXX Reference

 Language Processor Environments

“Characteristics of a Language Processor Environment” on page 14-9 describes
the parameters module that contains all of the characteristics for defining a
language processor environment. “Values Provided in the Three Default
Parameters Modules” on page 14-31 describes the defaults TSO/E provides in the
three parameters modules. You can change the default parameters that TSO/E
provides by providing your own load modules. “Changing the Default Values for
Initializing an Environment” on page 14-41 describes how to change the
parameters.

You can also explicitly invoke IRXINIT and pass the parameter values for IRXINIT
to use to initialize the environment. Using IRXINIT gives you the flexibility to
customize the environment in which REXX execs run and how the system
accesses and uses system services.

Chains of Environments: Many language processor environments can exist in a
particular address space. A language processor environment is associated with an
MVS task. There can be multiple environments associated with one task.
Language processor environments are chained together in a hierarchical structure
and form a chain of environments where each environment on a chain is related to
the other environments on that chain. Although many environments can be
associated with one MVS task, each individual language processor environment is
associated with one and only one MVS task. Environments on a particular chain
may share various resources, such as data sets and the data stack. “Chains of
Environments and How Environments Are Located” on page 14-36 describes the
relationship between language processor environments and MVS tasks and how
environments are chained together.

Maximum Number of Environments: Although there can be many language
processor environments initialized in a single address space, there is a default
maximum. The load module IRXANCHR contains an environment table that defines
the maximum number of environments for one address space. The default
maximum is not a specific number of environments. The maximum number of
environments depends on the number of chains of environments and the number of
environments defined on each chain. The default maximum should be sufficient for
any address space. However, if a new environment is being initialized and the
maximum has already been used, IRXINIT completes unsuccessfully and returns
with a return code of 20 and a reason code of 24. If this error occurs, you can
change the maximum value by providing a new IRXANCHR load module.
“Changing the Maximum Number of Environments in an Address Space” on
page 14-67 describes the IRXANCHR load module and how to provide a new
module.

Control Blocks: When IRXINIT initializes a new language processor environment,
IRXINIT creates a number of control blocks that contain information about the
environment. The main control block that IRXINIT creates is called the environment
block (ENVBLOCK). Each language processor environment is represented by its
environment block. The environment block contains pointers to other control blocks
that contain information about the parameters that define the environment, the
resources within the environment, and the exec currently running in the
environment. “Control Blocks Created for a Language Processor Environment” on
page 14-58 describes all of the control blocks that IRXINIT creates. IRXINIT
creates an environment block for each language processor environment that it
creates. Except for the initialization routine, IRXINIT, all REXX execs and services
cannot operate without an environment being available.

 Chapter 14. Language Processor Environments 14-3

 Using the Environment Block

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Using the Environment Block
The main control block that IRXINIT creates for a language processor environment
is the environment block. The environment block represents the language
processor environment and points to other control blocks that contain information
about the environment.

The environment block is known as the anchor that all callable interfaces to REXX
use. All REXX routines, except for the IRXINIT initialization routine, cannot run
unless an environment block exists, that is, a language processor environment
must exist. When IRXINIT initializes a new language processor environment,
IRXINIT always returns the address of the environment block in register 0. (If you
explicitly invoke the IRXINIT routine, IRXINIT also returns the address of the
environment block in the parameter list.) You can also use IRXINIT to obtain the
address of the environment block for the current non-reentrant environment (see
page 15-1). IRXINIT returns the address in register 0 and also in a parameter in the
parameter list.

The address of the environment block is useful for calling a REXX routine or for
obtaining information from the control blocks that IRXINIT created for the
environment. If you invoke any of the TSO/E REXX routines (for example,
IRXEXEC to process an exec or the variable access routine IRXEXCOM), you can
optionally pass the address of an environment block to the routine in register 0. By
passing the address of an environment block, you can specify in which specific
environment you want either the exec or the service to run. This is particularly
useful if you use the IRXINIT routine to initialize several environments on a chain
and then want to process a TSO/E REXX routine in a specific environment. When
you invoke the routine, you can pass the address of the environment block in
register 0.

An external function or subroutine receives the address of an environment block in
register 0. This environment block address should be passed on all calls to any
TSO/E REXX programming service. Passing the environment block address is
particularly important when the environment is a reentrant environment because
TSO/E REXX programming services cannot automatically locate a reentrant
environment. For more information about reentrant environments, see “Using the
Environment Block for Reentrant Environments” on page 12-8.

If you invoke a TSO/E REXX routine and do not pass the address of an
environment block in register 0 or the environment block parameter, the routine
runs:

� In the current non-reentrant environment on the chain under the current task
(non-TSO/E address space)

� In the last environment on the chain under the current task or a parent task
(TSO/E address space).

14-4 OS/390 V2R8.0 TSO/E REXX Reference

 Environments Initialized in TSO/E

If you invoke the IRXEXEC or IRXJCL routine and a language processor
environment does not exist, the system calls IRXINIT to initialize an environment in
which the exec will run. When the exec completes processing, the system
terminates the newly created environment.

If you are running separate tasks simultaneously and two or more tasks are running
REXX, each task must have its own environment block. That is, you must initialize
a language processor environment for each of the tasks.

The environment block points to several other control blocks that contain the
parameters IRXINIT used in defining the environment and the addresses of TSO/E
REXX routines, such as IRXINIT, IRXEXEC, and IRXTERM, and replaceable
routines. You can access these control blocks to obtain this information. The control
blocks are described in “Control Blocks Created for a Language Processor
Environment” on page 14-58.

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

When Environments are Automatically Initialized in TSO/E
The initialization routine, IRXINIT, initializes a language processor environment. The
system calls IRXINIT to automatically initialize a default environment when a user
logs on to TSO/E and when a user invokes ISPF.

When a user logs on TSO/E, the system calls IRXINIT as part of the logon process
to automatically initialize a language processor environment for the TSO/E session.
The initialization of a language processor environment is transparent to the user.
After users log on to TSO/E, they can simply invoke a REXX exec without
performing any other tasks.

Note: If your installation uses a user-written terminal monitor program (TMP)
instead of the TMP provided by TSO/E, the system does not automatically
initialize a language processor environment. See “Initializing Environments
for User-Written TMPs” on page 14-6 for information about the tasks you
must perform to initialize a language processor environment to run REXX
execs.

Similarly, when a user invokes ISPF from TSO/E, the system calls the IRXINIT
routine to automatically initialize a language processor environment for ISPF, that
is, for the ISPF screen. The second language processor environment is separate
from the environment that IRXINIT initialized for the TSO/E session. If the user
enters split screen in ISPF, IRXINIT initializes a third language processor
environment for the second ISPF screen. At this point, three separate language
processor environments exist. If the user invokes a REXX exec from the second
ISPF screen, the exec runs under the third language processor environment, that
is, the environment IRXINIT initialized for the second ISPF screen. If the user
invokes the exec from the first ISPF screen, the exec runs under the second
language processor environment.

The termination routine, IRXTERM, terminates a language processor environment.
Continuing the above example, when the user returns to one screen in ISPF, the

 Chapter 14. Language Processor Environments 14-5

 Environments Initialized in TSO/E

system calls the IRXTERM routine. IRXTERM terminates the third language
processor environment that the system initialized for the second ISPF screen.
Similarly, when the user exits from ISPF and returns to TSO/E READY mode,
IRXTERM terminates the language processor environment for the first ISPF screen.
In TSO/E READY mode, the first language processor environment still exists. At
this point, if the user invokes a REXX exec from READY mode, the exec runs
under the environment that IRXINIT initialized during TSO/E logon. When the user
logs off, IRXTERM terminates the language processor environment for the TSO/E
session.

To summarize, the IRXINIT routine automatically initializes a language processor
environment when a user logs on to TSO/E and whenever an ISPF screen is
initialized. Each environment that IRXINIT initializes is separate from another
environment. The IRXTERM routine automatically terminates the language
processor environment for an ISPF screen when the screen session ends and
terminates the environment created at TSO/E logon when the user logs off.

You can also invoke the IRXINIT routine to initialize a language processor
environment. On the call to IRXINIT, you specify values you want defined for the
new environment. Using IRXINIT gives you the ability to define a language
processor environment and customize how REXX execs run and how the system
accesses and uses system services. Using IRXINIT to initialize environments is
particularly important in non-TSO/E address spaces where you may want to provide
replaceable routines to handle system services. However, you may want to use
IRXINIT in TSO/E to create an environment that is similar to a non-TSO/E address
space to test any replaceable routines or REXX execs you have developed for
non-TSO/E.

If you explicitly invoke IRXINIT to initialize a language processor environment, you
must invoke the IRXTERM routine to terminate the environment. The system does
not terminate language processor environments that you initialized by calling
IRXINIT. Information about IRXINIT and IRXTERM is described later in this chapter.
Chapter 15, Initialization and Termination Routines provides reference information
about the parameters and return codes for IRXINIT and IRXTERM.

Initializing Environments for User-Written TMPs
If your installation uses a user-written terminal monitor program (TMP) instead of
the TMP provided by TSO/E, the system does not automatically initialize a
language processor environment in the TSO/E address space when a user logs on
to TSO/E. That is, the system does not initialize a language processor environment
for TSO/E READY mode. A language processor environment is required for
processing REXX execs. To allow users to invoke REXX execs from TSO/E
READY mode, your user-written TMP must invoke the initialization routine, IRXINIT,
to initialize a language processor environment. To initialize the environment, the
TMP must do the following:

� Invoke the initialization routine, IRXINIT, to initialize a language processor
environment. The environment must be integrated into TSO/E, that is, the
TSOFL flag must be on. On the call to IRXINIT, you can provide parameters
that are equivalent to the default values that TSO/E provides in the IRXTSPRM
default parameters module.

� If the TMP is not using the STACK ENVIRON=CREATE service to obtain a
new ECT (that is, the user-written TMP is obtaining its own storage for the
ECT), the TMP must ensure that the ECTEXTPR field is set to zeros. If the

14-6 OS/390 V2R8.0 TSO/E REXX Reference

 Environments Initialized in MVS

TMP is using the STACK ENVIRON=CREATE service to obtain the ECT, you
should not set the ECTEXTPR field.

� When all user-written TMP processing is completed, you must invoke the
termination routine, IRXTERM, to terminate the language processor
environment that IRXINIT initialized. The system does not automatically
terminate the environment.

The following topics in this chapter describe the characteristics of a language
processor environment, the different types of environments, and the default
parameters modules that TSO/E provides. Chapter 15, Initialization and
Termination Routines describes the initialization and termination routines IRXINIT
and IRXTERM.

When Environments are Automatically Initialized in MVS
As described in the previous topic, the system automatically initializes a language
processor environment in the TSO/E address space whenever a user logs on to
TSO/E and when a user invokes ISPF. After a TSO/E session has been started,
users can simply invoke a REXX exec and the exec runs in the language processor
environment in which it was invoked.

In non-TSO/E address spaces, the system does not automatically initialize
language processor environments at a specific point, such as when the address
space is activated. The system initializes an environment whenever you invoke the
IRXJCL or IRXEXEC routine to invoke a REXX exec if an environment does not
already exist on the current task.

TSO/E provides the TSO/E environment service, IKJTSOEV, that lets you create a
TSO/E environment in a non-TSO/E address space. If you invoke IKJTSOEV to
create a TSO/E environment, IKJTSOEV also initializes a REXX language
processor environment within that TSO/E environment. IKJTSOEV initializes the
language processor environment only if another language processor environment
does not already exist in that address space. See OS/390 TSO/E Programming
Services for more information about the TSO/E environment service, IKJTSOEV.

You can run a REXX exec in MVS batch by specifying IRXJCL as the program on
the JCL EXEC statement. You can invoke either the IRXJCL or IRXEXEC routines
from a program in any address space to invoke an exec. “Exec Processing
Routines – IRXJCL and IRXEXEC” on page 12-9 describes the two routines in
detail.

When the IRXJCL or IRXEXEC routine is called, the routine determines whether a
language processor environment already exists. (As discussed previously, more
than one environment can be initialized in a single address space. The
environments are chained together in a hierarchical structure). IRXJCL or
IRXEXEC do not invoke IRXINIT to initialize an environment if an environment
already exists. The routines use the current environment to run the exec. “Chains of
Environments and How Environments Are Located” on page 14-36 describes how
language processor environments are chained together and how environments are
located.

 Chapter 14. Language Processor Environments 14-7

 Types of Environments

If either IRXEXEC or IRXJCL invokes the IRXINIT routine to initialize an
environment, after the REXX exec completes processing, the system calls the
IRXTERM routine to terminate the environment that IRXINIT initialized.

Note: If several language processor environments already exist when you invoke
IRXJCL or IRXEXEC, you can pass the address of an environment block in
register 0 on the call to indicate the environment in which the exec should
run. See “Using the Environment Block” on page 14-4 for more information.

Types of Environments – Integrated and Not Integrated Into TSO/E
There are two types of language processor environments:

� Environments that are integrated into TSO/E
� Environments that are not integrated into TSO/E.

The type of language processor environment that IRXINIT initializes depends on
the address space in which IRXINIT creates the environment. Whether a language
processor environment is integrated into TSO/E is determined by the setting of the
TSOFL flag (see page 14-15). The TSOFL flag is one characteristic (parameter)
that IRXINIT uses to initialize a new environment. If the TSOFL flag is off, the new
environment is not integrated into TSO/E. If the flag is on, the environment is
integrated into TSO/E.

In non-TSO/E address spaces, language processor environments cannot be
integrated into TSO/E. Therefore, when the system automatically initializes an
environment in a non-TSO/E address space, the TSOFL flag is off. Similarly, if you
explicitly invoke the initialization routine (IRXINIT) to initialize an environment in a
non-TSO/E address space, the TSOFL flag must be off.

In the TSO/E address space, a language processor environment may or may not
be integrated into TSO/E; that is, the TSOFL flag can be on or off. When the
system automatically initializes an environment in the TSO/E address space, the
environment is integrated into TSO/E (the TSOFL flag is on). If you explicitly invoke
the initialization routine, IRXINIT, to initialize an environment in the TSO/E address
space, the environment may or may not be integrated into TSO/E. That is, the
TSOFL flag can be on or off. You may want to initialize an environment in the
TSO/E address space that is not integrated into TSO/E. This lets you initialize an
environment that is the same as an environment for a non-TSO/E address space.
By doing this, for example, you can test REXX execs you have written for a
non-TSO/E address space.

The type of language processor environment affects two different aspects of REXX
processing:

� The functions, commands, and services you can use in a REXX exec itself

� The different characteristics (parameters) that define the language processor
environment that IRXINIT initializes.

The following topics describe the two aspects of REXX processing.

Functions, Commands, and Services in an Exec: The type of language
processor environment in which a REXX exec runs affects the kinds of functions,
commands, and services you can use in the exec itself. If the exec runs in an
environment that is integrated into TSO/E, you can use TSO/E commands, such as

14-8 OS/390 V2R8.0 TSO/E REXX Reference

 Characteristics of a Language Processor Environment

ALLOCATE, TEST, and PRINTDS in the exec. You can also use TSO/E
programming services, such as the parse service routine (IKJPARS) and the
dynamic allocation interface routine (DAIR). The TSO/E programming service
routines are described in OS/390 TSO/E Programming Services. In addition, the
exec can use all the TSO/E external functions, ISPF services, and can invoke and
be invoked by CLISTs.

If an exec runs in an environment that is not integrated into TSO/E, the exec
cannot contain TSO/E commands or the TSO/E service routines, such as IKJPARS
and DAIR, or use ISPF services or CLISTs. The exec can use the TSO/E external
functions SETLANG and STORAGE only. The exec cannot use the other TSO/E
external functions, such as MSG and OUTTRAP. Chapter 8, Using REXX in
Different Address Spaces describes the instructions, functions, commands, and
services you can use in REXX execs that you write for TSO/E and for non-TSO/E
address spaces.

Different Characteristics for the Environment: When IRXINIT initializes a
language processor environment, IRXINIT defines different characteristics for the
environment. The three parameters modules TSO/E provides (IRXTSPRM,
IRXISPRM, and IRXPARMS) define the default values for initializing environments.
If you provide your own parameters module or explicitly invoke the initialization
routine (IRXINIT), the characteristics you can define for the environment depend on
the type of environment.

Some characteristics can be used for any type of language processor environment.
In some cases, the values you specify may differ depending on the environment.
Other characteristics can be specified only for environments that are integrated into
TSO/E or for environments that are not integrated into TSO/E. For example, you
can provide your own replaceable routines only for environments that are not
integrated into TSO/E. TSO/E also provides exit routines for REXX processing. In
general, you can provide exits for any type of language processor environment
(integrated and not integrated into TSO/E). One exception is the attention handling
exit, which is only for environments that are integrated into TSO/E. Chapter 16,
Replaceable Routines and Exits describes the replaceable routines and exits in
more detail.

“Specifying Values for Different Environments” on page 14-45 describes the
environment characteristics you can specify for language processor environments
that either are or are not integrated into TSO/E.

Characteristics of a Language Processor Environment
When IRXINIT initializes a language processor environment, IRXINIT creates
several control blocks that contain information about the environment. One of the
control blocks is the parameter block (PARMBLOCK). The parameter block
contains the parameter values that IRXINIT used to define the environment, that is,
the parameter block contains the characteristics that define the environment. The
block also contains the addresses of the module name table, the host command
environment table, and the function package table, which contain additional
characteristics for the environment.

TSO/E provides three default parameters modules, which are load modules that
contain the values for initializing language processor environments. The three
default modules are IRXPARMS (MVS), IRXTSPRM (TSO/E), and IRXISPRM

 Chapter 14. Language Processor Environments 14-9

 Characteristics of a Language Processor Environment

(ISPF). “Values Provided in the Three Default Parameters Modules” on page 14-31
shows the default values that TSO/E provides in each of these modules. A
parameters module consists of the parameter block (PARMBLOCK), the module
name table, the host command environment table, and the function package table.
Figure 14-1 shows the format of the parameters module.

Parameter Block
(PARMBLOCK)

Module Name Table

Host Command
Environment Table

Function Package Table

Parameters Module

Figure 14-1. Overview of Parameters Module

Figure 14-2 shows the format of PARMBLOCK. Each field is described in more
detail following the table. The end of the PARMBLOCK must be indicated by
X'FFFFFFFFFFFFFFFF'. The format of the module name table, host command
environment table, and function package table are described in subsequent topics.

Figure 14-2 (Page 1 of 2). Format of the Parameter Block (PARMBLOCK)

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 ID Identifies the parameter block
(PARMBLOCK).

8 4 VERSION Identifies the version of the parameter
block.

12 3 LANGUAGE Language code for REXX messages.

15 1 RESERVED Reserved.

16 4 MODNAMET Address of module name table.

20 4 SUBCOMTB Address of host command
environment table.

24 4 PACKTB Address of function package table.

28 8 PARSETOK Token for PARSE SOURCE
instruction.

14-10 OS/390 V2R8.0 TSO/E REXX Reference

 Characteristics of a Language Processor Environment

The following information describes each field in the PARMBLOCK. If you change
any of the default parameters modules that TSO/E provides or you use IRXINIT to
initialize a language processor environment, read “Changing the Default Values for
Initializing an Environment” on page 14-41, which provides information about
changing the different values that define an environment.

ID An 8-byte character field that is used only to identify the parameter block that
IRXINIT creates. The field name is ID.

The value that TSO/E provides in the three default parameters modules is
IRXPARMS. You must not change the value in the ID field in any of the
parameters modules.

Version
A 4-byte character field that identifies the version of the parameter block for a
particular release and level of TSO/E. The field name is VERSION.

The value that TSO/E provides in the three default parameters modules is
0200. You must not change the Version field in any of the parameters modules.

Language Code
A 3-byte field that contains a language code. The field name is LANGUAGE.

The language code identifies the language in which REXX messages are
displayed. The default that TSO/E provides in all three parameters modules is
ENU, which is the language code for US English in mixed case (upper and
lowercase). The possible values are:

� CHS – Simplified Chinese
� CHT – Traditional Chinese
� DAN – Danish
� DEU – German
� ENP – US English in uppercase
� ENU – US English in mixed case (upper and lowercase)
� ESP – Spanish
� FRA – French
� JPN – Japanese (Kanji)
� KOR – Korean
� PTB – Brazilian Portuguese

Figure 14-2 (Page 2 of 2). Format of the Parameter Block (PARMBLOCK)

Offset
(Decimal)

Number of
Bytes

Field Name Description

36 4 FLAGS A fullword of bits that IRXINIT uses
as flags to define characteristics for
the environment.

40 4 MASKS A fullword of bits that IRXINIT uses
as a mask for the setting of the flag
bits.

44 4 SUBPOOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 — The end of the PARMBLOCK must
be indicated by
X'FFFFFFFFFFFFFFFF'.

 Chapter 14. Language Processor Environments 14-11

 Characteristics of a Language Processor Environment

Reserved
A 1-byte field that is reserved.

Module Name Table
A 4-byte field that contains the address of the module name table. The field
name is MODNAMET.

The table contains the ddnames for reading and writing data and for loading
REXX execs, the names of several replaceable routines, and the names of
several exit routines. “Module Name Table” on page 14-20 describes the table
in detail.

Host Command Environment Table
A 4-byte field that contains the address of the host command environment
table. The field name is SUBCOMTB.

The table contains the names of the host command environments for
processing host commands. These are the environments that REXX execs can
specify using the ADDRESS instruction. “Commands to External Environments”
on page 2-20 describes how to issue host commands from a REXX exec and
the different environments TSO/E provides for command processing.

The table also contains the names of the routines that are invoked to handle
the processing of commands that are issued in each host command
environment. “Host Command Environment Table” on page 14-25 describes
the table in detail.

Function Package Table
A 4-byte field that contains the address of the function package table for
function packages. The field name is PACKTB. “Function Package Table” on
page 14-28 describes the table in detail.

Token for PARSE SOURCE
An 8-byte character string that contains the value of a token that the PARSE
SOURCE instruction uses. The field name is PARSETOK. The default that
TSO/E provides in all three parameters modules is a blank.

This token is the last token of the string that PARSE SOURCE returns. Every
PARSE SOURCE instruction processed in the environment returns the token.

Flags
A fullword of bits that IRXINIT uses as flags. The field name is FLAGS.

The flags define certain characteristics for the new language processor
environment and how the environment and execs running in the environment
operate.

In addition to the flags field, the parameter following the flags is a mask field
that works together with the flags. The mask field is a string that has the same
length as the flags field. Each bit position in the mask field corresponds to a bit
position in the flags field. IRXINIT uses the mask field to determine whether it
should use or ignore the corresponding flag bit.

The description of the mask field on page 14-14 describes the bit settings for
the mask field and how the value for each flag is determined.

Figure 14-3 on page 14-13 summarizes each flag. “Flags and Corresponding
Masks” on page 14-15 describes each of the flags in more detail and the bit
settings for each flag. The mapping of the parameter block (PARMBLOCK)

14-12 OS/390 V2R8.0 TSO/E REXX Reference

 Characteristics of a Language Processor Environment

includes the mapping of the flags. TSO/E provides a mapping macro
IRXPARMB for the parameter block. The mapping macro is in SYS1.MACLIB.

Figure 14-3 (Page 1 of 2). Summary of Each Flag Bit in the Parameters Module

Bit Position
Number

Flag Name Description

0 TSOFL Indicates whether the new environment is to be
integrated into TSO/E.

1 Reserved This bit is reserved.

2 CMDSOFL Specifies the search order the system uses to
locate a command.

3 FUNCSOFL Specifies the search order the system uses to
locate functions and subroutines.

4 NOSTKFL Prevents REXX execs running in the environment
from using any data stack operations.

5 NOREADFL Prevents REXX execs running in the environment
from reading any input file.

6 NOWRTFL Prevents REXX execs running in the environment
from writing to any output file.

7 NEWSTKFL Indicates whether a new data stack is initialized for
the new environment.

8 USERPKFL Indicates whether the user function packages that
are defined for the previous language processor
environment are also available in the new
environment.

9 LOCPKFL Indicates whether the local function packages that
are defined for the previous language processor
environment are also available in the new
environment.

10 SYSPKFL Indicates whether the system function packages
that are defined for the previous language
processor environment are also available in the
new environment.

11 NEWSCFL Indicates whether the host command environments
(as specified in the host command environment
table) that are defined for the previous language
processor environment are also available in the
new environment.

12 CLOSEXFL Indicates whether the data set from which REXX
execs are obtained is closed after an exec is
loaded or remains open.

13 NOESTAE Indicates whether a recovery ESTAE is permitted
under the environment.

14 RENTRANT Indicates whether the environment is initialized as
either reentrant or non-reentrant.

15 NOPMSGS Indicates whether primary messages are printed.

16 ALTMSGS Indicates whether alternate messages are printed.

17 SPSHARE Indicates whether the subpool specified in the
SUBPOOL field is shared across MVS tasks.

 Chapter 14. Language Processor Environments 14-13

 Characteristics of a Language Processor Environment

Mask
A fullword of bits that IRXINIT uses as a mask for the setting of the flag bits.
The flags field is described on page 14-12.

The field name is MASKS. The mask field is a string that has the same length
as the flags field. Each bit position in the mask field corresponds to a bit in the
same position in the flags field. IRXINIT uses the mask field to determine
whether it should use or ignore the corresponding flag bit. For a given bit
position, if the value in the mask field is:

� 0 — the corresponding bit in the flags field is ignored (that is, the bit is
considered null)

� 1 — the corresponding bit in the flags field is used.

Subpool Number
A fullword that specifies the number of the subpool (in binary) in which storage
is allocated for the entire language processor environment. The field name is
SUBPOOL. The default value in the IRXPARMS module is 0. The value can be
from 0 to 127 in decimal.

In the IRXTSPRM and IRXISPRM modules, the default is 78 (in decimal). For
environments that are integrated into TSO/E (see page 14-8), the subpool
number must be 78.

Address Space Name
An 8-byte character field that specifies the name of the address space. The
field name is ADDRSPN. TSO/E provides the following defaults:

� IRXPARMS module – MVS
� IRXTSPRM module – TSO/E
� IRXISPRM module – ISPF

X'FFFFFFFFFFFFFFFF'
The end of the parameter block is indicated by X'FFFFFFFFFFFFFFFF'.

Figure 14-3 (Page 2 of 2). Summary of Each Flag Bit in the Parameters Module

Bit Position
Number

Flag Name Description

18 STORFL Indicates whether REXX execs running in the
environment can use the STORAGE function.

19 NOLOADDD Indicates whether the DD specified in the LOADDD
field in the module name table is searched for
execs.

20 NOMSGWTO Indicates whether REXX messages are processed
normally in the environment or if they should be
routed to a file.

21 NOMSGIO Indicates whether REXX messages are processed
normally in the environment or if they should be
routed to a JCL listing.

22 Reserved The remaining bits are reserved.

14-14 OS/390 V2R8.0 TSO/E REXX Reference

 Flags and Masks

Flags and Corresponding Masks
This topic describes the flags field.

TSOFL
The TSOFL flag indicates whether IRXINIT should integrate the new language
processor environment into TSO/E. That is, the flag indicates whether REXX
execs that run in the environment can use TSO/E services and commands.

0 — The environment is not integrated into TSO/E.

1 — The environment is integrated into the TSO/E.

You can initialize an environment in the TSO/E address space and set the
TSOFL flag off. In this case, any REXX execs that run in the environment must
not use any TSO/E commands or services. If they do, unpredictable results can
occur.

Setting the TSOFL off for an environment that is initialized in the TSO/E
address space lets you provide your own replaceable routines for different
system services, such as I/O and data stack requests. It also lets you test
REXX execs in an environment that is similar to a language processor
environment that is initialized in a non-TSO/E address space.

If the TSOFL flag is on, there are many values that you cannot specify in the
parameter block. “Specifying Values for Different Environments” on page 14-45
describes the parameters you can use for environments that are integrated into
TSO/E and for environments that are not integrated into TSO/E.

Note: The TSOFL flag cannot be set to 1 if a previous environment contains a
TSOFL flag set to 0. Essentially, if the previous environment is not
integrated into TSO/E, a newly created environment cannot be
integrated into TSO/E.

Reserved
This bit is reserved.

CMDSOFL
The CMDSOFL flag is the command search order flag. The flag specifies the
search order the system uses to locate a command that is issued from an
exec.

0 — Search for modules first, followed by REXX execs, followed by
CLISTs. The ddname the system uses to search for REXX execs is
specified in the LOADDD field in the module name table.

1 — Search for REXX execs first, followed by modules, followed by
CLISTs. The ddname the system uses to search for REXX execs is
specified in the LOADDD field in the module name table.

FUNCSOFL
The FUNCSOFL flag is the external function or subroutine search order flag.
The flag specifies the search order the system uses to locate external functions
and subroutines that an exec calls.

0 — Search load libraries first. If the function or subroutine is not found,
search for a REXX exec.

1 — Search for a REXX exec. If the exec is not found, search the load
libraries.

 Chapter 14. Language Processor Environments 14-15

 Flags and Masks

“Search Order” on page 4-3 describes the complete search order TSO/E
uses to locate an exec.

NOSTKFL
The NOSTKFL flag is the no data stack flag. Use the flag to prevent REXX
execs running in the environment from using the data stack.

0 — A REXX exec can use the data stack.

1 — Attempts to use the data stack are processed as though the data
stack were empty. Any data that is pushed (PUSH) or queued (QUEUE) is
lost. A PULL operates as though the data stack were empty. The QSTACK
command returns a 0. The NEWSTACK command seems to work, but a
new data stack is not created and any subsequent data stack operations
operate as if the data stack is permanently empty.

NOREADFL
The NOREADFL flag is the no read flag. Use the flag to prevent REXX execs
from reading any input file using either the EXECIO command or the
system-supplied I/O replaceable routine IRXINOUT.

0 — Reads from any input file are permitted.

1 — Reads from any input file are not permitted.

NOWRTFL
The NOWRTFL flag is the no write flag. Use the flag to prevent REXX execs
from writing to any output file using either the EXECIO command or the
system-supplied I/O replaceable routine IRXINOUT.

0 — Writes to any output file are permitted.

1 — Writes to any output file are not permitted.

NEWSTKFL
The NEWSTKFL flag is the new data stack flag. Use the flag to specify whether
IRXINIT should initialize a new data stack for the language processor
environment. If IRXINIT creates a new data stack, any REXX exec or other
program that runs in the new environment cannot access any data stacks for
previous environments. Any subsequent environments that are initialized under
this environment will access the data stack that was most recently created by
the NEWSTKFL flag. The first environment that is initialized on any chain of
environments is always initialized as though the NEWSTKFL flag is on, that is,
IRXINIT automatically creates a new data stack.

When you terminate the environment that is initialized, the data stack that was
created at the time of initialization is deleted regardless of whether the data
stack contains any elements. All data on that data stack is lost.

0 — IRXINIT does not create a new data stack. However, if this is the first
environment being initialized on a chain, IRXINIT automatically initializes a
data stack.

1 — IRXINIT creates a new data stack during the initialization of the new
language processor environment. The data stack will be deleted when the
environment is terminated.

“Using the Data Stack in Different Environments” on page 14-69 describes the
data stack in different environments.

14-16 OS/390 V2R8.0 TSO/E REXX Reference

 Flags and Masks

Note: The NOSTKFL overrides the setting of the NEWSTKFL.

USERPKFL
The USERPKFL flag is the user package function flag. The flag determines
whether the user function packages that are defined for the previous language
processor environment are also available to the new environment.

0 — The user function packages from the previous environment are added
to the user function packages for the new environment.

1 — The user function packages from the previous environment are not
added to the user function packages for the new environment.

LOCPKFL
The LOCPKFL flag is the local function package flag. The flag determines
whether the local function packages that are defined for the previous language
processor environment are also available to the new environment.

0 — The local function packages from the previous environment are added
to the local function packages for the new environment.

1 — The local function packages from the previous environment are not
added to the local function packages for the new environment.

SYSPKFL
The SYSPKFL flag is the system function package flag. The flag determines
whether the system function packages that are defined for the previous
language processor environment are also available to the new environment.

0 — The system function packages from the previous environment are
added to the system function packages for the new environment.

1 — The system function packages from the previous environment are not
added to the system function packages for the new environment.

NEWSCFL
The NEWSCFL flag is the new host command environment table flag. The flag
determines whether the environments for issuing host commands that are
defined for the previous language processor environment are also available to
execs running in the new environment.

0 — The host command environments from the previous environment are
added to the host command environment table for the new environment.

1 — The host command environments from the previous environment are
not added to the host command environment table for the new
environment.

CLOSEXFL
The CLOSEXFL flag is the close data set flag. The flag determines whether the
data set (specified in the LOADDD field in the module name table) from which
execs are fetched is closed after the exec is loaded or remains open.

The CLOSEXFL flag is needed if you are editing REXX execs and then running
the changed execs under the same language processor environment. If the
data set is not closed, results may be unpredictable.

0 — The data set is opened once and remains open.

1 — The data set is opened for each load and then closed.

 Chapter 14. Language Processor Environments 14-17

 Flags and Masks

NOESTAE
The NOESTAE flag is the no ESTAE flag. The flag determines whether a
recovery ESTAE is established under the environment.

0 — IRXINIT establishes a recovery ESTAE.

1 — IRXINIT does not establish a recovery ESTAE.

When IRXINIT initializes the environment, IRXINIT first temporarily establishes
a recovery ESTAE regardless of the setting of the NOESTAE flag. However, if
the NOESTAE flag is on, IRXINIT removes the recovery ESTAE for the
environment before IRXINIT finishes processing.

RENTRANT
The RENTRANT flag is the initialize reentrant language processor environment
flag. The flag determines whether IRXINIT initializes the new environment as a
reentrant or a non-reentrant environment.

0 — IRXINIT initializes a non-reentrant language processor environment.

1 — IRXINIT initializes a reentrant language processor environment.

For information about reentrant environments, see “Using the Environment
Block for Reentrant Environments” on page 12-8.

NOPMSGS
The NOPMSGS flag is the primary messages flag. The flag determines whether
REXX primary messages are printed in the environment.

0 — Primary messages are printed.

1 — Primary messages are not printed.

ALTMSGS
The ALTMSGS flag is the alternate messages flag. The flag determines
whether REXX alternate messages are printed in the environment.

0 — Alternate messages are not printed.

1 — Alternate messages are printed.

Note: Alternate messages are also known as secondary messages.

SPSHARE
The SPSHARE flag is the sharing subpools flag. The flag determines whether
the subpool specified in the SUBPOOL field in the module name table should
be shared across MVS tasks.

0 — The subpool is not shared.

1 — The subpool is shared.

If the subpool is shared, REXX uses the same subpool for all of these tasks.

STORFL
The STORFL flag is the STORAGE function flag. The flag controls the
STORAGE external function and indicates whether REXX execs running in the
environment can use the STORAGE function.

0 — Execs can use the STORAGE external function.
1 — Execs cannot use the STORAGE external function.

14-18 OS/390 V2R8.0 TSO/E REXX Reference

 Flags and Masks

NOLOADDD
The NOLOADDD flag is the exec search order flag. The flag controls the
search order for REXX execs. The flag indicates whether the system should
search the data set specified in the LOADDD field in the module name table.

0 — The system searches the DD specified in the LOADDD field.

1 — The system does not search the DD specified in the LOADDD field.

With the defaults that TSO/E provides, the NOLOADDD flag is off (0), which
means the system searches the DD specified in the LOADDD field. The default
ddname is SYSEXEC. If the language processor environment is integrated into
TSO/E, the system searches SYSEXEC followed by SYSPROC. For more
information, see “Using SYSPROC and SYSEXEC for REXX Execs” on
page 14-52.

“Search Order” on page 4-3 describes the complete search order TSO/E uses
to locate an exec.

NOMSGWTO and NOMSGIO
Together, these two flags control where REXX error messages are routed when
running in a language processor environment that is not integrated into TSO/E.

The default flag settings provided by TSO/E are off (0) for both NOMSGWTO
and NOMSGIO.

REXX error messages include all of the REXX messages numbered IRXnnnnE
or IRXnnnnI, where nnnn is the message number. Error messages also include
any text written to the error message output stream using the 'WRITEERR'
function of IRXSAY.

Figure 14-4. Flag Settings for NOMSGWTO and NOMSGIO

NOMSGWTO NOMSGIO

0 0 Error messages are issued using the WTO service
(ROUTCDE 11), and typically go to the JCL listing.
In addition, if REXX tracing is active at the time an
error message is being written, the message is also
written to the OUTDD file defined by the OUTDD
field in the module name table. SYSTSPRT is the
default OUTDD file.

When an exec is initially invoked, TRACE 'Normal'
is active by default. Unless the exec turns off
tracing (TRACE 'Off'), error messages are written
to both the JCL listing and the OUTDD file when
both the NOMSGWTO and NOMSGIO flags are off.

1 0 REXX error messages cannot be written via WTO.
Instead, error messages are written to the OUTDD
file. This happens regardless of whether REXX
tracing is active.

0 1 REXX error messages cannot be written to the
OUTDD file. Instead, error messages are written
via WTO. This happens regardless of whether
REXX tracing is active.

1 1 REXX error messages are suppressed, regardless
of whether REXX tracing is active.

 Chapter 14. Language Processor Environments 14-19

 Module Name Table

Reserved
The remaining bits are reserved.

Module Name Table
The module name table contains the names of:

� The DDs for reading and writing data
� The DD from which to load REXX execs

 � Replaceable routines
� Several exit routines.

In the parameter block, the MODNAMET field points to the module name table (see
page 14-10).

Figure 14-5 shows the format of the module name table. Each field is described in
detail following the table. The end of the table is indicated by
X'FFFFFFFFFFFFFFFF'. TSO/E provides a mapping macro IRXMODNT for the
module name table. The mapping macro is in SYS1.MACLIB.

Figure 14-5 (Page 1 of 2). Format of the Module Name Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 INDD The DD from which the PARSE
EXTERNAL instruction reads input
data.

8 8 OUTDD The DD to which data is written for
either a SAY instruction, for REXX
error messages, or when tracing is
started.

16 8 LOADDD The DD from which REXX execs are
fetched.

24 8 IOROUT The name of the input/output (I/O)
replaceable routine.

32 8 EXROUT The name of the exec load
replaceable routine.

40 8 GETFREER The name of the storage
management replaceable routine.

48 8 EXECINIT The name of the exec initialization
exit routine.

56 8 ATTNROUT The name of an attention handling
exit routine.

64 8 STACKRT The name of the data stack
replaceable routine.

72 8 IRXEXECX The name of the exit routine for the
IRXEXEC routine.

80 8 IDROUT The name of the user ID replaceable
routine.

88 8 MSGIDRT The name of the message identifier
replaceable routine.

14-20 OS/390 V2R8.0 TSO/E REXX Reference

 Module Name Table

Each field in the module name table is described below. You can specify some
fields for any type of language processor environment. You can use other fields
only for environments that are integrated into TSO/E or for environments that are
not integrated into TSO/E. The description of each field below indicates the type of
environment for which you can use the field. “Relationship of Fields in Module
Name Table to Types of Environments” on page 14-24 summarizes the fields in the
module name table and the environments for which you can specify each field.

INDD
Specifies the name of the DD from which the PARSE EXTERNAL instruction
reads input data (in a language processor environment that is not integrated
into TSO/E). The system default is SYSTSIN.

If the environment is integrated into TSO/E (the TSOFL flag is on), the system
ignores any value you specify for INDD. In TSO/E foreground, TSO/E uses the
terminal. In the background, TSO/E uses the input stream, which is SYSTSIN.

OUTDD
Specifies the name of the DD to which data is written for a SAY instruction, for
REXX error messages, or when tracing is started (in a language processor
environment that is not integrated into TSO/E). The system default is
SYSTSPRT.

If the environment is integrated into TSO/E (the TSOFL flag is on), the system
ignores any value you specify for OUTDD. In TSO/E foreground, TSO/E uses
the terminal. In the background, TSO/E uses the output stream, which is
SYSTSPRT.

LOADDD
Specifies the name of the DD from which REXX execs are loaded. The default
is SYSEXEC. You can specify a ddname in any type of language processor
environment (integrated or not integrated into TSO/E).

In TSO/E, you can store REXX execs in data sets that are allocated to
SYSEXEC or SYSPROC. If you store an exec in a data set that is allocated to
SYSPROC, the exec must start with a comment containing the characters
REXX within the first line (line 1). This is required to distinguish REXX execs
from CLISTs that are also stored in SYSPROC.

In data sets that are allocated to SYSEXEC, you can store REXX execs only,
not CLISTs. If you store an exec in SYSEXEC, the exec need not start with a
comment containing the characters “REXX”. However, it is recommended that
you start all REXX programs with a comment regardless of where you store
them. SYSEXEC is useful for REXX execs that follow the SAA Procedures
Language standards and that will be used on other SAA environments.

Figure 14-5 (Page 2 of 2). Format of the Module Name Table

Offset
(Decimal)

Number of
Bytes

Field Name Description

96 8 EXECTERM The name of the exec termination exit
routine.

152 8 — The end of the module name table
must be indicated by
X'FFFFFFFFFFFFFFFF'.

 Chapter 14. Language Processor Environments 14-21

 Module Name Table

The NOLOADDD flag (see page 14-19) controls whether the system searches
the DD specified in the LOADDD field.

� If the NOLOADDD flag is off, the system searches the DD specified in the
LOADDD field. If the language processor environment is integrated into
TSO/E and the exec is not found, the system then searches SYSPROC.

� If the NOLOADDD flag is on, the system does not search the DD specified
in the LOADDD field. However, if the language processor environment is
integrated into TSO/E, the system searches SYSPROC.

In the default parameters module that is provided for TSO/E (IRXTSPRM), the
NOLOADDD mask and flag settings indicate that SYSEXEC is searched before
SYSPROC. (Note that prior to TSO/E 2.3, the default settings indicated that
SYSPROC only was searched). In the default parameters module for ISPF
(IRXISPRM), the defaults indicate that the environment inherits the values from
the previous environment, which is the environment initialized for TSO/E. By
default, the system searches the ddname specified in the LOADDD field
(SYSEXEC). To use SYSPROC exclusively, you can provide your own
parameters module or use the EXECUTIL SEARCHDD command. For more
information, see “Using SYSPROC and SYSEXEC for REXX Execs” on
page 14-52.

IOROUT
Specifies the name of the routine that is called for input and output operations.
The routine is called for:

� The PARSE EXTERNAL, SAY, and TRACE instructions when the exec is
running in an environment that is not integrated into TSO/E

� The PULL instruction when the exec is running in an environment that is
not integrated into TSO/E and the data stack is empty

� Requests from the EXECIO command

� Issuing REXX error messages

You can specify an I/O replaceable routine only in language processor
environments that are not integrated into TSO/E. For more information about
the replaceable routine, see “Input/Output Routine” on page 16-18.

EXROUT
Specifies the name of the routine that is called to load and free a REXX exec.
The routine returns the structure that is described in “The In-Storage Control
Block (INSTBLK)” on page 12-23. The specified routine is called to load and
free this structure.

You can specify an exec load replaceable routine only in language processor
environments that are not integrated into TSO/E. For more information about
the replaceable routine, see “Exec Load Routine” on page 16-5.

GETFREER
Specifies the name of the routine that is called when storage is to be obtained
or freed. If this field is blank, TSO/E storage routines handle storage requests
and use the GETMAIN and FREEMAIN macros when larger amounts of
storage must be handled.

You can specify a storage management replaceable routine only in language
processor environments that are not integrated into TSO/E. For more

14-22 OS/390 V2R8.0 TSO/E REXX Reference

 Module Name Table

information about the replaceable routine, see “Storage Management Routine”
on page 16-38.

EXECINIT
Specifies the name of an exit routine that gets control after the system
initializes the REXX variable pool for a REXX exec, but before the language
processor processes the first clause in the exec. The exit differs from other
standard TSO/E exits. The exit does not have a fixed name. You provide the
exit and specify the routine's name in the EXECINIT field. “REXX Exit Routines”
on page 16-44 describes the exec initialization exit.

You can provide an exec initialization exit in any type of language processor
environment (integrated or not integrated into TSO/E).

ATTNROUT
Specifies the name of an exit routine that is invoked if a REXX exec is
processing in the TSO/E address space (in an environment that is integrated
into TSO/E), and an attention interruption occurs. The attention handling exit
differs from other standard TSO/E exits. The exit does not have a fixed name.
You provide the exit and specify the routine's name in the ATTNROUT field.
“REXX Exit Routines” on page 16-44 describes the attention handling exit.

You can provide an attention handling exit only in a language processor
environment that is integrated into TSO/E.

STACKRT
Specifies the name of the routine that the system calls to handle all data stack
requests.

You can specify a data stack replaceable routine only in language processor
environments that are not integrated into TSO/E. For more information about
the replaceable routine, see “Data Stack Routine” on page 16-32.

IRXEXECX
Specifies the name of an exit routine that is invoked whenever the IRXEXEC
routine is called to run an exec. You can use the exit to check the parameters
specified on the call to IRXEXEC, change the parameters, or decide whether
IRXEXEC processing should continue.

The exit differs from other standard TSO/E exits. The exit does not have a fixed
name. You provide the exit and specify the routine's name in the IRXEXECX
field.

You can provide an exit for the IRXEXEC routine in any type of language
processor environment (integrated or not integrated into TSO/E). For more
information about the exit, see “REXX Exit Routines” on page 16-44.

IDROUT
Specifies the name of a replaceable routine that the system calls to obtain the
user ID. The USERID built-in function returns the result that the replaceable
routine obtains.

You can specify a user ID replaceable routine only in language processor
environments that are not integrated into TSO/E. For more information about
the replaceable routine, see “User ID Routine” on page 16-40.

 Chapter 14. Language Processor Environments 14-23

 Module Name Table

MSGIDRT
Specifies the name of a replaceable routine that determines whether the
system should display the message identifier (message ID) with a REXX error
message.

You can specify a message identifier replaceable routine only in language
processor environments that are not integrated into TSO/E. For more
information about the replaceable routine, see “Message Identifier Routine” on
page 16-43.

EXECTERM
Specifies the name of an exit routine that gets control after the language
processor processes a REXX exec, but before the system terminates the REXX
variable pool. The exit differs from other standard TSO/E exits. The exit does
not have a fixed name. You provide the exit and specify the routine's name in
the EXECTERM field. “REXX Exit Routines” on page 16-44 describes the exit
in more detail.

You can provide an exec termination exit in any type of language processor
environment (integrated or not integrated into TSO/E).

X'FFFFFFFFFFFFFFFF'
The end of the module name table must be indicated by
X'FFFFFFFFFFFFFFFF'.

Relationship of Fields in Module Name Table to Types of
Environments

You can specify certain fields in the module name table regardless of the type of
language processor environment. You can define other fields only if the language
processor environment is integrated into TSO/E or the environment is not integrated
into TSO/E.

Figure 14-6 lists each field in the module name table and indicates the type of
environment where you can specify the field. An X in the Integrated Into TSO/E
column indicates you can use the field for a language processor environment that is
integrated into TSO/E. An X in the Not Integrated Into TSO/E column indicates you
can use the field for a language processor environment that is not integrated into
TSO/E.

Figure 14-6 (Page 1 of 2). Summary of Fields in Module Name Table and Types of
Environments

Field Name in Module Name Table Integrated Into
TSO/E

Not Integrated
Into TSO/E

INDD – ddname from which PARSE
EXTERNAL reads input.

 X

OUTDD – ddname to which data is written. X

LOADDD – ddname from which execs are
fetched.

X X

IOROUT – name of input/output (I/O)
replaceable routine.

 X

EXROUT – name of exec load replaceable
routine.

 X

14-24 OS/390 V2R8.0 TSO/E REXX Reference

 Host Command Environment Table

Figure 14-6 (Page 2 of 2). Summary of Fields in Module Name Table and Types of
Environments

Field Name in Module Name Table Integrated Into
TSO/E

Not Integrated
Into TSO/E

GETFREER – name of storage management
replaceable routine.

 X

EXECINIT – name of exec initialization exit
routine.

X X

ATTNROUT – name of attention handling exit
routine.

X

STACKRT – name of data stack replaceable
routine.

 X

IRXEXECX – name of exec processing exit for
the IRXEXEC routine.

X X

IDROUT – name of user ID replaceable
routine.

 X

MSGIDRT – name of message ID replaceable
routine.

 X

EXECTERM – name of exec termination exit
routine.

X X

Host Command Environment Table
The host command environment table contains the names of environments for
processing commands. The table contains the names you can specify on the
ADDRESS instruction. In the parameter block, the SUBCOMTB field points to the
host command environment table (see page 14-10).

The table contains the environment names (for example, TSO, MVS, LINK, and
ATTACH) that are valid for execs that run in the language processor environment.
The table also contains the names of the routines that the system invokes to
handle “commands” for each host command environment.

You can add, delete, update, and query entries in the host command environment
table using the IRXSUBCM routine. For more information, see “Maintain Entries in
the Host Command Environment Table – IRXSUBCM” on page 12-53.

When a REXX exec runs, the exec has at least one active host command
environment that processes host commands. When the REXX exec begins
processing, a default environment is available. The default is specified in the host
command environment table. In the REXX exec, you can use the ADDRESS
instruction to change the host command environment. When the language
processor processes a command, the language processor first evaluates the
expression and then passes the command to the host command environment for
processing. A specific routine that is defined for that host command environment
then handles the command processing. “Commands to External Environments” on
page 2-20 describes how to issue commands to the host.

In the PARMBLOCK, the SUBCOMTB field points to the host command
environment table. The table consists of two parts; the table header and the
individual entries in the table. Figure 14-7 on page 14-26 shows the format of the

 Chapter 14. Language Processor Environments 14-25

 Host Command Environment Table

host command environment table header. The first field in the header points to the
first host command environment entry in the table. Each host command
environment entry is defined by one row in the table. Each row contains the
environment name, corresponding routine to handle the commands, and a user
token. TSO/E provides a mapping macro IRXSUBCT for the host command
environment table. The mapping macro is in SYS1.MACLIB.

Figure 14-8 shows three rows (three entries) in the host command environment
table. The NAME, ROUTINE, and TOKEN fields are described in more detail after
the table.

Figure 14-7. Format of the Host Command Environment Table Header

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 4 ADDRESS Specifies the address of the first entry in
the table. The address is a fullword binary
number. Figure 14-8 illustrates each row
of entries in the table. Each row of entries
in the table has an 8-byte field (NAME)
that contains the name of the
environment, a second 8-byte field
(ROUTINE) that contains the name of the
corresponding routine, followed by a
16-byte field (TOKEN) that is a user
token.

4 4 TOTAL Specifies the total number of entries in
the table. This number is the total of the
used and unused entries in the table and
is a fullword binary number.

8 4 USED Specifies the number of valid entries in
the table. The number is a fullword binary
number. All valid entries begin at the top
of the table and are then followed by any
unused entries. The unused entries must
be on the bottom of the table.

12 4 LENGTH Specifies the length of each entry in the
table. This is a fullword binary number.

16 4 INITIAL Specifies the name of the initial host
command environment. This is the default
environment for any REXX exec that is
invoked and that is not invoked as either
a function or a subroutine. The INITIAL
field is used only if you call the exec
processing routine IRXEXEC to run a
REXX exec and you do not pass an initial
host command environment on the call.
“Exec Processing Routines – IRXJCL and
IRXEXEC” on page 12-9 describes the
IRXEXEC routine and its parameters.

20 8 — Reserved. The field is set to blanks.

28 8 — The end of the table header must be
indicated by X'FFFFFFFFFFFFFFFF'.

14-26 OS/390 V2R8.0 TSO/E REXX Reference

 Host Command Environment Table

The following describes each entry (row) in the table.

NAME
An 8-byte field that specifies the name of the host command environment
defined by this row in the table. The string is eight characters long, left justified,
and is padded with blanks.

If the REXX exec uses the

ADDRESS name

instruction, and the value name in not in the table, no error is detected.
However, when the language processor tries to locate the entry in the table to
pass a command and no corresponding entry is found, the language processor
returns with a return code of -3, which indicates an error condition.

ROUTINE
An 8-byte field that specifies the name of a routine for the entry in the NAME
field in the same row in the table. This is the routine to which a string is passed
for this environment. The field is eight characters long, left justified, and is
padded with blanks.

If the language processor locates the entry in the table, but finds this field blank
or cannot locate the routine specified, the language processor returns with a

Figure 14-8. Format of Entries in Host Command Environment Table

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 8 NAME The name of the first environment (entry)
in the table.

8 8 ROUTINE The name of the routine that the system
invokes to handle the processing of host
commands in the environment specified at
offset +0.

16 16 TOKEN A user token that is passed to the routine
(at offset +8) when the routine is invoked.

32 8 NAME The name of the second environment
(entry) in the table.

40 8 ROUTINE The name of the routine that the system
invokes to handle the processing of host
commands in the environment specified at
offset +32.

48 16 TOKEN A user token that is passed to the routine
(at offset +40) when the routine is
invoked.

64 8 NAME The name of the third environment (entry)
in the table.

72 8 ROUTINE The name of the routine that the system
invokes to handle the processing of host
commands in the environment specified at
offset +64.

80 16 TOKEN A user token that is passed to the routine
(at offset +72) when the routine is
invoked.

 Chapter 14. Language Processor Environments 14-27

 Function Package Table

return code of -3. This is equivalent to the language processor not being able
to locate the host command environment name in the table.

TOKEN
A 16-byte field that is stored in the table for the user's use (a user token). The
value in the field is passed to the routine specified in the ROUTINE field when
the system calls the routine to process a command. The field is for the user's
own use. The language processor does not use or examine this token field.

When a REXX exec is running in the language processor environment and a host
command environment must be located, the system searches the entire host
command environment table from bottom to top. The first occurrence of the host
command environment in the table is used. If the name of the host command
environment that is being searched for matches the name specified in the table (in
the NAME field), the system calls the corresponding routine specified in the
ROUTINE field of the table.

Function Package Table
The function package table contains information about the function packages that
are available for the language processor environment.

An individual user or an installation can write external functions and subroutines.
For faster access of a function or subroutine, you can group frequently used
external functions and subroutines in function packages. A function package is a
number of external functions and subroutines that are grouped together. Function
packages are searched before load libraries and execs (see page 4-3).

There are three types of function packages:

� User function packages
� Local function packages
� System function packages.

User function packages are searched before local packages. Local function
packages are searched before any system packages.

To provide a function package, there are several steps you must perform, including
writing the code for the external function or subroutine, providing a function
package directory for each function package, and defining the function package
directory name in the function package table. “External Functions and Subroutines,
and Function Packages” on page 12-32 describes function packages in more detail
and how you can provide user, local, and system function packages.

In the parameter block, the PACKTB field points to the function package table (see
page 14-10). The table contains information about the user, local, and system
function packages that are available for the language processor environment. The
function package table consists of two parts; the table header and table entries.
Figure 14-9 on page 14-29 shows the format of the function package table header.
The header contains the total number of user, local, and system packages, the
number of user, local, and system packages that are used, and the length of each
function package name, which is always 8. The header also contains three
addresses that point to the first table entry for user, local, and system function
packages. The table entries specify the individual names of the function packages.

14-28 OS/390 V2R8.0 TSO/E REXX Reference

 Function Package Table

The table entries are a series of eight-character fields that are contiguous. Each
eight-character field contains the name of a function package, which is the name of
a load module containing the directory for that function package. The function
package directory specifies the individual external functions and subroutines that
make up one function package. “Directory for Function Packages” on page 12-40
describes the format of the function package directory in detail.

Figure 14-10 on page 14-31 illustrates the eight-character fields that contain the
function package directory names for the three types of function packages (user,
local, and system).

TSO/E provides a mapping macro for the function package table. The name of the
mapping macro is IRXPACKT. The mapping macro is in SYS1.MACLIB.

Figure 14-9 (Page 1 of 3). Function Package Table Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 4 USER_FIRST Specifies the address of the first user
function package entry. The address
points to the first field in a series of
eight-character fields that contain the
names of the function package
directories for user packages.
Figure 14-10 shows the series of
directory names.

4 4 USER_TOTAL Specifies the total number of user
package table entries. This is the total
number of function package directory
names that are pointed to by the address
at offset +0.

You can use the USER_TOTAL field to
specify the maximum number of user
function packages that can be defined for
the environment. You can then use the
USER_USED field at offset +8 to specify
the actual number of packages that are
available.

8 4 USER_USED Specifies the total number of user
package table entries that are used. You
can specify a maximum number (total) in
the USER_TOTAL field at offset +4 and
specify the actual number of user
function packages that are used in the
USER_USED field.

12 4 LOCAL_FIRST Specifies the address of the first local
function package entry. The address
points to the first field in a series of
eight-character fields that contain the
names of the function package
directories for local packages.
Figure 14-10 shows the series of
directory names.

 Chapter 14. Language Processor Environments 14-29

 Function Package Table

Figure 14-9 (Page 2 of 3). Function Package Table Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

16 4 LOCAL_TOTAL Specifies the total number of local
package table entries. This is the total
number of function package directory
names that are pointed to by the address
at offset +12.

You can use the LOCAL_TOTAL field to
specify the maximum number of local
function packages that can be defined for
the environment. You can then use the
LOCAL_USED field at offset +20 to
specify the actual number of packages
that are available.

20 4 LOCAL_USED Specifies the total number of local
package table entries that are used. You
can specify a maximum number (total) in
the LOCAL_TOTAL field at offset +16
and specify the actual number of local
function packages that are used in the
LOCAL_USED field.

24 4 SYSTEM_FIRST Specifies the address of the first system
function package entry. The address
points to the first field in a series of
eight-character fields that contain the
names of the function package
directories for system packages.
Figure 14-10 shows the series of
directory names.

28 4 SYSTEM_TOTAL Specifies the total number of system
package table entries. This is the total
number of function package directory
names that are pointed to by the address
at offset +24.

You can use the SYSTEM_TOTAL field
to specify the maximum number of
system function packages that can be
defined for the environment. You can
then use the SYSTEM_USED field at
offset +32 to specify the actual number
of packages that are available.

32 4 SYSTEM_USED Specifies the total number of system
package table entries that are used. You
can specify a maximum number (total) in
the SYSTEM_TOTAL field at offset +28
and specify the actual number of system
function packages that are used in the
SYSTEM_USED field.

36 4 LENGTH Specifies the length of each table entry,
that is, the length of each function
package directory name. The length is
always 8.

14-30 OS/390 V2R8.0 TSO/E REXX Reference

 Default Parameters Modules

Figure 14-10 shows the function package table entries that are the names of the
directories for user, local, and system function packages.

Figure 14-9 (Page 3 of 3). Function Package Table Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

40 8 — The end of the table is indicated by
X'FFFFFFFFFFFFFFFF'.

User Function Package Entries

Local Function Package Entries

System Function Package Entries

Function Package
Directory 1

Function Package
Directory 2

Function Package
Directory 3

Function Package
Directory n

Function Package
Directory n

Function Package
Directory n

Function Package
Directory 1

Function Package
Directory 1

Function Package
Directory 2

Function Package
Directory 2

Function Package
Directory 3

Function Package
Directory 3

+ 0

+ 0

+ 0 + 8

+ 8

+ 8 + 16

+ 16

+ 16 + x

+ x

+ x

Figure 14-10. Function Package Table Entries – Function Package Directories

The table entries are a series of eight-character fields. Each field contains the
name of a function package directory. The directory is a load module that, when
loaded, contains information about each external function and subroutine in the
function package. “Directory for Function Packages” on page 12-40 describes the
format of the function package directory in detail.

The function package directory names in each eight-character field must be left
justified and padded with blanks.

Values Provided in the Three Default Parameters Modules
Figure 14-11 on page 14-32 shows the default values that TSO/E provides in each
of the three default parameters modules. “Characteristics of a Language Processor
Environment” on page 14-9 describes the structure of the parameters module in
detail.

In the figure, the LANGUAGE field contains the language code ENU for US English
in mixed case (upper and lowercase). The default parameters modules may contain

 Chapter 14. Language Processor Environments 14-31

 Default Parameters Modules

a different language code depending on whether one of the language features has
been installed on your system. See page 14-11 for information about the different
language codes.

In the figure, the value of each flag setting is followed by the value of its
corresponding mask setting, in parentheses.

Note: Figure 14-11 shows the default values TSO/E provides in the parameters
modules. It is not a mapping of a parameters module. For information about
the format of a parameters module, see “Characteristics of a Language
Processor Environment” on page 14-9. TSO/E provides the IRXPARMB
mapping macro for the parameter block and the IRXMODNT, IRXSUBCT,
and IRXPACKT mapping macros for the module name table, host command
environment table, and function package table respectively.

Figure 14-11 (Page 1 of 3). Values TSO/E Provides in the Three Default Parameters Modules

Field Name IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

ID IRXPARMS IRXPARMS IRXPARMS
VERSION 0200 0200 0200
LANGUAGE ENU ENU
PARSETOK
FLAGS (MASKS)
TSOFL 0 (1) 1 (1) 1 (1)
CMDSOFL 0 (1) 0 (1) 0 (0)
FUNCSOFL 0 (1) 0 (1) 0 (0)
NOSTKFL 0 (1) 0 (1) 0 (0)
NOREADFL 0 (1) 0 (1) 0 (0)
NOWRTFL 0 (1) 0 (1) 0 (0)
NEWSTKFL 0 (1) 0 (1) 1 (1)
USERPKFL 0 (1) 0 (1) 0 (0)
LOCPKFL 0 (1) 0 (1) 0 (0)
SYSPKFL 0 (1) 0 (1) 0 (0)
NEWSCFL 0 (1) 0 (1) 0 (0)
CLOSEXFL 0 (1) 0 (1) 0 (0)
NOESTAE 0 (1) 0 (1) 0 (0)
RENTRANT 0 (1) 0 (1) 0 (0)
NOPMSGS 0 (1) 0 (1) 0 (0)
ALTMSGS 1 (1) 1 (1) 0 (0)
SPSHARE 0 (1) 1 (1) 1 (1)
STORFL 0 (1) 0 (1) 0 (0)
NOLOADDD 0 (1) 0 (1) 0 (0)
NOMSGWTO 0 (1) 0 (1) 0 (0)
NOMSGIO 0 (1) 0 (1) 0 (0)
SUBPOOL 0 78 78
ADDRSPN MVS TSO/E ISPF
— FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Field Name in Module Name Table IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)
INDD SYSTSIN SYSTSIN
OUTDD SYSTSPRT SYSTSPRT
LOADDD SYSEXEC SYSEXEC
IOROUT
EXROUT
GETFREER
EXECINIT
ATTNROUT
STACKRT
IRXEXECX
IDROUT

14-32 OS/390 V2R8.0 TSO/E REXX Reference

 Default Parameters Modules

Figure 14-11 (Page 2 of 3). Values TSO/E Provides in the Three Default Parameters Modules

Field Name IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

MSGIDRT
EXECTERM
— FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Field Name in Host Command
Environment Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

TOTAL 9 11 13
USED 9 11 13
LENGTH 32 32 32
INITIAL MVS TSO TSO
— FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Entry 1
NAME MVS MVS MVS
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN
Entry 2
NAME LINK TSO TSO
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN
Entry 3
NAME ATTACH LINK LINK
ROUTINE IRXSTAM IRXSTAM IRXSTAM
TOKEN
Entry 4
NAME CPICOMM ATTACH ATTACH
ROUTINE IRXAPPC IRXSTAM IRXSTAM
TOKEN
Entry 5
NAME LU62 CONSOLE ISPEXEC
ROUTINE IRXAPPC IRXSTAM IRXSTAM
TOKEN
Field Name in Host Command
Environment Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

Entry 6
NAME LINKMVS CPICOMM ISREDIT
ROUTINE IRXSTAMP IRXAPPC IRXSTAM
TOKEN
Entry 7
NAME LINKPGM LU62 CONSOLE
ROUTINE IRXSTAMP IRXAPPC IRXSTAM
TOKEN
Entry 8
NAME ATTCHMVS LINKMVS CPICOMM
ROUTINE IRXSTAMP IRXSTAMP IRXAPPC
TOKEN
Entry 9
NAME ATTCHPGM LINKPGM LU62
ROUTINE IRXSTAMP IRXSTAMP IRXAPPC
TOKEN
Entry 10
NAME ATTCHMVS LINKMVS
ROUTINE IRXSTAMP IRXSTAMP
TOKEN
Entry 11
NAME ATTCHPGM LINKPGM
ROUTINE IRXSTAMP IRXSTAMP
TOKEN
Entry 12

 Chapter 14. Language Processor Environments 14-33

 Environment Values Used

Figure 14-11 (Page 3 of 3). Values TSO/E Provides in the Three Default Parameters Modules

Field Name IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

NAME ATTCHMVS
ROUTINE IRXSTAMP
TOKEN
Entry 13
NAME ATTCHPGM
ROUTINE IRXSTAMP
TOKEN
Field Name in Function Package
Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

USER_TOTAL 1 1 1
USER_USED 1 1 1
LOCAL_TOTAL 1 1 1
LOCAL_USED 1 1 1
SYSTEM_TOTAL 1 2 2
SYSTEM_USED 1 2 2
LENGTH 8 8 8
— FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Entry 1
NAME IRXEFMVS IRXEFMVS IRXEFMVS
Entry 2
NAME IRXFLOC IRXEFPCK IRXEFPCK
Entry 3
NAME IRXFUSER IRXFLOC IRXFLOC
Entry 4
NAME IRXFUSER IRXFUSER

How IRXINIT Determines What Values to Use for the Environment
When the system calls IRXINIT to automatically initialize a language processor
environment, IRXINIT must first determine what values to use for the environment.
IRXINIT uses the values that are defined in one of the three default parameters
modules that TSO/E provides and the values that are defined for the previous
language processor environment.

IRXINIT always identifies a previous language processor environment. If an
environment has not been initialized in the address space, IRXINIT uses the values
in the default parameters module IRXPARMS as the previous environment. The
following topics describe how IRXINIT determines the values for a new environment
when the system calls IRXINIT to automatically initialize an environment in the
TSO/E and non-TSO/E address spaces. “Chains of Environments and How
Environments Are Located” on page 14-36 describes how any TSO/E REXX
routine locates a previous environment.

Note: If you call IRXINIT to initialize an environment, IRXINIT evaluates the
parameters you pass on the call and the parameters defined for the
previous environment. “Initialization Routine – IRXINIT” on page 15-1
describes how IRXINIT determines what values to use when a user
explicitly calls the IRXINIT routine.

14-34 OS/390 V2R8.0 TSO/E REXX Reference

 Environment Values Used

Values IRXINIT Uses to Initialize Environments
When the system calls IRXINIT to automatically initialize an environment in the
TSO/E address space, IRXINIT determines what values to use for defining the
environment from two sources:

� The default parameters module IRXTSPRM or IRXISPRM
� The previous environment.

During logon processing, IRXINIT initializes a language processor environment for
the TSO/E session. IRXINIT first checks the values in the default parameters
module IRXTSPRM. If the value is provided (that is, the value is not null), IRXINIT
uses that value. If the value in the parameters module is null, IRXINIT uses the
value from the previous environment. In this case, an environment does not exist,
so IRXINIT uses the value from the IRXPARMS parameters module. IRXINIT
computes each individual value using this method and then initializes the
environment.

The following types of parameter values are considered to be null:

� A character string is null if it contains only blanks or has a length of zero
� An address is null if the address is 0
� A binary number is null if it has the value X'80000000'
� A bit setting is null if its corresponding mask is 0.

For example, in IRXTSPRM, the PARSETOK field is null. When IRXINIT
determines what value to use for PARSETOK, it finds a null field in IRXTSPRM.
IRXINIT then checks the PARSETOK field in the previous environment. A previous
environment does not exist, so IRXINIT takes the value from the IRXPARMS
module. In this case, the PARSETOK field in IRXPARMS is null, which is the value
that IRXINIT uses for the environment. If an exec running in the environment
contains the PARSE SOURCE instruction, the last token that PARSE SOURCE
returns is a question mark.

After IRXINIT determines all of the values, IRXINIT initializes the new environment.

When a user invokes ISPF from the TSO/E session, the system calls IRXINIT to
initialize a new language processor environment for ISPF. IRXINIT first checks the
values provided in the IRXISPRM parameters module. If a particular parameter has
a null value, IRXINIT uses the value from the previous environment. In this case,
the previous environment is the environment that IRXINIT initialized for the TSO/E
session. For example, in the IRXISPRM parameters module, the mask bit
(CMDSOFL_MASK) for the command search order flag (CMDSOFL) is 0. A mask
of 0 indicates that the corresponding flag bit is null. Therefore, IRXINIT uses the
flag setting from the previous environment, which in this case is 0.

As the previous descriptions show, the parameters defined in all three parameters
modules can have an effect on any language processor environment that is
initialized in the address space.

When IRXINIT automatically initializes a language processor environment in a
non-TSO/E address space, IRXINIT uses the values in the parameters module
IRXPARMS only.

 Chapter 14. Language Processor Environments 14-35

 Chains of Environments

If you call the IRXINIT routine to initialize a language processor environment, you
can pass parameters on the call that define the values for the environment. See
Chapter 15, Initialization and Termination Routines for information about IRXINIT.

Chains of Environments and How Environments Are Located
As described in previous topics, many language processor environments can be
initialized in one address space. A language processor environment is associated
with an MVS task. There can be several language processor environments
associated with a single task. This topic describes how non-reentrant environments
are chained together in an address space.

Language processor environments are chained together in a hierarchical structure
to form a chain of environments. The environments on one chain are interrelated
and share system resources. For example, several language processor
environments can share the same data stack. However, separate chains within a
single address space are independent.

Although many language processor environments can be associated with a single
MVS task, each individual environment is associated with only one task.

Figure 14-12 illustrates three language processor environments that form one
chain.

Environment 1

Environment 2

Environment 3

Figure 14-12. Three Language Processor Environments in a Chain

The first environment initialized was environment 1. When IRXINIT initializes the
second environment, the first environment is considered to be the previous
environment (the parent environment). Environment 2 is chained to environment 1.
Similarly, when IRXINIT initializes the third environment, environment 2 is
considered to be the previous environment. Environment 2 is the parent
environment for environment 3.

Different chains can exist in one address space. Figure 14-13 on page 14-37
illustrates two separate tasks, task 1 and task 2. Each task has a chain of
environments. For task 1, the chain consists of two language processor
environments. For task 2, the chain has only one language processor environment.

14-36 OS/390 V2R8.0 TSO/E REXX Reference

 Chains of Environments

The two environments on task 1 are interrelated and share system resources. The
two chains are completely separate and independent.

Task 1 Task 2

Environment 1

Environment 2

Environment 1

Figure 14-13. Separate Chains on Two Different Tasks

As discussed previously, language processor environments are associated with an
MVS task. Under an MVS task, IRXINIT can initialize one or more language
processor environments. The task can then attach another task. IRXINIT can be
called under the second task to initialize a language processor environment. The
new environment is chained to the last environment under the first task.
Figure 14-14 on page 14-38 illustrates a task that has attached another task and
how the language processor environments are chained together.

 Chapter 14. Language Processor Environments 14-37

 Chains of Environments

Task 1

Task 2

Environment 1

Environment 2

Environment 3

Environment 4

Attach

Figure 14-14. One Chain of Environments For Attached Tasks

As shown in Figure 14-14, task 1 is started and IRXINIT initializes an environment
(environment 1). IRXINIT is invoked again to initialize a second language processor
environment under task 1 (environment 2). Environment 2 is chained to
environment 1. If you invoke a REXX exec within task 1, the exec runs in
environment 2.

Task 1 then attaches another task, task 2. IRXINIT is called to initialize an
environment. IRXINIT locates the previous environment, which is environment 2,
and chains the new environment (environment 3) to its parent (environment 2).
When IRXINIT is called again, IRXINIT chains the fourth environment (environment
4) to its parent (environment 3). At this point, four language processor
environments exist on the chain.

Locating a Language Processor Environment
Whenever you invoke a REXX exec or routine, the exec or routine must run in a
language processor environment. The one exception is the initialization routine,
IRXINIT, which initializes environments.

In the TSO/E address space, the system always initializes a default language
processor environment when you log on TSO/E and when you invoke ISPF. If you

14-38 OS/390 V2R8.0 TSO/E REXX Reference

 Chains of Environments

call a REXX programming routine from TSO/E, the routine runs in the environment
in which you called it.

If you invoke an exec using the IRXJCL or IRXEXEC routine, a language processor
environment may or may not already exist. If an environment does not exist on the

Current task (non-TSO/E address space), or
Current task or a parent task (TSO/E address space)

the system calls the IRXINIT routine to initialize an environment before the exec
runs. Otherwise, the system locates the current non-reentrant environment and the
exec runs in that environment.

IRXINIT always locates a previous language processor environment. If an
environment does not exist on the current task or on a parent task, IRXINIT uses
the values in the IRXPARMS parameters module as the previous environment.

A language processor environment must already exist if you call the TSO/E REXX
programming routines IRXRLT, IRXSUBCM, IRXIC, IRXEXCOM, and IKJCT441 or
the replaceable routines. These routines do not invoke IRXINIT to initialize a new
environment. If an environment does not already exist and you call one of these
routines, the routine completes unsuccessfully with a return code. See Chapter 12,
TSO/E REXX Programming Services for information about the TSO/E REXX
programming routines and Chapter 16, Replaceable Routines and Exits for
information about the replaceable routines.

When IRXINIT initializes a new language processor environment, IRXINIT creates a
number of control blocks that contain information about the environment and any
REXX exec currently running in the environment. The main control block is the
environment block (ENVBLOCK), which points to other control blocks, such as the
parameter block (PARMBLOCK) and the work block extension. “Control Blocks
Created for a Language Processor Environment” on page 14-58 describes the
control blocks that IRXINIT creates for each language processor environment.

The environment block represents its language processor environment and is the
anchor that the system uses on calls to all REXX programming service routines.
Whenever you call a REXX programming service routine, you can pass the address
of an environment block in register 0 on the call. By passing the address, you can
specify in which language processor environment you want the routine to run. For
example, suppose you invoke the initialization routine, IRXINIT, in a non-TSO/E
address space. On return, IRXINIT returns the address of the environment block for
the new environment in register 0. You can store that address for future use.
Suppose you call IRXINIT several times to initialize a total of four environments in
that address space. If you then want to call a TSO/E REXX programming service
routine and have the routine run in the first environment on the chain, you can pass
the address of the first environment's environment block on the call.

You can also pass the address of the environment block in register 0 to all REXX
replaceable routines and exit routines.

When a programming service routine is called, the programming service routine
must determine in which environment to run. The routine locates the environment
as follows:

1. The routine checks register 0 to determine whether the address of an
environment block was passed on the call. If an address was passed, the

 Chapter 14. Language Processor Environments 14-39

 Chains of Environments

routine determines whether the address points to a valid environment block.
The environment block is valid if:

� The environment is either a reentrant or non-reentrant environment on the
current task (non-TSO/E address space)

� The environment is either a reentrant or non-reentrant environment on the
current task or on a parent task (TSO/E address space).

2. If register 0 does not contain the address of a valid environment block, the
routine that is called:

� Searches for a non-reentrant environment on the current task (non-TSO/E
address space)

� Searches for a non-reentrant environment on the current task (TSO/E
address space). If the routine cannot find a non-reentrant environment on
the current task, the routine searches for a non-reentrant environment on a
parent task. If the routine finds an environment on either the current task or
a parent task and the TSOFL flag is off, the routine runs in that
environment. If the routine finds an environment and the TSOFL flag is on,
the routine runs in that environment.

3. If the routine could not find an environment using the previous steps, the next
step depends on what routine was called.

� If one of the REXX programming routines or the replaceable routines was
called, a language processor environment is required in order for the
routine to run. The routine ends in error. The same occurs for the
termination routine, IRXTERM.

� If IRXEXEC or IRXJCL were called, the routine invokes IRXINIT to initialize
a new environment.

� If IRXINIT was called, IRXINIT uses the IRXPARMS parameters module as
the previous environment.

The IRXINIT routine initializes a new language processor environment. Therefore,
IRXINIT does not need to locate an environment in which to run. However,
IRXINIT does locate a previous environment to determine what values to use when
defining the new environment. The following summarizes the steps IRXINIT takes
to locate the previous environment:

1. If register 0 contains the address of a valid environment block, IRXINIT uses
that environment as the previous environment.

2. If a non-reentrant environment exists on the current task, IRXINIT uses the last
non-reentrant environment on the task as the previous environment.

3. Otherwise, IRXINIT locates the parent task. If a non-reentrant environment
exists on any of the parent tasks, IRXINIT uses the last non-reentrant
environment on the task as the previous environment.

4. If IRXINIT cannot find an environment, IRXINIT uses the values in the default
parameters module IRXPARMS as the previous environment.

“Initialization Routine – IRXINIT” on page 15-1 describes how the IRXINIT routine
determines what values to use when you explicitly call IRXINIT.

14-40 OS/390 V2R8.0 TSO/E REXX Reference

 Changing Default Values

Changing the Default Values for Initializing an Environment
TSO/E provides default values in three parameters modules (load modules) for
initializing language processor environments in non-TSO/E, TSO/E, and ISPF. In
most cases, your installation probably need not change the default values.
However, if you want to change one or more parameter values, you can provide
your own load module that contains your values.

Note: You can also call the initialization routine, IRXINIT, to initialize a new
environment. On the call, you can pass the parameters whose values you
want to be different from the previous environment. If you do not specifically
pass a parameter, IRXINIT uses the value defined in the previous
environment. See “Initialization Routine – IRXINIT” on page 15-1 for more
information.

This topic describes how to create a load module containing parameter values for
initializing an environment. You should also refer to “Characteristics of a Language
Processor Environment” on page 14-9 for information about the format of the
parameters module.

To change one or more default values that IRXINIT uses to initialize a language
processor environment, you can provide a load module containing the values you
want. You must first write the code for a parameters module. TSO/E provides three
samples in SYS1.SAMPLIB that are assembler code for the default parameters
modules. The member names of the samples are:

� IRXREXX1 (for IRXPARMS — MVS)
� IRXREXX2 (for IRXTSPRM — TSO/E)
� IRXREXX3 (for IRXISPRM — ISPF)

When you write the code, be sure to include the correct default values for any
parameters you are not changing. For example, suppose you are adding several
function packages to the IRXISPRM module for ISPF. In addition to coding the
function package table, you must also provide all of the other fields in the
parameters module and their default values. “Values Provided in the Three Default
Parameters Modules” on page 14-31 shows the default parameter values for
IRXPARMS, IRXTSPRM, and IRXISPRM.

After you create the code, you must assemble the code and then link- edit the
object code. The output is a member of a partitioned data set. The member name
must be either IRXPARMS, IRXTSPRM, or IRXISPRM depending on the load
module you are providing. You must then place the data set with the IRXPARMS,
IRXTSPRM, or IRXISPRM member in the search sequence for an MVS LOAD
macro. The parameters modules that TSO/E provides are in the LPALIB, so you
could place your data set in a logon STEPLIB, a JOBLIB, or in linklist.

If you provide an IRXPARMS load module, your module may contain parameter
values that cannot be used in language processor environments that are integrated
into TSO/E. When IRXINIT initializes an environment for TSO/E, IRXINIT uses the
IRXTSPRM parameters module. However, if a parameter value in IRXTSPRM is
null, IRXINIT uses the value from the IRXPARMS module. Therefore, if you provide
your own IRXPARMS load module that contains parameters that cannot be used in
TSO/E, you must place the data set in either a STEPLIB or JOBLIB that is not
searched by the TSO/E session. For more information about the values you can

 Chapter 14. Language Processor Environments 14-41

 Changing Default Values

specify for different types of environments, see “Specifying Values for Different
Environments” on page 14-45.

The new values you specify in your own load module are not available until the
current language processor environment is terminated and a new environment is
initialized. For example, if you provide a load module for TSO/E (IRXTSPRM), you
must log on TSO/E again.

Providing Your Own Parameters Modules
There are various considerations for providing your own parameters modules. The
different considerations depend on whether you want to change a parameter value
only for an environment that is initialized for ISPF, for environments that are
initialized for both the TSO/E and ISPF sessions, or for environments that are
initialized in a non-TSO/E address space. The following topics describe changing
the IRXISPRM, IRXTSPRM, and IRXPARMS values.

TSO/E provides the following samples in SYS1.SAMPLIB that you can use to code
your own load modules:

� IRXREXX1 (for IRXPARMS — MVS)
� IRXREXX2 (for IRXTSPRM — TSO/E)
� IRXREXX3 (for IRXISPRM — ISPF)

Changing Values for ISPF
If you want to change a default parameter value for language processor
environments that are initialized for ISPF, you should provide your own IRXISPRM
module. IRXINIT only locates the IRXISPRM load module when IRXINIT is
initializing a language processor environment for ISPF. IRXINIT does not use
IRXISPRM when initializing an environment for either a TSO/E session or for a
non-TSO/E address space.

When you create the code for the load module, you must specify the new values
you want for the parameters you are changing and the default values for all of the
other fields. “Values Provided in the Three Default Parameters Modules” on
page 14-31 shows the defaults that TSO/E provides in the IRXISPRM parameters
module.

After you assemble and link-edit the code, place the data set with the IRXISPRM
member in the search sequence for an MVS LOAD. For example, you can put the
data set in a logon STEPLIB or linklist. The new values are not available until
IRXINIT initializes a new language processor environment for ISPF. For example, if
you are currently using ISPF, you must return to TSO/E READY mode and then
invoke ISPF again. When the system calls IRXINIT to initialize an environment for
ISPF, IRXINIT locates your load module and initializes the environment using your
values.

There are many fields in the parameters module that are intended for use only if an
environment is not being integrated into TSO/E. There are also several flag settings
that you must not change in the IRXISPRM parameters module for ISPF. See
“Specifying Values for Different Environments” on page 14-45 for information about
which fields you can and cannot specify.

14-42 OS/390 V2R8.0 TSO/E REXX Reference

 Changing Default Values

Changing Values for TSO/E
If you want to change a default parameter value for environments that IRXINIT
initializes for TSO/E only, you probably have to code both a new IRXTSPRM
module (for TSO/E) and a new IRXISPRM module (for ISPF). This is because most
of the fields in the default IRXISPRM parameters module are null, which means
that IRXINIT uses the value from the previous environment. The previous
environment is the one that IRXINIT initializes for the TSO/E session.

For example, in the default IRXTSPRM module (for TSO/E), the USERPKFL,
LOCPKFL and SYSPKFL flags are 0. This means the user, local, and system
function packages defined for the previous environment are also available to the
environment IRXINIT initializes for the TSO/E session. In the default IRXISPRM
module (for ISPF), the masks for these three flags are 0, which means IRXINIT
uses the flag settings from the previous environment. IRXINIT initialized the
previous environment (TSO/E) using the IRXTSPRM module. Suppose you do not
want the function packages from the previous environment available to an
environment that IRXINIT initializes for TSO/E. However, when IRXINIT initializes
an environment for ISPF, the function packages defined for the TSO/E environment
should also be available in ISPF. You must code a new IRXTSPRM module and
specify a setting of 1 for the USERPKFL, LOCPKFL, and SYSPKFL flags. You
must code a new IRXISPRM module and specify a setting of 1 for the following
mask fields:

 � USERPKFL_MASK
 � LOCPKFL_MASK
 � SYSPKFL_MASK

When you code the new load modules, you must include the default values for all
of the other parameters. “Values Provided in the Three Default Parameters
Modules” on page 14-31 shows the defaults TSO/E provides.

Changing Values for TSO/E and ISPF
If you want to change a default parameter value for language processor
environments that IRXINIT initializes for TSO/E and ISPF, you may be able to
simply provide your own IRXTSPRM module for TSO/E and use the default
IRXISPRM module for ISPF. Whether you need to create one or two parameters
modules depends on the specific parameter value you want to change and whether
that field is null in the IRXISPRM default module. If the field is null in IRXISPRM,
when IRXINIT initializes a language processor environment for ISPF, IRXINIT uses
the value from the previous environment (TSO/E), which is the value in the
IRXTSPRM module.

For example, suppose you want to change the setting of the NOLOADDD flag so
that the system searches SYSPROC only when you invoke an exec. The value in
the default IRXTSPRM (TSO/E) module is 0, which means the system searches
SYSEXEC followed by SYSPROC. In the default IRXISPRM (ISPF) module, the
mask for the NOLOADDD flag is 0, which means IRXINIT uses the value defined in
the previous environment. You can code a IRXTSPRM load module and specify 1
for the NOLOADDD flag. You do not need to create a new IRXISPRM module.
When IRXINIT initializes a language processor environment for ISPF, IRXINIT uses
the value from the previous environment.

You may need to code two parameters modules for IRXTSPRM and IRXISPRM
depending on the parameter you want to change and the default value in

 Chapter 14. Language Processor Environments 14-43

 Changing Default Values

IRXISPRM. For example, suppose you want to change the language code. You
must code two modules because the value in both default modules is ENU. Code a
new IRXTSPRM module and specify the language code you want. Code a new
IRXISPRM module and specify either a null or the specific language code. If you
specify a null, IRXINIT uses the language code from the previous environment,
which is TSO/E.

You also need to code both an IRXTSPRM and IRXISPRM load module if you want
different values for TSO/E and ISPF.

If you provide your own load modules, you must also include the default values for
all of the other fields as provided in the default modules. “Values Provided in the
Three Default Parameters Modules” on page 14-31 shows the defaults provided in
IRXTSPRM and IRXISPRM.

After you assemble and link-edit the code, place the data set with the IRXTSPRM
member (and IRXISPRM member if you coded both modules) in the search
sequence for an MVS LOAD. For example, you can put the data sets in a logon
STEPLIB or linklist. The new values are not available until IRXINIT initializes a new
language processor environment for TSO/E and for ISPF. You must log on TSO/E
again. During logon, IRXINIT uses your IRXTSPRM load module to initialize the
environment. Similarly, IRXINIT uses your IRXISPRM module when you invoke
ISPF.

There are many fields in the parameters module that you must not change for
certain parameters modules. See “Specifying Values for Different Environments” on
page 14-45 for information about the values you can specify.

Changing Values for Non-TSO/E
If you want to change a default parameter value for language processor
environments that IRXINIT initializes in non-TSO/E address spaces, code a new
IRXPARMS module. In the code, you must specify the new values you want for the
parameters you are changing and the default values for all of the other fields.
“Values Provided in the Three Default Parameters Modules” on page 14-31 shows
the defaults TSO/E provides in the IRXPARMS parameters module.

There are many fields in the parameters module that are intended for use in
language processor environments that are not integrated into TSO/E. If you
provide IRXPARMS with values that cannot be used in TSO/E, provide the
IRXPARMS module only for non-TSO/E address spaces. When you assemble the
code and link-edit the object code, you must name the output member IRXPARMS.
You must then place the data set with IRXPARMS in either a STEPLIB or JOBLIB
that is not searched by the TSO/E session. You can do this using JCL. You must
ensure that the data set is not searched by the TSO/E session.

If you provide your own IRXPARMS module that contains parameters values that
must not be used by environments that are integrated into TSO/E (for example,
TSO/E and ISPF), and IRXINIT locates the module when initializing a language
processor environment in the TSO/E address space, IRXINIT may terminate or
errors may occur when TSO/E users log on TSO/E or invoke ISPF. For example,
you can provide your own replaceable routines only in language processor
environments that are not integrated into TSO/E. The values for the replaceable
routines in the three default parameters modules are null. You can code your own
IRXPARMS load module and specify the names of one or more replaceable

14-44 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

routines. However, your module must not be in the TSO/E search order. When
IRXINIT is invoked to initialize a language processor environment for TSO/E,
IRXINIT finds a null value for the replaceable routine in the IRXTSPRM parameters
module. IRXINIT then uses the value from the previous environment, which, in this
case, is the value in IRXPARMS.

Note: In the TSO/E address space, you can call IRXINIT and initialize an
environment that is not integrated into TSO/E. See “Types of Environments
– Integrated and Not Integrated Into TSO/E” on page 14-8 about the two
types of environments.

For more information about the parameters you can use in different language
processor environments, see “Specifying Values for Different Environments”.

Considerations for Providing Parameters Modules
The previous topics describe how to change the default parameter values that
IRXINIT uses to initialize a language processor environment. You can provide your
own IRXISPRM, IRXTSPRM, and IRXPARMS modules for ISPF, TSO/E, and
non-TSO/E. Generally, if you want to change environment values for REXX execs
that run from ISPF, you can simply provide your own IRXISPRM parameters
module. To change values for TSO/E only or for TSO/E and ISPF, you may have to
create only a IRXTSPRM module or both the IRXTSPRM and IRXISPRM modules.
The modules you have to provide depend on the parameter you are changing and
the value in the IRXISPRM default module.

If you provide an IRXPARMS module and your module contains parameter values
that cannot be used in environments that are integrated into TSO/E, you must
ensure that the module is available only to non-TSO/E address spaces, not to
TSO/E and ISPF.

Before you code your own parameters module, review the default values that
TSO/E provides. In your code, you must include the default values for any
parameters you are not changing. In the ISPF module IRXISPRM, many parameter
values are null, which means IRXINIT obtains the value from the previous
environment. In this case, the previous environment was defined using the
IRXTSPRM values. If you provide a IRXTSPRM module for TSO/E, check how the
module affects the definition of environments for ISPF.

TSO/E provides three samples in SYS1.SAMPLIB that are assembler code samples
for the three parameters modules. The member names of the samples are:

� IRXREXX1 (for IRXPARMS — MVS)
� IRXREXX2 (for IRXTSPRM — TSO/E)
� IRXREXX3 (for IRXISPRM — ISPF)

Specifying Values for Different Environments
As described in the previous topic (Changing the Default Values for Initializing an
Environment), you can change the default parameter values IRXINIT uses to
initialize a language processor environment by providing your own parameters
modules. You can also call the initialization routine, IRXINIT, to initialize a new
environment. When you call IRXINIT, you can pass parameter values on the call.
Chapter 15, Initialization and Termination Routines describes IRXINIT and its
parameters and return codes.

 Chapter 14. Language Processor Environments 14-45

 Values for Different Environments

Whether you provide your own load modules or invoke IRXINIT directly, you cannot
change some parameters. You can use other parameters only in language
processor environments that are not integrated into TSO/E or in environments that
are integrated into TSO/E. In addition, there are some restrictions on parameter
values depending on the values of other parameters in the same environment and
on parameter values that are defined for the previous environment. This topic
describes the parameters you can and cannot use in the two types of language
processor environments. The topic also describes different considerations for using
the parameters. For more information about the parameters and their descriptions,
see “Characteristics of a Language Processor Environment” on page 14-9.

Parameters You Cannot Change
There are two parameters that have fixed values and that you cannot change. The
parameters are:

ID The value must be IRXPARMS. If you provide your own load
module, you must specify IRXPARMS for the ID. If you call
IRXINIT, IRXINIT ignores any value you pass and uses the default
IRXPARMS.

VERSION The value must be 0200. If you provide your own load module or
call IRXINIT, specify 0200 for the version.

Parameters You Can Use in Any Language Processor Environment
There are several parameters that you can specify in any language processor
environment. That is, you can use these parameters in environments that are
integrated into TSO/E and in environments that are not integrated into TSO/E. The
following describes the parameters and any considerations for specifying them.

LANGUAGE
The language code. The default is ENU for US English in mixed case
(upper and lowercase).

PARSETOK
The token for the PARSE SOURCE instruction. The default is a blank.

ADDRSPN
The name of the address space. TSO/E provides the following defaults:

� IRXPARMS – MVS
� IRXTSPRM – TSO/E
� IRXISPRM – ISPF

Note: You can change the address space name for any type of language
processor environment. If you write applications that examine the
PARMBLOCK for an environment and perform processing based on
the address space name, you must ensure that any changes you
make to the ADDRSPN field do not affect your application
programs.

FLAGS
The FLAGS field is a fullword of bits that are used as flags. You can
specify any of the flags in any environment. However, the value you specify
for each flag depends on the purpose of the flag. In addition, there are
some restrictions for various flag settings depending on the flag setting in
the previous environment.

14-46 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

The following explains the different considerations for the setting of some
flags. See page 14-12 for details about each flag.

Note: If your installation uses ISPF, there are several considerations
about the flag settings for language processor environments that
are initialized for ISPF. See “Flag Settings for Environments
Initialized for TSO/E and ISPF” on page 14-52 for more information.

TSOFL
The TSOFL flag indicates whether the new environment is
integrated into TSO/E.

If IRXINIT is initializing an environment in a non-TSO/E address
space, the flag must be off (set to 0). The TSOFL flag must also be
off if the environment is being initialized as a reentrant
environment. You can initialize reentrant environments only by
explicitly calling the IRXINIT routine.

If IRXINIT is initializing an environment in the TSO/E address
space, the TSOFL flag can be on or off. If the flag is on, the
environment is integrated into TSO/E. REXX execs that run in the
environment can use TSO/E commands, such as ALLOCATE and
PRINTDS, and TSO/E programming services that are described in
OS/390 TSO/E Programming Services (for example, the parse
service routine and TSO/E I/O service routines, such as PUTGET).
The exec can also use ISPF services and can call and be called by
TSO/E CLISTs.

If the flag is off, the environment is not integrated into TSO/E. In
this case, REXX execs cannot use TSO/E commands, TSO/E
programming services, or ISPF services, or interact with CLISTs. If
the exec contains these type of services, unpredictable results can
occur.

If the TSOFL flag is on (the environment is integrated into TSO/E),
then:

� The RENTRANT flag must be off (set to 0)

� The names of the replaceable routines in the module name
table must be blank. You cannot provide replaceable routines in
environments that are integrated into TSO/E.

Note that the module name table also includes several fields for
the names of REXX exit routines (for example, EXECINIT,
ATTNROUT, IRXEXECX, and EXECTERM). If the environment
is integrated into TSO/E (TSOFL flag is on), you can specify
the exits in the module name table.

� The INDD and OUTDD fields in the module name table must
be the defaults SYSTSIN and SYSTSPRT

� The subpool number in the SUBPOOL field must be 78, in
decimal.

The TSOFL flag cannot be on (set to 1) if a previous language
processor environment in the environment chain has the TSOFL
flag off.

 Chapter 14. Language Processor Environments 14-47

 Values for Different Environments

NEWSTKFL
The NEWSTKFL flag indicates whether IRXINIT initializes a new
data stack for the new environment.

If you set the NEWSTKFL off for the new environment that IRXINIT
is initializing, you must ensure that the SPSHARE flag is on in the
previous environment. The SPSHARE flag determines whether the
subpool is shared across MVS tasks. If the NEWSTKFL flag is off
for the new environment and the SPSHARE flag is off in the
previous environment, an error occurs when IRXINIT tries to
initialize the new environment.

Module Name Table
The module name table contains the ddnames for reading and writing data
and for loading REXX execs, and the names of replaceable routines and
exit routines. The fields you can specify in any address space are
described below. You can use the replaceable routines only in:

� Non-TSO/E address spaces

� The TSO/E address space if the language processor environment is
initialized with the TSOFL flag off (the environment is not integrated
with TSO/E).

The module name table also contains fields for several REXX exits. The
fields are EXECINIT for the exec initialization exit, ATTNROUT for the
attention handling exit, IRXEXECX for the exec processing exit (for the
IRXEXEC routine), and EXECTERM for the exec termination exit. You can
specify exits for exec initialization (EXECINIT), exec processing
(IRXEXECX), and exec termination (EXECTERM) in any type of language
processor environment. You can provide an attention handling exit
(ATTNROUT) only for environments that are integrated into TSO/E.

LOADDD
The name of the DD from which the system loads REXX execs.
The default TSO/E provides in all three parameters modules is
SYSEXEC. (See “Using SYSPROC and SYSEXEC for REXX
Execs” on page 14-52 for more information about SYSEXEC in the
TSO/E address space).

The DD from which the system loads REXX execs depends on the
name specified in the LOADDD field and the setting of the TSOFL
and NOLOADDD flags. If the TSOFL flag is on, the language
processor environment is initialized in the TSO/E address space
and is integrated into TSO/E (see page 14-15). In TSO/E, you can
store REXX execs in data sets that are allocated to SYSPROC or
to the DD specified in the LOADDD field (the default is SYSEXEC).
The NOLOADDD flag (see page 14-19) indicates whether the
system searches SYSPROC only or whether the system searches
the DD specified in the LOADDD field (SYSEXEC) first, followed by
SYSPROC.

If the TSOFL flag is off, the system loads REXX execs from the DD
specified in the LOADDD field.

Note: For the default parameters modules IRXTSPRM and
IRXISPRM, the NOLOADDD flag is off (0). Therefore, the
system searches SYSEXEC followed by SYSPROC. To
have the system search SYSPROC exclusively, you can

14-48 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

provide your own parameters module. TSO/E users can
also use the EXECUTIL command to dynamically change
the search order. “EXECUTIL” on page 10-19 describes the
EXECUTIL command.

The system opens the specified DD the first time a REXX exec is
loaded. The DD remains open until the environment under which it
was opened is terminated. If you want the system to close the DD
after each REXX exec is fetched, you must set the CLOSEXFL flag
on (see page 14-17). Users can also use the EXECUTIL command
to dynamically close the DD. Note that the system may close the
data set at certain points.

See “Using SYSPROC and SYSEXEC for REXX Execs” on
page 14-52 for more information about SYSPROC and SYSEXEC.

EXECINIT
The name of an exit routine that gets control after the system
initializes the REXX variable pool for a REXX exec, but before the
language processor starts processing the exec.

IRXEXECX
The name of an exit routine that is invoked whenever the IRXEXEC
routine is called.

EXECTERM
The name of an exit routine that is invoked after a REXX exec has
completed processing, but before the system terminates the REXX
variable pool.

Host Command Environment Table
The table contains the names of the host command environments that are
valid for the language processor environment and the names of the
routines that the system calls to process commands for the host command
environment.

When IRXINIT creates the host command environment table for a new
language processor environment, IRXINIT checks the setting of the
NEWSCFL flag. The NEWSCFL flag indicates whether the host command
environments that are defined for the previous language processor
environment are added to the table that is specified for the new
environment. If the NEWSCFL flag is 0, IRXINIT creates the table by
copying the host command environment table from the previous
environment and concatenating the entries specified for the new
environment. If the NEWSCFL flag is 1, IRXINIT creates the table using
only the entries specified for the new environment.

Function Package Table
The function package table contains information about the user, local, and
system function packages that are available in the language processor
environment. “Function Package Table” on page 14-28 describes the
format of the table in detail.

When IRXINIT creates the function package table for a new language
processor environment, IRXINIT checks the settings of the USERPKFL,
LOCPKFL, and SYSPKFL flags. The three flags indicate whether the user,
local, and system function packages that are defined for the previous
language processor environment are added to the function package table
that is specified for the new environment. If a particular flag is 0, IRXINIT

 Chapter 14. Language Processor Environments 14-49

 Values for Different Environments

copies the function package table from the previous environment and
concatenates the entries specified for the new environment. If the flag is 1,
IRXINIT creates the function package table using only the entries specified
for the new environment.

Parameters You Can Use for Environments That Are Integrated Into
TSO/E

There is one parameter that you can use only if a language processor environment
is initialized in the TSO/E address space and the TSOFL flag is on. The parameter
is the ATTNROUT field in the module name table. The ATTNROUT field specifies
the name of an exit routine for attention processing. The exit gets control if a REXX
exec is running in the TSO/E address space and an attention interruption occurs.
“REXX Exit Routines” on page 16-44 describes the attention handling exit.

The ATTNROUT field must be blank if the new environment is not being integrated
into TSO/E, that is, the TSOFL flag is off.

Parameters You Can Use for Environments That Are Not Integrated
Into TSO/E

There are several parameters that you can specify only if the environment is not
integrated into TSO/E (the TSOFL flag is off). The following describes the
parameters and any considerations for specifying them.

SUBPOOL
The subpool number in which storage is allocated for the entire language
processor environment. In the parameters module IRXPARMS, the default
is 0. You can specify a number from 0 – 127.

If the environment is initialized in the TSO/E address space and the TSOFL
flag is on, the subpool number must be 78, in decimal.

Module Name Table
The module name table contains the names of DDs for reading and writing
data and for loading REXX execs, and the names of replaceable routines
and exit routines. The fields you can specify if the environment is not
integrated into TSO/E (the TSOFL flag is off) are described below.

INDD
The name of the DD from which the PARSE EXTERNAL instruction
reads input data. The default is SYSTSIN.

If IRXINIT initializes the environment in the TSO/E address space
and the TSOFL flag is on, IRXINIT ignores the ddname.

If the specified DD is opened by a previous language processor
environment, even an environment on a higher task, and the INDD
value for the new environment is obtained from the previous
environment, the new environment uses the DCB of the previous
environment. Sharing of the DCB in this way means:

� A REXX exec running in the new environment reads the record
that follows the record the previous environment read.

� If the previous environment runs on a higher task and that
environment is terminated, the new environment reopens the
DD. However, the original position in the DD is lost.

14-50 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

OUTDD
The name of the DD to which data is written for a SAY instruction,
when tracing is started, or for REXX error messages. The default is
SYSTSPRT.

If IRXINIT initializes the environment in the TSO/E address space
and the TSOFL flag is on, IRXINIT ignores the ddname.

If you initialize two environments by calling IRXINIT and explicitly
pass the same ddname for the two different environments, when
the second environment opens the DD, the open fails. The open
fails because the data set can only be opened once. The OPEN
macro issues an ENQ exclusively for the ddname.

IOROUT
The name of the input/output (I/O) replaceable routine.
“Input/Output Routine” on page 16-18 describes the routine in
detail.

If the environment is initialized in the TSO/E address space and the
TSOFL flag is on, this field must be blank.

EXROUT
The name of the load exec replaceable routine. “Exec Load
Routine” on page 16-5 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the
TSOFL flag is on, this field must be blank.

GETFREER
The name of the storage management replaceable routine.
“Storage Management Routine” on page 16-38 describes the
routine in detail.

If more than one language processor environment is initialized on
the same task and the environments specify a storage
management replaceable routine, the name of the routine must be
the same. If the name of the routine is different for two
environments on the same task, an error occurs when IRXINIT tries
to initialize the new environment.

If the environment is initialized in the TSO/E address space and the
TSOFL is on, the GETFREER field must be blank.

STACKRT
The name of the data stack replaceable routine. “Data Stack
Routine” on page 16-32 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the
TSOFL flag is on, this field must be blank.

IDROUT
The name of the user ID replaceable routine. The system calls the
routine whenever an exec uses the USERID built-in function. “User
ID Routine” on page 16-40 describes the routine in detail.

If the environment is initialized in the TSO/E address space and the
TSOFL flag is on, this field must be blank.

 Chapter 14. Language Processor Environments 14-51

 Values for Different Environments

MSGIDRT
The name of the message identifier replaceable routine. The
system calls the routine to determine whether message IDs are
displayed. “Message Identifier Routine” on page 16-43 describes
the routine in detail.

If the environment is initialized in the TSO/E address space and the
TSOFL flag is on, this field must be blank.

Flag Settings for Environments Initialized for TSO/E and ISPF
If your installation uses ISPF, there are several considerations about flag settings
for language processor environments that are initialized for TSO/E and ISPF. In the
default IRXISPRM parameters module for ISPF, most of the mask settings for the
flags parameters are 0, which means IRXINIT uses the values from TSO/E
(IRXTSPRM module). If you provide your own IRXISPRM load module, you should
not change the mask values for the following flags. The mask values for these flags
should be 0.

� CMDSOFL — command search order flag
� FUNCSOFL — function and subroutine search order flag
� NOSTKFL — no data stack flag
� NOREADFL — no read (input file) flag
� NOWRTFL — no write (output file) flag
� NEWSTKFL — new data stack flag
� NOESTAE — recovery ESTAE flag
� RENTRANT — reentrant/non-reentrant flag
� SPSHARE — subpool sharing flag

The values for these flags in ISPF should be the same as the values that IRXINIT
uses when initializing an environment for the TSO/E session. When IRXINIT
initializes an environment for ISPF, IRXINIT uses the values defined for the
previous environment (TSO/E) because the mask settings are 0. Using the same
values for these flags for both TSO/E and ISPF prevents any processing problems
between the ISPF and TSO/E sessions.

If you do want to change one of the flag values, change the value in the
IRXTSPRM parameters module for TSO/E. The change is inherited by ISPF when
IRXINIT initializes an environment for the ISPF screen. For example, suppose you
want to change the search order the system uses for locating external functions
and subroutines. The FUNCSOFL flag controls the search order. You can provide a
IRXTSPRM parameters module for TSO/E and change the flag setting. ISPF
inherits the changed flag setting when IRXINIT initializes an environment.

Using SYSPROC and SYSEXEC for REXX Execs
In the module name table, the LOADDD field (see page 14-21) contains the name
of the DD from which REXX execs are fetched. The default TSO/E provides for
non-TSO/E, TSO/E, and ISPF is SYSEXEC. If you customize REXX processing
either by providing your own parameters modules or explicitly calling IRXINIT to
initialize an environment, it is recommended that you use the ddname SYSEXEC.
The TSO/E REXX documentation refers to this DD as SYSEXEC.

In TSO/E, you can store both interpreted and compiled REXX execs in data sets
that are allocated to either SYSPROC or SYSEXEC. You can use SYSPROC for
both TSO/E CLISTs and REXX execs. SYSEXEC is for REXX execs only. If an

14-52 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

exec is in a data set that is allocated to SYSPROC, the exec must start with a
comment containing the characters REXX within the first line (line 1). This is referred
to as the REXX identifier and is required in order for the TSO/E EXEC command to
distinguish REXX execs from CLISTs. OS/390 TSO/E REXX User's Guide
describes how to allocate execs to SYSPROC and SYSEXEC. For information
about compiled execs, see the appropriate compiler publications.

In the parameters module, the NOLOADDD flag (see page 14-19) controls the
search order for REXX execs. The flag indicates whether the system searches the
DD specified in the LOADDD field (SYSEXEC). With the defaults that TSO/E
provides, the system searches SYSEXEC first, followed by SYSPROC. The system
searches SYSPROC only if the language processor environment is integrated into
TSO/E.

If your installation plans to use REXX, it is recommended that you store your execs
in data sets that are allocated to SYSEXEC, rather than using SYSPROC. Using
SYSEXEC makes it easier to maintain your REXX execs. If your installation uses
many CLISTs and does not plan to have a large number of REXX execs, you may
want to use SYSPROC only and not use SYSEXEC. To use SYSPROC only, you
can provide your own IRXTSPRM parameters module for TSO/E or use the
EXECUTIL SEARCHDD command.

If you provide your own IRXTSPRM parameters module, specify the following
values for the NOLOADDD mask and flag fields:

� NOLOADDD_MASK — 1
� NOLOADDD_FLAG — 1

With these values, the system does not search SYSEXEC and searches
SYSPROC only. You can make your parameters module available on a
system-wide basis for your entire installation. You can also make your module
available only to a specific group of users by making it available only on a logon
level. You can place your IRXTSPRM module in a data set specified in the
STEPLIB concatenation in the logon procedure. You must ensure that the data set
is higher in the concatenation than any other data set that contains IRXTSPRM.
See OS/390 TSO/E Customization for more information about logon procedures.

You need not provide your own IRXISPRM parameters module for ISPF because
the NOLOADDD mask value in the default IRXISPRM module is 0, which means
IRXINIT uses the flag setting from the previous environment. In this case, the
previous environment is the value from the IRXTSPRM module you provide.

You can also use the EXECUTIL command with the SEARCHDD operand to
change the search order and have the system search SYSPROC only. You can
use EXECUTIL SEARCHDD(NO) in a start-up CLIST or REXX exec that is part of
a logon procedure. Users can also use EXECUTIL SEARCHDD(NO) to dynamically
change the search order during their TSO/E and ISPF sessions. For more
information about the EXECUTIL command, see Chapter 10, TSO/E REXX
Commands.

In TSO/E, you can also use the TSO/E ALTLIB command to define alternate exec
libraries in which to store implicitly executed REXX execs. Using ALTLIB, you can
specify alternate libraries on the user, application, or system level and activate and
deactivate individual exec libraries as needed. For more information about using
ALTLIB, see OS/390 TSO/E REXX User's Guide.

 Chapter 14. Language Processor Environments 14-53

 Values for Different Environments

Compressing REXX Execs
Compression provides a potential performance benefit by reducing the size of the
in-storage image of the exec. This could have benefits for all users on a system for
execs that are stored in VLF. If you do not want certain execs to be compressed,
you can do any one of the following:

� allocate the exec data set to the SYSPROC user level file using the TSO/E
ALTLIB command, or to a file that can contain only REXX execs, such as
SYSEXEC

� include the character string SOURCELINE in the exec, outside of a comment
� specify the compression indicator COMMENT.

REXX execs in the SYSPROC system level, or a CLIST application level library as
defined by ALTLIB, are eligible for compression. TSO/E REXX can automatically
compress an exec, or you can request that a REXX exec be compressed.

In general, compression eliminates comment text and leading and trailing blanks,
and replaces blank lines with null lines, which preserves the line numbering in the
exec. For comments, the system removes the comment text but keeps the
beginning and ending comment delimiters /\ and \/. This preserves the exec line
numbering if the comment spans more than one line. Blanks and comments within
literal strings (delimited by either single or double quotation marks) are not
removed. Blanks or comments within a Double-Byte Character Set (DBCS) string
are not removed.

 � Automatic Compression

– If the system automatically compresses the exec, it replaces the first line of
the exec (the comment line containing the characters “REXX”) with the
comment /\%NOCOMMENT\/. If you review a dump of VLF, the
/\%NOCOMMENT\/ comment is an indicator that the exec is compressed. For
example, if the initial line 1 comment contains:

/\ REXX \/

then after compression, line 1 contains:

/\%NOCOMMENT\/

However, if the line 1 comment also contains other special options (the
comment starts with /*%), TSO/E REXX inserts the option NOCOMMENT
ahead of the other keyword options in line 1. The remaining keyword
options of line 1 are not removed (compressed) from the line 1 comment.
For example, if the initial line 1 comment contains:

/\% REXX xxxxxxx yyyyyyy \/

then after compression line 1 contains:

/\%NOCOMMENT REXX xxxxxxx yyyyyyy \/

If the system finds an explicit occurrence of the characters SOURCELINE
outside of a comment in the exec, it does not compress the exec. For
example, if you use the SOURCELINE built-in function, the exec is not
compressed. If you use a variable called “ASOURCELINE1”, the system
does not compress the exec because it locates the characters SOURCELINE
within that variable name. Note that the system does compress the exec if
the exec contains a “hidden” use of the characters SOURCELINE. For
example, you may concatenate the word SOURCE and the word LINE and
then use the INTERPRET instruction to interpret the concatenation or you

14-54 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

may use the hexadecimal representation of SOURCELINE. In these cases,
the system compresses the exec because the characters SOURCELINE are
not explicitly found.

 � Controlled Compression

– To request compression of the REXX exec, the exec must begin with a
special comment in line 1. A comment is called a special comment if it is
the first comment in line 1 and the begin comment delimiter /\ is
immediately followed by the special comment trigger character %. That is,

/\%

The trigger character is followed by one or more keyword options. If you
specify more than one keyword option, separate them by one or more
blanks. You can also use blanks between the trigger character and the first
keyword option for better readability. Keyword options can be lower case,
upper case, or mixed case. The following are some examples of using a
special comment. Note that there are no changes to the special comment
after compression.

/\% REXX xxxx yyyy NOCOMMENT \/

then after compression the line is unchanged, except trailing blanks are
removed, and the line contains:

/\% REXX xxxx yyyy NOCOMMENT\/

The scan for keyword options ends by:

- an end comment delimiter (\/)
- another begin comment delimiter /\ to start a nested comment
- the end of the line.

Keyword options cannot continue onto the second physical line, even if the
comment itself continues to line two. If TSO/E REXX does not recognize a
keyword option, it is ignored.

Note: DBCS characters cannot be used within the special comment in line 1 to
specify keyword options. All keyword options should be specified using the
EBCDIC character set.

The compression indicator keyword options are COMMENT and NOCOMMENT,
where:

COMMENT indicates the exec is NOT to be compressed (the exec will contain
comments).

NOCOMMENT indicates the exec is to be compressed (the exec will NOT contain
comments).

The COMMENT and NOCOMMENT compression indicators are only valid for execs
which are invoked implicitly and are found in either a SYSPROC library or an
application level CLIST library.

The following are some examples of using COMMENT and NOCOMMENT. In all of
these examples the exec is invoked implicitly and is found in the SYSPROC CLIST
library.

� To indicate an exec is to be compressed, the author of the REXX exec might
code the following:

 Chapter 14. Language Processor Environments 14-55

 Values for Different Environments

/\%NOCOMMENT REXX \/
Say 'This exec will be compressed'
x = 5 /\ This comment will be removed from the exec \/
say 'x is ' x
exit ð /\ leave the exec \/

� To indicate an exec is NOT to be compressed, the author of the REXX exec
might code the following:

/\%COMMENT REXX \/
Say 'This exec will not be compressed'
x = 5 /\ This comment will not be removed from the exec \/
say 'x is ' x
exit ð /\ leave the exec \/

Note: The REXX identifier must still be specified within a comment in the first
line of any interpreted exec found in SYSPROC. Otherwise, the
procedure is treated as a CLIST.

� If you specify the NOCOMMENT keyword option, the NOCOMMENT keyword
option, and any other options are not removed from the special comment in line
1 after compression. For example, if the initial line 1 comment contains:

/\% xxxxxxx yyyyyyy NOCOMMENT /\REXX\/ \/

then after compression line 1 contains:

/\% xxxxxxx yyyyyyy NOCOMMENT\/

Note: The REXX identifier was removed from the line 1 comment because it is
not a keyword option in this instance. The nested delimiter /\ ended the
scan for special keyword options.

If a compression indicator is specified, the exec is not scanned for the string
SOURCELINE. TSO/E REXX determines whether to compress the exec based only
on the value of the compression indicator.

The following are examples of using the compression indicator option. In all of
these examples the exec is invoked implicitly and is found in the SYSPROC CLIST
library.

� Example of correct placement of the trigger character:

In the following example NOCOMMENT is a valid compression indicator option
recognized by TSO/E REXX and indicates that the exec should be
compressed. The string REXX is seen both as a keyword option and as the
REXX REXX identifier.

/\% NOCOMMENT REXX \/

� Examples of incorrect placement of the trigger character:

In each of these examples NOCOMMENT is not treated as a compression
indicator option because the trigger character (%) does not immediately follow
the first begin comment delimiter /\. The string REXX in the first comment is
seen as a valid REXX identifier.

/\REXX\/ /\%NOCOMMENT \/

/\REXX /\%NOCOMMENT \/ \/

/\ %NOCOMMENT REXX \/

14-56 OS/390 V2R8.0 TSO/E REXX Reference

 Values for Different Environments

� Example of specifying the compression indicator in mixed case:

In the following example the compression indicator option is specified in mixed
case. The compression indicator option can be specified in uppercase,
lowercase, or mixed case. The "NOcomment" indicator is a valid keyword
option and indicates that the exec should be compressed. The start of the
nested comment ends scanning for keyword options. The string "REXX" is seen
as a REXX identifier and not as a keyword option. The words within the nested
comment are not treated as keyword options.

/\% NOcomment /\REXX - Remove any comment text\/ \/

� Example of using two compression keyword options:

If both COMMENT and NOCOMMENT are specified in the set of keyword
options in the comment in line 1, TSO/E REXX uses the last value specified. In
this example, the exec sees the last compression indicator COMMENT and the
exec is not compressed.

/\% NOCOMMENT COMMENT - REXX \/

� Example of SOURCELINE that does not prevent compression:

In the following example the string SOURCELINE is not apparent in the source
text of the exec because it is formed dynamically during the processing of the
INTERPRET statement. Use of the COMMENT keyword option informs TSO/E
REXX not to compress this exec. Without the COMMENT indicator this exec
would be compressed and this would have caused the SOURCELINE built-in
function to obtain a null comment, that is /\\/, for the source text of line 2.

/\%COMMENT REXX \/
/\ Second line of exec \/
interpret 'line2 = SOURCE'||'LINE(2)'
if substr(line2,1,25) = '/\ Second line of exec \/' then
 do

say 'Found the correct line 2 source text'
say '... Exec executed correctly'

 end
 else
 do

say 'Did not find correct line 2 source text'
say '... Exec executed incorrectly'

 end
 exit ð

� Example of a missing REXX identifier:

In this example, NOCOMMENT is specified as a keyword option but is not
recognized because no REXX identifier appears in the line 1 comment. Any
procedure invoked implicitly from a SYSPROC library that does not contain the
REXX identifier is treated as a CLIST. Therefore, no scan for keyword options
is performed and the system attempts to run this exec as a CLIST.

/\%NOCOMMENT \/

� Example of incorrectly specified compression indicator:

In the following example, the NOCOMMENT indicator is not recognized. The
REXX identifier should be separated from the NOCOMMENT indicator by at
least one blank. TSO/E REXX views NOCOMMENTREXX
NOCOMMENTOREXX as a single unrecognized exec keyword option. Note,

 Chapter 14. Language Processor Environments 14-57

 Control Blocks

however, the word REXX imbedded within the keyword option
NOCOMMENTREXX is seen as a valid REXX identifier string.

/\%NOCOMMENTREXX\/

Note: Avoid concatenating data sets of unlike RECFM attributes to the
SYSEXEC or SYSPROC libraries or to any of the REXX exec or CLIST
libraries that are defined via the ALTLIB command. In addition, if
RECFM=FB data sets are used in the library allocated to SYSEXEC, or
in any exec library allocated via the ALTLIB command, all the data sets
which comprise that library concatenation should have the same
LRECL. Follow these directives or various failures, including abends or
loops, during REXX exec load processing, can result.

Control Blocks Created for a Language Processor Environment
When IRXINIT initializes a new language processor environment, IRXINIT creates a
number of control blocks that contain information about the environment. The main
control block is the environment block (ENVBLOCK). The environment block
contains pointers to:

� The parameter block (PARMBLOCK), which is a control block containing the
parameters IRXINIT used to define the environment. The parameter block
IRXINIT creates has the same format as the parameters module.

� The user field that was passed on the call to IRXINIT if IRXINIT was explicitly
invoked by a user.

� The work block extension, which is a control block that contains information
about the REXX exec that is currently running.

� The REXX vector of external entry points, which contains the addresses of the
REXX routines TSO/E provides, such as IRXINIT, IRXTERM, REXX
programming routines, and replaceable routines. For replaceable routines, the
vector contains the addresses of both the system-supplied routines and any
user-supplied routines.

� The TSO/E REXX routine that encountered the first error and issued the first
error message in the environment.

� The compiler programming table, which identifies compiler run-time processors
and corresponding compiler interface routines.

Note About Changing Any Control Blocks

You can obtain information from the control blocks. However, you must not
change any of the control blocks. If you do, unpredictable results may occur.

Format of the Environment Block (ENVBLOCK)
Figure 14-15 on page 14-59 shows the format of the environment block. TSO/E
provides a mapping macro, IRXENVB, for the environment block. The mapping
macro is in SYS1.MACLIB.

When IRXINIT initializes a new language processor environment, IRXINIT returns
the address of the new environment block in register 0 and in parameter 6 in the
parameter list. You can use the environment block to locate information about a
specific environment. For example, the environment block points to the REXX

14-58 OS/390 V2R8.0 TSO/E REXX Reference

 Control Blocks

vector of external entry points that contains the addresses of routines that perform
system services, such as I/O, data stack, and exec load. Using the control blocks
lets you easily call one of the routines.

Figure 14-15 (Page 1 of 2). Format of the Environment Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ID An eight-character field that identifies the
environment block. The field contains the
characters ‘ENVBLOCK’.

8 4 VERSION A 4-byte field that contains the character
representation of the version number of the
environment block. The version number is 0100.

12 4 LENGTH The length of the environment block. The
number is 320, in decimal.

16 4 PARMBLOCK The address of the parameter block
(PARMBLOCK). See “Format of the Parameter
Block (PARMBLOCK)” on page 14-60 for more
information.

20 4 USERFIELD The address of the user field that is passed to
IRXINIT if you explicitly called IRXINIT. You
pass the user field in parameter 4 (see
“Initialization Routine – IRXINIT” on page 15-1
for information about the parameters). You can
use this field for your own processing. The
TSO/E REXX services do not use this field.

24 4 WORKBLOK_EXT The address of the current work block
extension. If an exec is not currently running in
the environment, the address is 0. See “Format
of the Work Block Extension” on page 14-61 for
details about the work block extension.

28 4 IRXEXTE The address of the REXX vector of external
entry points. See “Format of the REXX Vector of
External Entry Points” on page 14-64 for details
about the vector.

32 4 ERROR_CALL@ The address of the TSO/E REXX routine that
encountered the first error in the language
processor environment and that issued the first
error message. The error could have occurred
while an exec was running or when a particular
service was requested in the environment.

36 4 — Reserved.

40 8 ERROR_MSGID An eight-character field that contains the
message ID of the first error message the
system issued in the language processor
environment. The message relates to the error
encountered by the routine that is pointed to at
offset +32.

48 80 PRIMARY_ERROR_MESSAGE An 80-character field that contains the primary
error message (the message text) for the
message ID at offset +40.

 Chapter 14. Language Processor Environments 14-59

 Control Blocks

Figure 14-15 (Page 2 of 2). Format of the Environment Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

128 160 ALTERNATE_ERROR_MESSAGE A 160-character field that contains the alternate
error message (the message text) for the
message ID at offset +40.

288 4 COMPGMTB The address of the compiler programming table
for the language processor environment. The
table identifies a compiler run-time processor
and corresponding compiler interface routines. If
a compiler programming table is not available to
the language processor environment, this field is
0. For information about the compiler
programming table, see OS/390 TSO/E
Customization.

292 4 ATTNROUT_PARMPTR The address of an attention handling routine
control block. The attention handling exit can
optionally use this control block to communicate
with REXX attention processing. For more
information about the control block, see OS/390
TSO/E Customization.

296 4 ECTPTR The address of the ECT under which this
environment is anchored. This field is only used
for environments which are integrated into
TSO/E. Otherwise, it is zero.

300 4 INFO_FLAGS A fullword of bits that gives status of this
environment block. Bit 0 is the only bit that is
used. Bits 1 through 31 are reserved.

� Bit 0 (TERMA_CLEANUP). This bit is on if
the environment is undergoing abnormal
termination. (See Appendix B, “IRXTERMA
Routine” on page B-1 for information about
abnormal termination.

The following topics describe the format of the parameter block (PARMBLOCK), the
work block extension, and the vector of external entry points.

Format of the Parameter Block (PARMBLOCK)
The parameter block (PARMBLOCK) contains information about the parameters
that IRXINIT used to define the environment. The environment block points to the
parameter block.

Figure 14-16 shows the format of the parameter block. TSO/E provides a mapping
macro, IRXPARMB, for the parameter block. The mapping macro is in
SYS1.MACLIB.

The parameter block has the same format as the parameters module. See
“Characteristics of a Language Processor Environment” on page 14-9 for
information about the parameters module and a complete description of each field.

14-60 OS/390 V2R8.0 TSO/E REXX Reference

 Control Blocks

Figure 14-16. Format of the Parameter Block (PARMBLOCK)

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ID An eight-character field that identifies the
parameter block. The field contains the
characters ‘IRXPARMS’.

8 4 VERSION A 4-byte field that contains the version
number of the parameter block in
EBCDIC. The version number is 0200.

12 3 LANGUAGE Language code for REXX messages.

15 1 — Reserved.

16 4 MODNAMET Address of the module name table. See
“Module Name Table” on page 14-20 for
a description of the table.

20 4 SUBCOMTB Address of the host command
environment table. See “Host Command
Environment Table” on page 14-25 for a
description of the table.

24 4 PACKTB Address of the function package table.
See “Function Package Table” on
page 14-28 for a description of the table.

28 8 PARSETOK Token for the PARSE SOURCE
instruction.

36 4 FLAGS A fullword of bits that represent the flags
that IRXINIT used in defining the
environment. The flags in the parameter
block are in the same order as in the
parameters module. See “Flags and
Corresponding Masks” on page 14-15 for
a complete description of the flags.

40 4 MASKS A fullword of bits that represent the mask
settings of the flag bits that IRXINIT used
in defining the environment. The masks
are in the same order as in the
parameters module. See “Flags and
Corresponding Masks” on page 14-15 for
a complete description of the flags and
their corresponding masks.

44 4 SUBPOOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 — The end of the parameter block is
indicated by X'FFFFFFFFFFFFFFFF'.

Format of the Work Block Extension
The work block extension contains information about the REXX exec that is
currently running. The environment block points to the work block extension.

When IRXINIT first initializes a new environment and creates the environment
block, the address of the work block extension in the environment block is 0. The

 Chapter 14. Language Processor Environments 14-61

 Control Blocks

address is 0 because a REXX exec is not yet running in the environment. At this
point, IRXINIT is only initializing the environment.

When an exec starts running in the environment, the environment block is updated
to point to the work block extension describing the exec. If an exec is running and
invokes another exec, the environment block is updated to point to the work block
extension for the second exec. The work block extension for the first exec still
exists, but the environment block does not point to it. When the second exec
completes and returns control to the first exec, the environment block is changed
again to point to the work block extension for the original exec.

The work block extension contains the parameters that are passed to the IRXEXEC
routine to invoke the exec. You can call IRXEXEC explicitly to invoke an exec and
pass the parameters on the call. If you use IRXJCL, implicitly or explicitly invoke an
exec in TSO/E, or run an exec in TSO/E background, the IRXEXEC routine always
gets control to run the exec. “Exec Processing Routines – IRXJCL and IRXEXEC”
on page 12-9 describes the IRXEXEC routine in detail and each parameter that
IRXEXEC receives.

Figure 14-17 shows the format of the work block extension. TSO/E provides a
mapping macro, IRXWORKB, for the work block extension. The mapping macro is
in SYS1.MACLIB.

Figure 14-17 (Page 1 of 3). Format of the Work Block Extension

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 4 EXECBLK The address of the exec block
(EXECBLK). See “The Exec Block
(EXECBLK)” on page 12-20 for a
description of the control block.

4 4 ARGTABLE The address of the arguments for
the exec. The arguments are
arranged as a vector of
address/length pairs followed by
X'FFFFFFFFFFFFFFFF'. See
“Format of Argument List” on
page 12-22 for a description of the
argument list.

14-62 OS/390 V2R8.0 TSO/E REXX Reference

 Control Blocks

Figure 14-17 (Page 2 of 3). Format of the Work Block Extension

Offset
(Decimal)

Number
of Bytes

Field Name Description

8 4 FLAGS A fullword of bits that IRXEXEC
uses as flags. IRXEXEC uses bits
0, 1, 2, and 3 only. The remaining
bits are reserved. Bits 0, 1, and 2
are mutually exclusive.

� Bit 0 – If the bit is on, the exec
was invoked as a “command”
(that is, the exec was not
invoked from another exec as
an external function or
subroutine).

� Bit 1 – If the bit is on, the exec
was invoked as an external
function (a function call).

� Bit 2 – If the bit is on, the exec
was invoked as a subroutine
using the CALL instruction.

� Bit 3 – If the bit is on and a
syntax error occurs, IRXEXEC
returns a return code from
20001 – 20099. If the bit is off
and a syntax error occurs,
IRXEXEC returns with return
code 0. For more information
about bit 3, see page *** on
page 12-17.

12 4 INSTBLK The address of the in-storage
control block (INSTBLK). See “The
In-Storage Control Block
(INSTBLK)” on page 12-23 for a
description of the control block.

16 4 CPPLPTR The address of the command
processor parameter list (CPPL) if
you invoked the exec from the
TSO/E address space. If you
invoked the exec from a
non-TSO/E address space, the
address is 0.

20 4 EVALBLOCK The address of the evaluation block
(EVALBLOCK). See “The
Evaluation Block (EVALBLOCK)”
on page 12-27 for a description of
the control block.

24 4 WORKAREA The address of an 8-byte field that
defines a work area for the
IRXEXEC routine. See Figure 12-7
on page 12-15 for more
information about the work area.

 Chapter 14. Language Processor Environments 14-63

 Control Blocks

Figure 14-17 (Page 3 of 3). Format of the Work Block Extension

Offset
(Decimal)

Number
of Bytes

Field Name Description

28 4 USERFIELD The address of the user field that is
passed to IRXEXEC if you explicitly
called IRXEXEC. You pass the
address of the user field in
parameter 8 (see “The IRXEXEC
Routine” on page 12-13 for
information about the parameters).
You can use this field for your own
processing. Any of the REXX
services do not use this field.

32 4 RTPROC A fullword that is available for use
by a REXX compiler run-time
processor. This field allows a
compiler run-time processor to
have an anchor that is unique for
each compiled REXX exec that
runs within a language processor
environment. A compiler run-time
processor can use this field for its
own purpose. TSO/E REXX does
not check or change this field.

36 4 SOURCE_ADDRESS The address of the PARSE
SOURCE string for the exec
currently processing. This is the
string that the PARSE SOURCE
instruction would return.

40 4 SOURCE_LENGTH The length of the PARSE SOURCE
string that is pointed to by the
SOURCE_ADDRESS field at offset
+36 (decimal).

Format of the REXX Vector of External Entry Points
The REXX vector of external entry points is a control block that contains the
addresses of REXX programming routines and replaceable routines. The
environment block points to the vector. Figure 14-18 on page 14-65 shows the
format of the vector of external entry points. TSO/E provides a mapping macro,
IRXEXTE, for the vector. The mapping macro is in SYS1.MACLIB.

The vector allows you to easily access the address of a particular TSO/E REXX
routine to call the routine. The table contains the number of entries in the table
followed by the entry points (addresses) of the routines.

Each REXX external entry point has an alternate entry point to permit FORTRAN
programs to call the entry point. The external entry points and their alternates are:

Primary Entry Point Name Alternate Entry Point Name

IRXINIT IRXINT
IRXLOAD IRXLD
IRXSUBCM IRXSUB
IRXEXEC IRXEX

14-64 OS/390 V2R8.0 TSO/E REXX Reference

 Control Blocks

For the replaceable routines, the vector provides two addresses for each routine.
The first address is the address of the replaceable routine the user supplied for the
language processor environment. If a user did not supply a replaceable routine, the
address points to the default system routine. The second address points to the
default system routine. Chapter 16, “Replaceable Routines and Exits” on
page 16-1 describes replaceable routines in detail.

Primary Entry Point Name Alternate Entry Point Name

IRXINOUT IRXIO
IRXJCL IRXJCL (same)
IRXRLT IRXRLT (same)
IRXSTK IRXSTK (same)
IRXTERM IRXTRM
IRXIC IRXIC (same)
IRXUID IRXUID (same)
IRXTERMA IRXTMA
IRXMSGID IRXMID
IRXEXCOM IRXEXC
IRXSAY IRXSAY (same)
IRXERS IRXERS (same)
IRXHST IRXHST (same)
IRXHLT IRXHLT (same)
IRXTXT IRXTXT (same)
IRXLIN IRXLIN (same)
IRXRTE IRXRTE (same)

Figure 14-18 (Page 1 of 3). Format of REXX Vector of External Entry Points

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 4 ENTRY_COUNT The total number of entry points
included in the vector. The number
is 26.

4 4 IRXINIT The address of the initialization
routine, IRXINIT.

8 4 LOAD_ROUTINE The address of the user-supplied
exec load replaceable routine for
the language processor
environment. This is the routine
that is specified in the EXROUT
field of the module name table. If a
replaceable routine is not specified,
the address points to the
system-supplied exec load routine,
IRXLOAD.

12 4 IRXLOAD The address of the system-supplied
exec load routine, IRXLOAD.

16 4 IRXEXCOM The address of the variable access
routine, IRXEXCOM.

20 4 IRXEXEC The address of the exec
processing routine, IRXEXEC.

 Chapter 14. Language Processor Environments 14-65

 Control Blocks

Figure 14-18 (Page 2 of 3). Format of REXX Vector of External Entry Points

Offset
(Decimal)

Number
of Bytes

Field Name Description

24 4 IO_ROUTINE The address of the user-supplied
I/O replaceable routine for the
language processor environment.
This is the routine that is specified
in the IOROUT field of the module
name table. If a replaceable routine
is not specified, the address points
to the system-supplied I/O routine,
IRXINOUT.

28 4 IRXINOUT The address of the system-supplied
I/O routine, IRXINOUT.

32 4 IRXJCL The address of the IRXJCL routine.

36 4 IRXRLT The address of the IRXRLT (get
result) routine.

40 4 STACK_ROUTINE The address of the user-supplied
data stack replaceable routine for
the language processor
environment. This is the routine
that is specified in the STACKRT
field of the module name table. If a
replaceable routine is not specified,
the address points to the
system-supplied data stack routine,
IRXSTK.

44 4 IRXSTK The address of the system-supplied
data stack handling routine,
IRXSTK.

48 4 IRXSUBCM The address of the host command
environment routine, IRXSUBCM.

52 4 IRXTERM The address of the termination
routine, IRXTERM.

56 4 IRXIC The address of the trace and
execution control routine, IRXIC.

60 4 MSGID_ROUTINE The address of the user-supplied
message ID replaceable routine for
the language processor
environment. This is the routine
that is specified in the MSGIDRT
field of the module name table. If a
replaceable routine is not specified,
the address points to the
system-supplied message ID
routine, IRXMSGID.

64 4 IRXMSGID The address of the system-supplied
message ID routine, IRXMSGID.

14-66 OS/390 V2R8.0 TSO/E REXX Reference

 Maximum Number of Environments

Figure 14-18 (Page 3 of 3). Format of REXX Vector of External Entry Points

Offset
(Decimal)

Number
of Bytes

Field Name Description

68 4 USERID_ROUTINE The address of the user-supplied
user ID replaceable routine for the
language processor environment.
This is the routine that is specified
in the IDROUT field of the module
name table. If a replaceable routine
is not specified, the address points
to the system-supplied user ID
routine, IRXUID.

72 4 IRXUID The address of the system-supplied
user ID routine, IRXUID.

76 4 IRXTERMA The address of the termination
routine, IRXTERMA.

80 4 IRXSAY The address of the SAY instruction
routine, IRXSAY.

84 4 IRXERS The address of the external routine
search routine, IRXERS. The
IRXERS routine is a REXX
compiler programming routine and
is described in OS/390 TSO/E
Customization.

88 4 IRXHST The address of the host command
search routine, IRXHST. The
IRXHST routine is a REXX
compiler programming routine and
is described in OS/390 TSO/E
Customization.

92 4 IRXHLT The address of the halt condition
routine, IRXHLT.

96 4 IRXTXT The address of the text retrieval
routine, IRXTXT.

100 4 IRXLIN The address of the LINESIZE
built-in function routine, IRXLIN.

104 4 IRXRTE The address of the exit routing
routine, IRXRTE. The IRXRTE
routine is a REXX compiler
programming routine and is
described in OS/390 TSO/E
Customization.

Changing the Maximum Number of Environments in an Address Space
Within an address space, language processor environments are chained together to
form a chain of environments. There can be many environments on a single chain.
You can also have more than one chain of environments in a single address space.
There is a maximum number of environments that can be initialized at one time in
an address space. The maximum is not a specific number because the maximum
depends on the number of chains in an address space and the number of
environments on each chain. The default maximum TSO/E provides should be

 Chapter 14. Language Processor Environments 14-67

 Maximum Number of Environments

sufficient for any address space. However, if IRXINIT initializes a new environment
and the maximum number of environments has been reached, IRXINIT completes
unsuccessfully and returns with a return code of 20 and a reason code of 24. If this
error occurs, you can change the maximum value.

The maximum number of environments the system can initialize in an address
space depends on the maximum number of entries defined in the environment table
known as IRXANCHR, and on the kind of environments being initialized. To change
the number of environment table entries, you can use the IRXTSMPE sample that
TSO/E provides in SYS1.SAMPLIB or you can create your own IRXANCHR load
module. The IRXTSMPE sample is a System Modification Program/Extended
(SMP/E) user modification (USERMOD) to change the number of language
processor environments in an address space. The prolog of IRXTSMPE has
instructions for using the sample job. The SMP/E code that is included in the
IRXTSMPE sample handles the installation of the load module.

Note: To determine the number of entries needed in IRXANCHR and to ensure
that at least "n" environments can be initialized in an address space, use
the following formula:

Number_of_entries = (2\n) + 1

For example, if you require 100 environments, set the number of entries to 201.
You can then initialize at least 100 environments.

If you create your own IRXANCHR load module, you must assemble the code and
then link-edit the module as non-reentrant and reusable. You can place the data set
in a STEPLIB or JOBLIB, or in the linklist. The data set cannot be in the LPALIB.
When running in a TSO/E address space, IRXANCHR must come from an
APF-authorized library.

Figure 14-19 describes the environment table. TSO/E provides a mapping macro,
IRXENVT, for the environment table. The mapping macro is in SYS1.MACLIB.

The environment table consists of a table header followed by table entries. The
header contains the ID, version, total number of entries, number of used entries,
and the length of each entry. Following the header, each entry is 40 bytes long.

Figure 14-19 (Page 1 of 2). Format of the Environment Table

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ID An eight-character field that identifies
the environment table. The field
contains the characters ‘IRXANCHR’.

8 4 VERSION The version of the environment table.
The value must be 0100 in EBCDIC.

12 4 TOTAL Specifies the total number of entries in
the environment table.

16 4 USED Specifies the total number of entries in
the environment table that are used.

20 4 LENGTH Specifies the length of each entry in the
environment table. The length of each
entry is 40 bytes.

14-68 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack in Environments

Figure 14-19 (Page 2 of 2). Format of the Environment Table

Offset
(Decimal)

Number
of Bytes

Field Name Description

24 8 — Reserved.

32 40 FIRST The first environment table entry. Each
entry is 40 bytes long. The remaining
entries follow.

Using the Data Stack in Different Environments
The data stack is a repository for storing data for use by a REXX exec. You can
place elements on the data stack using the PUSH and QUEUE instructions, and
take elements off the data stack using the PULL instruction. You can also use
TSO/E REXX commands to manipulate the data stack. For example, you can use
the MAKEBUF command to create a buffer on the data stack and then add
elements to the data stack. You can use the QELEM command to query how many
elements are currently on the data stack above the most recently created buffer.
Chapter 10, TSO/E REXX Commands describes the REXX commands for
manipulating the data stack. OS/390 TSO/E REXX User's Guide describes how to
use the data stack and associated commands.

The data stack is associated with one or more language processor environments.
The data stack is shared among all REXX execs that run within a specific language
processor environment.

A data stack may or may not be available to REXX execs that run in a particular
language processor environment. Whether a data stack is available depends on the
setting of the NOSTKFL flag (see page 14-16). When IRXINIT initializes an
environment and the NOSTKFL flag is on, IRXINIT does not create a data stack or
make a data stack available to the language processor environment. Execs that run
in the environment cannot use a data stack.

If the NOSTKFL flag is off, either IRXINIT initializes a new data stack for the new
environment or the new environment shares a data stack that was initialized for a
previous environment. Whether IRXINIT initializes a new data stack for the new
environment depends on:

� The setting of the NEWSTKFL (new data stack) flag, and

� Whether the environment is the first environment that IRXINIT is initializing on a
chain.

Note: The NOSTKFL flag takes precedence over the NEWSTKFL flag. If the
NOSTKFL flag is on, IRXINIT does not create a data stack or make a data
stack available to the new environment regardless of the setting of the
NEWSTKFL flag.

If the environment is the first environment on a chain, IRXINIT automatically
initializes a new data stack regardless of the setting of the NEWSTKFL flag.

Note: If the NOSTKFL flag is on, IRXINIT does not initialize a data stack.

If the environment is not the first one on the chain, IRXINIT determines the setting
of the NEWSTKFL flag. If the NEWSTKFL flag is off, IRXINIT does not create a

 Chapter 14. Language Processor Environments 14-69

 Data Stack in Environments

new data stack for the new environment. The language processor environment
shares the data stack that was most recently created for one of the parent
environments. If the NEWSTKFL flag is on, IRXINIT creates a new data stack for
the language processor environment. Any REXX execs that run in the new
environment can access only the new data stack for this environment. Execs
cannot access any data stacks that IRXINIT created for any parent environment on
the chain.

Environments can only share data stacks that were initialized by environments that
are higher on a chain.

If IRXINIT creates a data stack when it initializes an environment, the system
deletes the data stack when that environment is terminated. The data stack is
deleted at environment termination regardless of whether any elements are on the
data stack. All elements on the data stack are lost.

Figure 14-20 shows three environments that are initialized on one chain. Each
environment has its own data stack, that is, the environments do not share a data
stack.

Environment 1

Environment 2

Environment 3

Data Stack for
Environment 1

Data Stack for
Environment 2

Data Stack for
Environment 3

Figure 14-20. Separate Data Stacks for Each Environment

When environment 1 was initialized, it was the first environment on the chain.
Therefore, a data stack was automatically created for environment 1. Any REXX
execs that execute in environment 1 access the data stack associated with
environment 1.

When environment 2 and environment 3 were initialized, the NEWSTKFL flag was
set on, indicating that a data stack was to be created for the new environment. The
data stack associated with each environment is separate from the stack for any of
the other environments. If an exec executes, it executes in the most current

14-70 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack in Environments

environment (environment 3) and only has access to the data stack for environment
3.

Figure 14-21 shows two environments that are initialized on one chain. The two
environments share one data stack.

Environment 1

Environment 2

Data Stack

Figure 14-21. Sharing of the Data Stack Between Environments

When environment 1 was initialized, it was the first environment on the chain.
Therefore, a data stack was automatically created. When environment 2 was
initialized, the NEWSTKFL flag was off indicating that a new data stack should not
be created. Environment 2 shares the data stack that was created for environment
1. Any REXX execs that execute in either environment use the same data stack.

Suppose a third language processor environment was initialized and chained to
environment 2. If the NEWSTKFL flag is off for the third environment, it would use
the data stack that was most recently created on the chain. That is, it would use
the data stack that was created when environment 1 was initialized. All three
environments would share the same data stack.

As described, several language processor environments can share one data stack.
On a single chain of environments, one environment can have its own data stack
and other environments can share a data stack. Figure 14-22 on page 14-72
shows three environments on one chain. When environment 1 was initialized, a
data stack was automatically created because it is the first environment on the
chain. Environment 2 was initialized with the NEWSTKFL flag on, which means a
new data stack was created for environment 2. Environment 3 was initialized with
the NEWSTKFL flag off, so it uses the data stack that was created for environment
2.

 Chapter 14. Language Processor Environments 14-71

 Data Stack in Environments

Environment 1

Environment 2

Environment 3

Data Stack for
Environment 1

Data Stack for
Environments 2 and 3

Figure 14-22. Separate Data Stack and Sharing of a Data Stack

Environments can be created without having a data stack, that is, the NOSTKFL
flag is on. Referring to Figure 14-22, suppose environment 2 was initialized with
the NOSTKFL flag on, which means a new data stack was not created and the
environment does not share the first environment's (environment 1) data stack. If
environment 3 is initialized with the NOSTKFL flag off (meaning a data stack should
be available to the environment), and the NEWSTKFL flag is off (meaning a new
data stack is not created for the new environment), environment 3 shares the data
stack created for environment 1.

When a data stack is shared between multiple language processor environments,
any REXX execs that execute in any of the environments use the same data stack.
This sharing can be useful for applications where a parent environment needs to
share information with another environment that is lower on the environment chain.
At other times, a particular exec may need to use a data stack that is not shared
with any other execs that are executing on different language processor
environments. TSO/E REXX provides the NEWSTACK command that creates a
new data stack and that basically hides or isolates the original data stack. Suppose
two language processor environments are initialized on one chain and the second
environment shares the data stack with the first environment. If a REXX exec
executes in the second environment, it shares the data stack with any execs that
are running in the first environment. The exec in environment 2 may need to
access its own data stack that is private. In the exec, you can use the NEWSTACK
command to create a new data stack. The NEWSTACK command creates a new
data stack and hides all previous data stacks that were originally accessible and all
data that is on the original stacks. The original data stack is referred to as the
primary stack. The new data stack that was created by the NEWSTACK command
is known as the secondary stack. Secondary data stacks are private to the
language processor environment in which they were created. That is, they are not
shared between two different environments.

Figure 14-23 on page 14-73 shows two language processor environments that
share one primary data stack. When environment 2 was initialized, the
NEWSTKFL flag was off indicating that it shares the data stack created for

14-72 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack in Environments

environment 1. When an exec was executing in environment 2, it issued the
NEWSTACK command to create a secondary data stack. After NEWSTACK is
issued, any data stack requests are only performed against the new secondary
data stack. The primary stack is isolated from any execs executing in environment
2.

Environment 1

Environment 2

Data stack shared
with Environment 2

Data stack for
Environment 2 only
(created by
NEWSTACK
command)

Figure 14-23. Creating a New Data Stack with the NEWSTACK Command

If an exec executing in environment 1 issues the NEWSTACK command to create a
secondary data stack, the secondary data stack is available only to REXX execs
that execute in environment 1. Any execs that execute in environment 2 cannot
access the new data stack created for environment 1.

TSO/E REXX also provides the DELSTACK command that you use to delete any
secondary data stacks that were created using NEWSTACK. When the secondary
data stack is no longer required, the exec can issue DELSTACK to delete the
secondary stack. At this point, the primary data stack that is shared with
environment 1 is accessible.

TSO/E REXX provides several other commands you can use for data stack
functions. For example, an exec can use the QSTACK command to find out the
number of data stacks that exist for the language processor environment.
Chapter 10, “TSO/E REXX Commands” on page 10-1 describes the different
stack-oriented commands that TSO/E REXX provides, such as NEWSTACK and
DELSTACK.

 Chapter 14. Language Processor Environments 14-73

 Data Stack in Environments

14-74 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Chapter 15. Initialization and Termination Routines

This chapter provides information about how to use the initialization routine,
IRXINIT, and the termination routine, IRXTERM.

Use the initialization routine, IRXINIT, to either initialize a language processor
environment or obtain the address of the environment block for the current
non-reentrant environment. Use the termination routine, IRXTERM, to terminate a
language processor environment. Chapter 8, “Using REXX in Different Address
Spaces” on page 8-1 provides general information about how the initialization and
termination of environments relates to REXX processing. Chapter 14, “Language
Processor Environments” on page 14-1 describes the concept of a language
processor environment in detail, the various characteristics you can specify when
initializing an environment, the default parameters modules, and information about
the environment block and the format of the environment block.

Initialization Routine – IRXINIT
Use IRXINIT to either initialize a new language processor environment or obtain the
address of the environment block for the current non-reentrant environment. The
"current" environment is the last created on this task control block (TCB) or a
parent TCB. A parent TCB is searched only under TSO/E.

Note: To permit FORTRAN programs to call IRXINIT, TSO/E provides an alternate
entry point for the IRXINIT routine. The alternate entry point name is
IRXINT.

If you use IRXINIT to obtain the address of the current environment block, IRXINIT
returns the address in register 0 and also in the sixth parameter.

If you use IRXINIT to initialize a language processor environment, the
characteristics for the new environment are based on parameters that you pass on
the call and values that are defined for the previous environment. Generally, if you
do not pass a specific parameter on the call, IRXINIT uses the value from the
previous environment.

IRXINIT always locates a previous environment as follows. On the call to IRXINIT,
you can pass the address of an environment block in register 0. IRXINIT then uses
this environment as the previous environment if the environment is valid. If register
0 does not contain the address of an environment block, IRXINIT locates the
previous environment. If IRXINIT locates a previous environment, IRXINIT uses that
environment as the previous environment. If IRXINIT cannot locate an environment,
IRXINIT uses the load module IRXPARMS as the previous environment.

“Chains of Environments and How Environments Are Located” on page 14-36
describes in detail how IRXINIT locates a previous environment. A previous
environment is always identified regardless of the parameters you specify on the
call to IRXINIT.

Using IRXINIT, you can initialize a reentrant or a non-reentrant environment, which
is determined by the setting of the RENTRANT flag bit. If you use IRXINIT to
initialize a reentrant environment and you want to chain the new environment to a

 Copyright IBM Corp. 1988, 1999 15-1

 Initialization Routine

previous reentrant environment, you must pass the address of the environment
block for the previous reentrant environment in register 0.

If you use IRXINIT to locate a previous environment, you can locate only the
current non-reentrant environment. IRXINIT does not locate a reentrant
environment.

You can use IRXINIT CHEKENVB to verify that an address is a valid ENVBLOCK:

� under the current task
� under a parent task
� is not under the current task or under a parent task.

 Entry Specifications
For the IRXINIT initialization routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional for
FINDENVB and INITENVB, required for
CHEKENVB)

Register 1 Address of the parameter list passed by the caller

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
You can pass the address of an environment block in register 0. In register 1, you
pass the address of a parameter list, which consists of a list of addresses. Each
address in the parameter list points to a parameter.

The first seven parameters are required. Parameter 8 and parameter 9 are optional.
The high-order bit of the last address in the parameter list must be set to 1 to
indicate the end of the parameter list. If IRXINIT does not find the high-order bit set
on in either the address for parameter 7 or in the addresses for parameters 8 or 9,
which are optional parameters, IRXINIT does not initialize the environment and
returns with a return code of 20 and a reason code of 27. See “Output Parameters”
on page 15-12 for more information.

Figure 15-1 describes the parameters for IRXINIT. For general information about
passing parameters, see “Parameter Lists for TSO/E REXX Routines” on
page 12-5.

15-2 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Figure 15-1 (Page 1 of 4). Parameters for IRXINIT

Parameter Number
of Bytes

Description

Parameter 1 8 The function IRXINIT is to perform:

INITENVB
To initialize a new environment.

FINDENVB
To obtain the address of the environment block for
the current non-reentrant environment. IRXINIT
returns the address of the environment block in
register 0 and in parameter 6. IRXINIT does not
initialize a new environment.

CHEKENVB
To validate that a given address is a REXX
ENVBLOCK address. CHEKENVB will return a
return code to indicate that the ENVBLOCK
address was initialized:

� under the current task
� under a parent task
� elsewhere in the address space

If IRXINIT CHEKENVB was called with an incorrect
ENVBLOCK address in register 0, IRXINIT will
return the current, non-reentrant ENVBLOCK
address in parameter 6. IRXINIT does not initialize
a new environment.

Parameter 2 8 The name of a parameters module that contains the
values for initializing the new environment. The module
is described in “Parameters Module and In-Storage
Parameter List” on page 15-9.

If the name of the parameters module is blank, IRXINIT
assumes that all fields in the parameters module are
null.

IRXINIT provides two ways in which you can pass
parameter values; the parameters module and the
address of an in-storage parameter list, which is
parameter 3. A complete description of how IRXINIT
computes each parameter value and the flexibility of
passing parameters is described in “How IRXINIT
Determines What Values to Use for the Environment”
on page 15-8.

 Chapter 15. Initialization and Termination Routines 15-3

 Initialization Routine

Figure 15-1 (Page 2 of 4). Parameters for IRXINIT

Parameter Number
of Bytes

Description

Parameter 3 4 The address of an in-storage parameter list, which is
an area in storage containing parameters that are
equivalent to the parameters in the parameters module.
The format of the in-storage list is identical to the
format of the parameters module. “Parameters Module
and In-Storage Parameter List” on page 15-9
describes the parameters module and in-storage
parameter list.

For parameter 3, you can specify an address of 0 for
the address of the in-storage parameter list. However,
the address in the address list that points to this
parameter cannot be 0.

If the address of parameter 3 is 0, IRXINIT assumes
that all fields in the in-storage parameter list are null.

Parameter 4 4 The address of a user field. IRXINIT does not use or
check this pointer or the field. You can use this field for
your own processing.

Parameter 5 4 Reserved. This parameter must be set to 0, but the
address that points to this parameter cannot be 0.

Parameter 6 4 IRXINIT uses this parameter for output only. The
parameter contains the address of the environment
block. If you use the FINDENVB function (parameter 1)
to locate an environment, parameter 6 contains the
address of the environment block for the current
non-reentrant environment. If you use the INITENVB
function (parameter 1) to initialize a new environment,
IRXINIT returns the address of the environment block
for the newly created environment in parameter 6.

For either FINDENVB or INITENVB, IRXINIT also
returns the address of the environment block in register
0. Parameter 6 lets high-level languages obtain the
environment block address to examine information in
the environment block.

For CHEKENVB this parameter will return the current,
non-reentrant environment if the ENVBLOCK address
in register 0 is not found (that is, return code 12 is
returned from IRXINIT).

Parameter 7 4 IRXINIT uses this parameter for output only. IRXINIT
returns a reason code for the IRXINIT routine in this
field that indicates why the requested function did not
complete successfully. Figure 15-4 on page 15-12
describes the reason codes that IRXINIT returns.

15-4 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Figure 15-1 (Page 3 of 4). Parameters for IRXINIT

Parameter Number
of Bytes

Description

Parameter 8 4 Parameter 8 is an optional parameter that lets you
specify how REXX obtains storage in the language
processor environment. Specify 0 if you want the
system to reserve a default amount of storage
workarea.

If you want to pass a storage workarea to IRXINIT,
specify the address of an extended parameter list. The
extended parameter list consists of the address (a
fullword) of the storage workarea and the length (a
fullword) of the workarea, followed by
X'FFFFFFFFFFFFFFFF'. For more information about
parameter 8 and storage, see “Specifying How REXX
Obtains Storage in the Environment” on page 15-6.

Although parameter 8 is optional, it is recommended
that you specify an address of 0 if you do not want to
pass a storage workarea to IRXINIT.

Parameter 9 4 A 4-byte field that IRXINIT uses to return the return
code.

The return code parameter is optional. If you use this
parameter, IRXINIT returns the return code in the
parameter and also in register 15. Otherwise, IRXINIT
uses register 15 only. If the parameter list is incorrect,
the return code is returned in register 15 only. “Return
Codes” on page 15-15 describes the return codes.

If you do not want to use the return code parameter,
you can end the parameter list at a preceding
parameter. Set the high-order bit on in the preceding
parameter's address. For more information about
parameter lists, see “Parameter Lists for TSO/E REXX
Routines” on page 12-5.

 Chapter 15. Initialization and Termination Routines 15-5

 Initialization Routine

Figure 15-1 (Page 4 of 4). Parameters for IRXINIT

Parameter Number
of Bytes

Description

Parameter 10 4 Parameter 10 is an optional parameter that is the
address of a pointer to the TSO/E environment control
table (ECT) under which the REXX environment is to
be initialized.

This field is only used when initializing a REXX
environment that is integrated into TSO/E. In all other
cases, including initializing a non-integrated
environment and finding the current environment, this
parameter is ignored, if specified.

Valid values for this parameter are:

� ECT address = the caller's current ECT
� '00000000'X - IRXINIT assumes that the primary

ECT, the ECT created at TSO/E logon time or TMP
initialization, is the caller's current ECT. When this
parameter contains '00000000'X upon input, the
field is updated to contain the address of the
primary ECT.

When parameter 10 is not specified and you are
initializing a REXX environment that is integrated into
TSO/E, the ECT created at TSO/E logon time or TMP
initialization is assumed.

Specifying How REXX Obtains Storage in the Environment
On the call to IRXINIT, parameter 8 is an optional parameter. You can use
parameter 8 to specify how REXX obtains storage in the language processor
environment for the processing of REXX execs.

If you specify 0 for parameter 8, during the initialization of the environment, the
system reserves a default amount of storage for the storage workarea. If you have
provided your own storage management replaceable routine, the system calls your
routine to obtain this storage workarea. Otherwise, the system obtains storage
using GETMAIN. When the environment that IRXINIT is initializing is terminated,
the system automatically frees the storage. The system frees the storage by either
calling your storage management replaceable routine or using FREEMAIN,
depending on how the storage was obtained.

You can also pass a storage workarea to IRXINIT. For parameter 8, specify an
address that points to an extended parameter list. The extended parameter list is
an address/length pair that contains the address (a fullword) of the storage
workarea and the length (a fullword) of the storage area, in bytes. The
address/length pair must be followed by X'FFFFFFFFFFFFFFFF' to indicate the
end of the extended parameter list. Figure 15-2 on page 15-7 shows the extended
parameter list.

15-6 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Parm1

Parm2

Parm3

Parm4

Parm5

Parm6

Parm7Parm7

Parm8

Parm9

Parm10

Fullword

FFFFFFFFFFFFFFFF

Fullword

Storage
workarea

Storage
workarea

Length of
storage

Extended
Parmlist

R1

*

* high order bit on

Figure 15-2. Extended Parameter List – Parameter 8

The storage workarea you pass to IRXINIT is then available for REXX processing
in the environment that you are initializing. The storage workarea must remain
available to the environment until the environment is terminated. After you
terminate the language processor environment, you must also free the storage
workarea. The system does not free the storage you pass to IRXINIT when you
terminate the environment.

You can also specify that a reserved storage workarea should not be initialized for
the environment. The system then obtains and frees storage whenever storage is
required. To specify that a storage workarea should not be initialized, for parameter
8, specify the address of the extended parameter list as described above. In the
extended parameter list, specify 0 for the address of the storage workarea and 0 for
the length of the storage workarea. Again, the address/length pair must be
followed by X'FFFFFFFFFFFFFFFF' to indicate the end of the extended
parameter list. Specifying that REXX should run without a reserved storage
workarea is not recommended because of possible performance degradation.
However, this option may be useful if available storage is low and you want to
initialize a language processor environment with a minimal amount of storage at
initialization time.

In the extended parameter list, you can also specify 0 for the address of the
storage workarea and -1 for the length of the workarea. This is considered a null
entry and IRXINIT ignores the extended parameter list entry. This is equivalent to

 Chapter 15. Initialization and Termination Routines 15-7

 Initialization Routine

specifying an address of 0 for parameter 8, and the system reserves a default
amount of workarea storage.

In general, 3 pages (12K) of storage is needed for the storage workarea for normal
exec processing, for each level of exec nesting. If there is insufficient storage
available in the storage workarea, REXX calls the storage management routine to
obtain additional storage if you provided a storage management replaceable
routine. Otherwise, the system uses GETMAIN and FREEMAIN to obtain and free
storage. For more information about the replaceable routine, see “Storage
Management Routine” on page 16-38.

How IRXINIT Determines What Values to Use for the Environment
IRXINIT first determines the values to use to initialize the environment. After all of
the values are determined, IRXINIT initializes the new environment using the
values.

On the call to IRXINIT, you can pass parameters that define the environment in two
ways. You can specify the name of a parameters module (a load module) that
contains the values IRXINIT uses to initialize the environment. In addition to the
parameters module, you can also pass an address of an area in storage that
contains the parameters. This area in storage is called an in-storage parameter list
and the parameters it contains are equivalent to the parameters in the parameters
module.

The two methods of passing parameter values give you flexibility when calling
IRXINIT. You can store the values on disk or build the parameter structure in
storage dynamically. The format of the parameters module and the in-storage
parameter list is the same. You can pass a value for the same parameter in both
the parameters module and the in-storage parameter list.

When IRXINIT computes what values to use to initialize the environment, IRXINIT
takes values from four sources using the following hierarchical search order:

1. The in-storage list of parameters that you pass on the call.

If you pass an in-storage parameter list and the value in the list is not null,
IRXINIT uses this value. Otherwise, IRXINIT continues.

2. The parameters module, the name of which you pass on the call.

If you pass a parameters module and the value in the module is not null,
IRXINIT uses this value. Otherwise, IRXINIT continues.

3. The previous environment.

IRXINIT copies the value from the previous environment.

4. The IRXPARMS parameters module if a previous environment does not exist.

If a parameter has a null value, IRXINIT continues to search until it finds a non-null
value. The following types of parameters are defined to be null:

� A character string is null if it either contains only blanks or has a length of zero
� An address is null if its value is 0
� A binary number is null if it has the value X'80000000'
� A given bit is null if its corresponding mask is 0.

15-8 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

On the call to IRXINIT, if the address of the in-storage parameter list is 0, all values
in the list are defined as null. Similarly, if the name of the parameters module is
blank, all values in the parameters module are defined as null.

You need not specify a value for every parameter in the parameters module or the
in-storage parameter list. If you do not specify a value, IRXINIT uses the value
defined for the previous environment. You need only specify the parameters whose
values you want to be different from the previous environment.

Parameters Module and In-Storage Parameter List
The parameters module is a load module that contains the values you want
IRXINIT to use to initialize a new language processor environment. TSO/E provides
three default parameters modules (IRXPARMS, IRXTSPRM, and IRXISPRM) for
initializing environments in non-TSO/E, TSO/E, and ISPF. “Characteristics of a
Language Processor Environment” on page 14-9 describes the parameters
modules.

On the call to the IRXINIT, you can optionally pass the name of a parameters
module that you have created. The parameters module contains the values you
want IRXINIT to use to initialize the new language processor environment. On the
call, you can also optionally pass the address of an in-storage parameter list. The
format of the parameters module and the in-storage parameter list is identical.

Figure 15-3 shows the format of a parameters module and in-storage list. The
format of the parameters module is identical to the default modules TSO/E
provides. “Characteristics of a Language Processor Environment” on page 14-9
describes the parameters module and each field in detail. The end of the table
must be indicated by X'FFFFFFFFFFFFFFFF'.

Figure 15-3 (Page 1 of 2). Parameters Module and In-Storage Parameter List

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ID Identifies the parameter block
(PARMBLOCK).

8 4 VERSION Identifies the version of the parameter
block. The value must be 0200.

12 3 LANGUAGE Language code for REXX messages.

15 1 RESERVED Reserved.

16 4 MODNAMET Address of module name table. The
module name table contains the names of
DDs for reading and writing data and
fetching REXX execs, the names of the
replaceable routines, and the names of
several exit routines.

20 4 SUBCOMTB Address of host command environment
table. The table contains the names of the
host command environments that are
available and the names of the routines
that process commands for each host
command environment.

 Chapter 15. Initialization and Termination Routines 15-9

 Initialization Routine

Figure 15-3 (Page 2 of 2). Parameters Module and In-Storage Parameter List

Offset
(Decimal)

Number
of Bytes

Field Name Description

24 4 PACKTB Address of function package table. The
table defines the user, local, and system
function packages that are available to
REXX execs running in the environment.

28 8 PARSETOK Token for PARSE SOURCE instruction.

36 4 FLAGS A fullword of bits used as flags to define
characteristics for the environment.

40 4 MASKS A fullword of bits used as a mask for the
setting of the flag bits.

44 4 SUBPOOL Number of the subpool for storage
allocation.

48 8 ADDRSPN Name of the address space.

56 8 — The end of the parameter block must be
X'FFFFFFFFFFFFFFFF'.

Specifying Values for the New Environment
If you use IRXINIT to initialize a new language processor environment, the
parameters you can specify on the call depend on:

� Whether the environment is being initialized in a non-TSO/E address space or
in the TSO/E address space, and

� If the environment is being initialized in the TSO/E address space, whether the
environment is to be integrated into TSO/E (TSOFL flag setting).

You can use many parameters only if the environment is initialized in a non-TSO/E
address space or if the environment is initialized in TSO/E, but is not integrated into
TSO/E (the TSOFL flag is off). Other parameters are intended only for use in the
TSO/E address space where the environment is integrated into TSO/E (the TSOFL
flag is on). The following information highlights different parameters. For more
information about the values you can and cannot specify and various
considerations for parameter values, see “Specifying Values for Different
Environments” on page 14-45.

When you call IRXINIT, you cannot specify the ID and VERSION. If you pass
values for the ID or VERSION parameters, IRXINIT ignores the value and uses the
default.

At offset +36 in the parameters module, the field is a fullword of bits that IRXINIT
uses as flags. The flags define certain characteristics for the new language
processor environment and how the environment and execs running in the
environment operate. In addition to the flags field, the parameter following the flags
is a mask field that works together with the flags. The mask field is a string that has
the same length as the flags field. Each bit position in the mask field corresponds
to a bit in the same position in the flags field. IRXINIT uses the mask field to
determine whether it should use or ignore the corresponding flag bit.

The description of the mask field on page 14-14 describes the bit settings for the
mask field in detail. Figure 14-3 on page 14-13 summarizes each flag. “Flags and

15-10 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Corresponding Masks” on page 14-15 describes each of the flags in more detail
and the bit settings for each flag.

For a given bit position, if the value in the mask field is:

� 0 — IRXINIT ignores the corresponding bit in the flags field (that is, IRXINIT
considers the bit to be null)

� 1 – IRXINIT uses the corresponding bit in the flags field.

When you call IRXINIT, the flag settings that IRXINIT uses depend on the:

� Bit settings in the flag and mask fields you pass in the in-storage parameter list

� Bit settings in the flag and mask fields you pass in the parameters module

� Flags defined for the previous environment

� Flags defined in IRXPARMS if a previous environment does not exist.

IRXINIT uses the following order to determine what value to use for each flag bit:

� IRXINIT first checks the mask setting in the in-storage parameter list. If the
mask is 1, IRXINIT uses the flag value from the in-storage parameter list.

� If the mask in the in-storage parameter list is 0, IRXINIT then checks the mask
setting in the parameters module. If the mask in the parameters module is 1,
IRXINIT uses the flag value from the parameters module.

� If the mask in the parameters module is 0, IRXINIT uses the flag value defined
for the previous environment.

� If a previous environment does not exist, IRXINIT uses the flag setting from
IRXPARMS.

If you call IRXINIT to initialize an environment that is not integrated into TSO/E (the
TSOFL flag is off), you can specify a subpool number (SUBPOOL field) from 0 –
127. IRXINIT does not check the number you provide. If the number is not 0 – 127,
IRXINIT does not fail. However, when storage is used in the environment, an error
occurs.

If you call IRXINIT to initialize an environment in the TSO/E address space and the
environment is integrated into TSO/E, you must provide a subpool number of 78
(decimal). If the number is not 78, IRXINIT returns with a reason code of 7 in
parameter 7.

For detailed information about the parameters you can specify for initializing a
language processor environment, see “Specifying Values for Different
Environments” on page 14-45.

The end of the parameter block must be indicated by X'FFFFFFFFFFFFFFFF'.

 Return Specifications
For the IRXINIT initialization routine, the contents of the registers on return are:

Register 0 Contains the address of the new environment block if IRXINIT
initialized a new environment, or the address of the environment
block for the current non-reentrant environment that IRXINIT
located.

 Chapter 15. Initialization and Termination Routines 15-11

 Initialization Routine

If you called IRXINIT to initialize a new environment and IRXINIT
could not initialize the environment, register 0 contains the same
value as on entry. If you called IRXINIT to find an environment and
IRXINIT could not locate the environment, register 0 contains a 0.

If IRXINIT returns with return code 100 or 104, register 0 contains
the abend and reason code. “Return Codes” on page 15-15
describes the return codes and how IRXINIT returns the abend and
reason codes for return codes 100 and 104.

Register 1 Address of the parameter list.

IRXINIT uses three parameters (parameters 6, 7, and 9) for output
only (see Figure 15-1 on page 15-2). “Output Parameters”
describes the three output parameters.

Registers 2-14 Same as on entry

Register 15 Return code

 Output Parameters
The parameter list for IRXINIT contains three parameters that IRXINIT uses for
output only (parameters 6, 7, and 9). Parameter 6 contains the address of the
environment block. If you called IRXINIT to locate an environment, parameter 6
contains the address of the environment block for the current non-reentrant
environment. If you called IRXINIT to initialize an environment, parameter 6
contains the address of the environment block for the new environment. Parameter
6 lets high-level programming languages obtain the address of the environment
block to examine information in the environment block.

Parameter 9 is an optional parameter you can use to obtain the return code. If you
specify parameter 9, IRXINIT returns the return code in parameter 9 and also in
register 15.

Parameter 7 contains a reason code for IRXINIT processing. The reason code
indicates whether IRXINIT completed successfully. If IRXINIT processing was not
successful, the reason code indicates the error. Figure 15-4 describes the reason
codes IRXINIT returns. Note that these reason codes are not the same as the
reason codes that are returned because of a system or user abend. A system or
user abend results in a return code of 100 or 104 and an abend code and abend
reason code in register 0. See “Return Codes” on page 15-15 for a description of
return codes 100 and 104.

Figure 15-4 (Page 1 of 4). Reason Codes for IRXINIT Processing

Reason
Code

Description

0 Successful processing.

1 Unsuccessful processing. The type of function to be performed (parameter
1) was not valid. The valid functions are INITENVB, FINDENVB, and
CHEKENVB.

15-12 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Figure 15-4 (Page 2 of 4). Reason Codes for IRXINIT Processing

Reason
Code

Description

2 Unsuccessful processing. The TSOFL flag is on, but TSO/E is not active.

IRXINIT evaluated all of the parameters for initializing the new
environment. This reason code indicates that the environment is being
initialized in a non-TSO/E address space, but the TSOFL flag is on. The
TSOFL flag must be off for environments initialized in non-TSO/E address
spaces.

3 Unsuccessful processing. A reentrant environment was specified for an
environment that was being integrated into TSO/E. If you are initializing an
environment in TSO/E and the TSOFL flag is on, the RENTRANT flag must
be off. In this case, both the TSOFL and RENTRANT flags were on.

4 Unsuccessful processing. The environment being initialized was to be
integrated into TSO/E (the TSOFL flag was on). However, a routine name
was specified in the module name table that cannot be specified if the
environment is being integrated into TSO/E. If the TSOFL flag is on, you
can specify only the following routines in the module name table:

� An attention exit (ATTNROUT field)
� An exit for IRXEXEC (IRXEXECX field)
� An exec initialization exit (EXECINIT field)
� An exec termination exit (EXECTERM field).

5 Unsuccessful processing. The value specified in the GETFREER field in
the module name table does not match the GETFREER value in the
current language processor environment under the current task.

If more than one environment is initialized on the same task and the
environments specify a storage management replaceable routine
(GETFREER field), the name of the routine must be the same for the
environments.

6 Unsuccessful processing. The value specified for the length of each entry
in the host command environment table is incorrect. This is the value
specified in the SUBCOMTB_LENGTH field in the table. See “Host
Command Environment Table” on page 14-25 for information about the
table.

7 Unsuccessful processing. An incorrect subpool number was specified for
an environment being integrated into TSO/E. The subpool number must be
78 (decimal).

8 Unsuccessful processing. The TSOFL flag for the new environment is on.
However, the flag in the previous environment is off. The TSOFL flag
cannot be on if a previous environment in the chain has the TSOFL flag
off.

9 Unsuccessful processing. The new environment specified that the data
stack is to be shared (NEWSTKFL is off), but the SPSHARE flag in the
previous environment is off, which means that storage is not to be shared
across tasks. If you have the NEWSTKFL off for the new environment,
you must ensure that the SPSHARE flag in the previous environment is on.

10 Unsuccessful processing. The IRXINITX exit routine returned a non-zero
return code. IRXINIT stops initialization.

11 Unsuccessful processing. The IRXITTS exit routine returned a non-zero
return code. IRXINIT stops initialization.

12 Unsuccessful processing. The IRXITMV exit routine returned a non-zero
return code. IRXINIT stops initialization.

 Chapter 15. Initialization and Termination Routines 15-13

 Initialization Routine

Figure 15-4 (Page 3 of 4). Reason Codes for IRXINIT Processing

Reason
Code

Description

13 Unsuccessful processing. The REXX I/O routine or the replaceable I/O
routine is called to initialize I/O when IRXINIT is initializing a new language
processor environment. The I/O routine returned a non-zero return code.

14 Unsuccessful processing. The REXX data stack routine or the replaceable
data stack routine is called to initialize the data stack when IRXINIT is
initializing a new language processor environment. The data stack routine
returned a non-zero return code.

15 Unsuccessful processing. The REXX exec load routine or the replaceable
exec load routine is called to initialize exec loading when IRXINIT is
initializing a new language processor environment. The exec load routine
returned a non-zero return code.

16 Unsuccessful processing. REXX failed to initialize the TSO service facility
command/program invocation platform.

17 Unsuccessful processing. The ECT parameter, parameter 10, was not valid
when initializing an environment that is integrated with TSO/E.

The following are restrictions on the use of alternative ECTs (that is, ECTs
other than the primary ECT created at either logon time or TMP
initialization):

Notes:

1. When TSO/E processes an authorized command from a REXX exec
and an alternate ECT is used, it is not possible for REXX to trap the
command output from the authorized command.

To use command output trapping via the OUTTRAP function, the
REXX exec must be executing on the primary ECT.

2. When TSO/E processes an authorized command from a REXX exec
and an alternative ECT is being used, it is not possible for REXX to
satisfy a prompt from the data stack, other than from the data stack
associated with the language processor environment that is anchored
in the primary ECT. That is, when TSO/E is processing an authorized
command and that command prompts for input (via the GETLINE or
PUTGET service routines) the prompt can only be satisfied from the
language processor environment anchored in the primary ECT.

20 Unsuccessful processing. Storage could not be obtained.

21 Unsuccessful processing. A module could not be loaded into storage.

22 Unsuccessful processing. The IRXINIT routine could not obtain serialization
for a system resource.

23 Unsuccessful processing. A recovery ESTAE could not be established.

24 Unsuccessful processing. The maximum number of environments has
already been initialized in the address space. The number of environments
is defined in the environment table. See “Changing the Maximum Number
of Environments in an Address Space” on page 14-67 for more information
about the environment table.

25 Unsuccessful processing. The extended parameter list (parameter 8)
passed to IRXINIT was not valid. The end of the extended parameter list
must be indicated by X'FFFFFFFFFFFFFFFF'.

15-14 OS/390 V2R8.0 TSO/E REXX Reference

 Initialization Routine

Figure 15-4 (Page 4 of 4). Reason Codes for IRXINIT Processing

Reason
Code

Description

26 Unsuccessful processing. The values specified in the extended parameter
list (parameter 8) were incorrect. Either the address of the storage
workarea or the length of the storage workarea was 0, or the length was a
negative value.

Reason code 26 is not returned if:

� Both the address and length of the storage workarea are 0, which are
valid values.

� The address of the storage workarea is 0 and the length is -1, which is
considered a valid null entry.

27 Unsuccessful processing. An incorrect number of parameters were passed
to IRXINIT. IRXINIT returns reason code 27 if it cannot find the high-order
bit on in the last address of the parameter list. In the parameter list, you
must set the high-order bit on in either the address of parameter 7 or in the
address of parameter 8 or parameter 9, which are optional parameters.

Note: If you set the high-order bit on in a parameter prior to parameter 7,
IRXINIT does not return reason code 27. The high-order bit
indicates the end of the parameter list. Because IRXINIT detects
the end of the parameter list before parameter 7, it cannot return a
reason code because parameter 7 is the reason code parameter. In
this case, IRXINIT returns only a return code of 20 in register 15
indicating an error.

 Return Codes
IRXINIT returns different return codes for finding an environment and for initializing
an environment. IRXINIT returns the return code in register 15. If you specify the
return code parameter (parameter 9), IRXINIT also returns the return code in the
parameter.

Figure 15-5 shows the return codes if you call IRXINIT to find an environment.

Figure 15-5 (Page 1 of 2). IRXINIT Return Codes for Finding an Environment

Return
Code

Description

0 Processing was successful. IRXINIT located the current non-reentrant
environment. IRXINIT initialized the environment under the current task.

4 Processing was successful. IRXINIT located the current non-reentrant
environment. IRXINIT initialized the environment under a previous task.

20 Processing was not successful. An error occurred. Check the reason code that
IRXINIT returns in parameter 7.

28 Processing was successful. There is no current non-reentrant environment.

 Chapter 15. Initialization and Termination Routines 15-15

 Initialization Routine

Figure 15-6 shows the return codes if you call IRXINIT to check an environment.

Figure 15-7 shows the return codes if you call IRXINIT to initialize an environment.

Figure 15-5 (Page 2 of 2). IRXINIT Return Codes for Finding an Environment

Return
Code

Description

100 Processing was not successful. A system abend occurred while IRXINIT was
locating the environment. The environment is not found.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXINIT returns the abend code in the two low-order bytes of register 0.
IRXINIT returns the abend reason code in the two high-order bytes of register
0. If the abend reason code is greater than two bytes, IRXINIT returns only
the two low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

104 Processing was not successful. A user abend occurred while IRXINIT was
locating the environment. The environment is not found.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXINIT returns the abend code in the two low-order bytes of register 0.
IRXINIT returns the abend reason code in the two high-order bytes of register
0. If the abend reason code is greater than two bytes, IRXINIT returns only
the two low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

Figure 15-6. IRXINIT Return Codes for Checking an Environment

Return
Code

Description

0 The environment block address provided in register 0 is an environment on
the current task.

4 The environment block address provided in register 0 is an environment on a
parent task.

8 The environment block address provided in register 0 is an environment in the
address space, but not on the current or a parent task.

12 The environment block address provided in register 0 was not found in the
address space. Parameter 6 contains the address of the current,
non-reentrant environment block.

24 The environment table could not be located. The environment block address
provided in register 0 could not be checked.

Figure 15-7 (Page 1 of 2). IRXINIT Return Codes for Initializing an Environment

Return
Code

Description

0 Processing was successful. IRXINIT initialized a new language processor
environment. The new environment is not the first environment under the
current task.

4 Processing was successful. IRXINIT initialized a new language processor
environment. The new environment is the first environment under the current
task.

15-16 OS/390 V2R8.0 TSO/E REXX Reference

 Termination Routine

Figure 15-7 (Page 2 of 2). IRXINIT Return Codes for Initializing an Environment

Return
Code

Description

20 Processing was not successful. An error occurred. Check the reason code that
IRXINIT returns in the parameter list.

100 Processing was not successful. A system abend occurred while IRXINIT was
initializing the environment. The environment is not initialized.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXINIT returns the abend code in the two low-order bytes of register 0.
IRXINIT returns the abend reason code in the two high-order bytes of register
0. If the abend reason code is greater than two bytes, IRXINIT returns only
the two low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

104 Processing was not successful. A user abend occurred while IRXINIT was
initializing the environment. The environment is not initialized.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXINIT returns the abend code in the two low-order bytes of register 0.
IRXINIT returns the abend reason code in the two high-order bytes of register
0. If the abend reason code is greater than two bytes, IRXINIT returns only
the two low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

Termination Routine – IRXTERM
Use the IRXTERM routine to terminate a language processor environment.

Note: To permit FORTRAN programs to call IRXTERM, TSO/E provides an
alternate entry point for the IRXTERM routine. The alternate entry point
name is IRXTRM.

You can optionally pass the address of the environment block in register 0 that
represents the environment you want terminated. IRXTERM then terminates the
language processor environment pointed to by register 0. The environment must
have been initialized on the current task.

If you do not specify an environment block address in register 0, IRXTERM locates
the last environment that was created under the current task and terminates that
environment.

When IRXTERM terminates the environment, IRXTERM closes all open data sets
that were opened under that environment. IRXTERM also deletes any data stacks
that you created under the environment using the NEWSTACK command.

IRXTERM does not terminate an environment under any one of the following
conditions:

� The environment was not initialized under the current task

� An active exec is currently running in the environment

� The environment was the first environment initialized under the task and other
environments are still initialized under the task.

 Chapter 15. Initialization and Termination Routines 15-17

 Termination Routine

The first environment initialized on a task must be the last environment terminated
on that task. The first environment is the anchor environment because all
subsequent environments that are initialized on the same task share information
from the first environment. Therefore, all other environments on a task must be
terminated before you terminate the first environment. If you use IRXTERM to
terminate the first environment and other environments on the task still exist,
IRXTERM does not terminate the environment and returns with a return code of 20.

 Entry Specifications
For the IRXTERM termination routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Registers 1-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
You can optionally pass the address of the environment block for the language
processor environment you want to terminate in register 0. There is no parameter
list for IRXTERM.

 Return Specifications
For the IRXTERM termination routine, the contents of the registers on return are:

Register 0 If you passed the address of an environment block, IRXTERM
returns the address of the environment block for the previous
environment. If you did not pass an address, register 0 contains the
same value as on entry.

If IRXTERM returns with return code 100 or 104, register 0
contains the abend and reason code. “Return Codes” describes the
return codes and how IRXTERM returns the abend and reason
codes for return codes 100 and 104.

Registers 1-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 15-8 shows the return codes for the IRXTERM routine.

Figure 15-8 (Page 1 of 2). Return Codes for IRXTERM

Return
Code

Description

0 IRXTERM successfully terminated the environment. The terminated
environment was not the last environment on the task.

4 IRXTERM successfully terminated the environment. The terminated
environment was the last environment on the task.

20 IRXTERM could not terminate the environment.

28 The environment could not be found.

15-18 OS/390 V2R8.0 TSO/E REXX Reference

 Termination Routine

Figure 15-8 (Page 2 of 2). Return Codes for IRXTERM

Return
Code

Description

100 A system abend occurred while IRXTERM was terminating the language
processor environment. The system tries to terminate the environment again.
If termination is still unsuccessful, the environment cannot be used.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXTERM returns the abend code in the two low-order bytes of register 0.
IRXTERM returns the abend reason code in the high-order two bytes of
register 0. If the abend reason code is greater than two bytes, IRXTERM
returns only the two low-order bytes of the abend reason code. See OS/390
MVS System Codes for information about the abend codes and reason codes.

104 A user abend occurred while IRXTERM was terminating the language
processor environment. The system tries to terminate the environment again.
If termination is still unsuccessful, the environment cannot be used.

The system may issue one or more messages that describe the abend. In
addition, register 0 contains the abend code and the abend reason code.
IRXTERM returns the abend code in the two low-order bytes of register 0.
IRXTERM returns the abend reason code in the two high-order bytes of
register 0. If the abend reason code is greater than two bytes, IRXTERM
returns only the two low-order bytes of the abend reason code. See OS/390
MVS System Codes for information about the abend codes and reason codes.

 Chapter 15. Initialization and Termination Routines 15-19

 Termination Routine

15-20 OS/390 V2R8.0 TSO/E REXX Reference

 Replaceable Routines and Exits

Chapter 16. Replaceable Routines and Exits

When a REXX exec runs, different system services are used for obtaining and
freeing storage, handling data stack requests, loading and freeing the exec, and
I/O. TSO/E provides routines for these system services. The routines are called
replaceable routines because you can provide your own routines that replace the
system-supplied routines. You can provide your own routines for non-TSO/E
address spaces. In the TSO/E address space, you can provide your own routines
only if the language processor environment is initialized with the TSOFL flag off.
The TSOFL flag (see page 14-15) indicates whether the language processor
environment is integrated with TSO/E services. “Types of Environments –
Integrated and Not Integrated Into TSO/E” on page 14-8 describes the two types of
environments.

In addition to defining your own replaceable routines to replace the routines that
TSO/E provides, you can use the interfaces as described in this chapter to call any
of the TSO/E-supplied routines to perform system services. You can call the
routines in any address space, that is, in any type of language processor
environment. You can also write your own routine to perform a system service
using the interfaces described for the routine. A program can then call your own
routine in any address space to perform that particular service.

In addition to replaceable routines, TSO/E also provides several exits you can use
to customize REXX processing. The exits let you customize the initialization and
termination of language processor environments, exec processing itself, and
attention interrupts. Unlike the replaceable routines that you can replace only in
language processor environments that are not integrated into TSO/E, you can
provide REXX exits in any type of environment (integrated and not integrated into
TSO/E). One exception is the attention handling exit for attention interrupts. The
exit applies only to TSO/E, so you can specify the exit only in an environment that
is integrated into TSO/E.

This chapter describes each of the replaceable routines and the exits that TSO/E
provides for REXX processing.

Replaceable Routines: If you provide a replaceable routine that will replace the
system- supplied routine, your routine can perform some pre-processing and then
call the system-supplied routine to actually perform the service request. If the
replaceable routine you provide calls the system-supplied routine, your replaceable
routine must act as a filter between the call to your routine and your routine calling
the system-provided routine. Pre-processing can include checking the request for
the specific service, changing the request, or terminating the request. Your routine
can also perform the requested service itself and not call the system-supplied
routine.

The routines that you can replace and the functions your routine must perform, if
you replace the system-supplied routine, are summarized below. “Replaceable
Routines” on page 16-3 describes each routine in more detail.

Exec Load
Called to load an exec into storage and free an exec when the exec
completes processing. The exec load routine is also called to determine
whether an exec is currently loaded and to close a specified data set.

 Copyright IBM Corp. 1988, 1999 16-1

 Replaceable Routines and Exits

I/O
Called to read a record from or write a record to a specified ddname. The
I/O routine is also called to open a specified DD. For example, the routine
is called for the SAY and PULL instructions (if the environment is not
integrated into TSO/E) and for the EXECIO command.

Host Command Environment
Called to process all host commands for a specific host command
environment.

Data Stack
Called to handle any requests for data stack services.

Storage Management
Called to obtain and free storage.

User ID
Called to obtain the user ID. The USERID built-in function returns the result
that the user ID routine obtains.

Message Identifier
Called to determine whether the message identifier (message ID) is
displayed with a REXX error message.

Replaceable routines are defined on a language processor environment basis. You
define the names of the routines in the module name table. To define your own
replaceable routine to replace the system-supplied routine, you must do the
following:

� Write the code for the routine. The individual topics in this chapter describe the
interfaces to each replaceable routine.

� Define the routine name to a language processor environment. For
environments that are initialized in non-TSO/E address spaces, you can provide
your own IRXPARMS parameters module that IRXINIT uses instead of the
default IRXPARMS module. In your module, specify the names of your
replaceable routines. You can also call IRXINIT to initialize an environment and
pass the name of your module name table that includes the names of your
replaceable routines.

In the TSO/E address space, you can call IRXINIT to initialize an environment
and pass the name of your module name table that includes the names of the
replaceable routines. When you call IRXINIT, the TSOFL flag in the parameters
module must be off, so the environment is not integrated into TSO/E.

“Changing the Default Values for Initializing an Environment” on page 14-41
describes how to provide your own parameters module. “Initialization Routine –
IRXINIT” on page 15-1 describes IRXINIT.

You can also call any of the system-supplied replaceable routines from a program
to perform a system service. You can also write your own routine that user-written
programs can call to perform a service. This chapter describes the interfaces to the
system routines.

Exit Routines: In addition to the replaceable routines, there are several exits you
can use to customize REXX processing. Some of the exits have fixed names. Other
exits do not have a fixed name. You name the exit yourself and then specify the
name in the module name table. The exits are briefly described below. “REXX Exit
Routines” on page 16-44 describes each exit in more detail.

16-2 OS/390 V2R8.0 TSO/E REXX Reference

 Replaceable Routines and Exits

� Pre-environment initialization – use to customize processing before the IRXINIT
initialization routine initializes a language processor environment.

� Post-environment initialization – use to customize processing after the IRXINIT
initialization routine has initialized an environment, but before IRXINIT
completes processing.

� Environment termination – use to customize processing when a language
processor environment is terminated.

� Exec initialization – use to customize processing after the variable pool has
been created and before the exec begins processing.

� Exec termination – use to customize processing after an exec completes
processing and before the variable pool is deleted.

� Exec processing – use to customize exec processing before an exec is loaded
and runs.

� Attention handling – use to customize attention interrupt processing in TSO/E.

Unlike the replaceable routines, which you can define only in language processor
environments that are not integrated into TSO/E, you can provide the exits in any
type of environment. One exception is the attention handling routine, which is only
applicable to the TSO/E address space (in an environment that is integrated into
TSO/E). See “REXX Exit Routines” on page 16-44 for more information about the
exits.

 Replaceable Routines
The following topics describe each of the TSO/E REXX replaceable routines. The
documentation describes how the system-supplied routines work, the input they
receive, and the output they return. If you provide your own routine that replaces
the system-supplied routine, your routine must handle all of the functions that the
system-supplied routine handles.

The replaceable routines that TSO/E provides are programming routines that you
can call from a program in any address space. The only requirement for invoking
one of the system-supplied routines is that a language processor environment must
exist in which the routine runs. The language processor environment can either be
integrated or not integrated into TSO/E. For example, an application program can
call the system-supplied data stack routine to perform data stack operations or call
the I/O routine to perform I/O.

You can also write your own routines to handle different system services. For
example, if you write your own exec load routine, a program can call your routine to
load an exec before calling IRXEXEC to invoke the REXX exec. Similar to the
system-supplied routines, if you write your own routine, an application program can
call your routine in any address space as long as a language processor
environment exists in which the routine can run. The environment can either be
integrated or not integrated into TSO/E.

You could also write your own routine that application programs can call to perform
a system service, and have your routine call the system- supplied routine. Your
routine could act as a filter between the call to your routine and your routine calling
the system-supplied routine. For example, you could write your own exec load

 Chapter 16. Replaceable Routines and Exits 16-3

 Replaceable Routines and Exits

routine that verifies a request, allocates a system load file, and then invokes the
system-supplied exec load routine to actually load the exec.

 General Considerations
This topic provides general information about the replaceable routines.

� If you provide your own replaceable routine, your routine is called in 31 bit
addressing mode. Your routine may perform the requested service itself and
not call the system-supplied routine. Your routine can perform pre-processing,
such as checking or changing the request or parameters, and then call the
corresponding system-supplied routine. If your routine calls the system routine
to actually perform the request, your routine must call the system routine in 31
bit addressing mode also.

� When the system calls your replaceable routine, your routine can use any of
the system-supplied replaceable routines to request system services.

� The addresses of the system-supplied and any user-supplied replaceable
routines are stored in the REXX vector of external entry points (see page
14-64). This allows a caller external to REXX to call any of the replaceable
routines, either the system-supplied or user-supplied routines. For example, if
you want to preload a REXX exec in storage before using the IRXEXEC routine
to invoke the exec, you can call the IRXLOAD routine to load the exec.
IRXLOAD is the system-supplied exec load routine. If you provide your own
exec load routine, you can also use your routine to preload the exec.

� When a replaceable routine is invoked by the system or by an application
program, the contents of register 0 may or may not contain the address of the
environment block. For more information, see “Using the Environment Block
Address”.

Using the Environment Block Address
If you provide a user-supplied replaceable routine that replaces a system-supplied
replaceable routine, when the system calls your routine, it passes the address of
the environment block for the current environment in register 0. If your
user-supplied routine then invokes the system-supplied routine, it is recommended
that you pass the environment block address you received to the system-supplied
routine. When you invoke the system-supplied routine, you can pass the
environment block address in register 0. Some replaceable routines also have an
optional environment block address parameter that you can use.

If your user-supplied routine passes the environment block address in the
parameter list, the system-supplied routine uses the address you specify and
ignores register 0. Additionally, the system-supplied routine does not validate the
address you pass. Therefore, you must ensure that your user-supplied routine
passes the same address it received in register 0 when it got control.

If your user-supplied routine does not specify an address in the environment block
address parameter or the replaceable routine does not support the parameter, the
system-supplied routine checks register 0 for the environment block address. If
register 0 contains the address of a valid environment block, the system-supplied
routine runs in that environment. If the address in register 0 is not valid, the
system-supplied routine locates and runs in the current non-reentrant environment.

16-4 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

If your user-supplied routine does not pass the environment block address it
received to the system-supplied routine, the system-supplied routine locates the
current non-reentrant environment and runs in that environment. This may or may
not be the environment in which you want the routine to run. Therefore, it is
recommended that you pass the environment block address when your
user-supplied routine invokes the system-supplied routine.

An application program running in any address space can call a system-supplied or
user-supplied replaceable routine to perform a specific service. On the call, the
application program can optionally pass the address of an environment block that
represents the environment in which the routine runs. The application program can
pass the environment block address in register 0 or in the environment block
address parameter if the replaceable routine supports the parameter. Note the
following for application programs that invoke replaceable routines:

� If an application program invokes a system-supplied replaceable routine and
does not pass an environment block address, the system-supplied routine
locates the current non-reentrant environment and runs in that environment.

� If an application program invokes a user-supplied routine, either the application
program must provide the environment block address or the user-supplied
routine must locate the current environment in which to run.

Installing Replaceable Routines
If you write your own replaceable routine, you must link-edit the routine as a
separate load module. You can link-edit all your replaceable routines in a separate
load library or in an existing library that contains other routines. The routines can
reside in:

� The link pack area (LPA)
 � Linklist (LNKLIST)
� A logon STEPLIB.

The replaceable routines must be reentrant, refreshable, and reusable. The
characteristics for the routines are:

� State: Problem program
 � Not APF-authorized
 � AMODE(31), RMODE(ANY)

Exec Load Routine
The system calls the exec load routine to load and free REXX execs. The system
also calls the routine:

� To close any input files from which execs are loaded
� To check whether an exec is currently loaded in storage
� When a language processor environment is initialized and terminated.

The name of the system-supplied exec load routine is IRXLOAD.

Note: To permit FORTRAN programs to call IRXLOAD, TSO/E provides an
alternate entry point for the IRXLOAD routine. The alternate entry point
name is IRXLD.

 Chapter 16. Replaceable Routines and Exits 16-5

 Exec Load Routine

When the exec load routine is called to load an exec, the routine reads the exec
from the DD and places the exec into a data structure called the in-storage control
block (INSTBLK). “Format of the In-Storage Control Block” on page 16-14
describes the format of the in-storage control block. When the exec load routine is
called to free an exec, the exec frees the storage that the previously loaded exec
occupied.

The name of the exec load routine is specified in the EXROUT field in the module
name table for a language processor environment. “Module Name Table” on
page 14-20 describes the format of the module name table.

The system calls the exec load routine when:

� A language processor environment is initialized. During environment
initialization, the exec load routine initializes the REXX exec load environment.

� The IRXEXEC routine is called and the exec is not preloaded. See “The
IRXEXEC Routine” on page 12-13 for information about using IRXEXEC.

� The exec that is currently running calls an external function or subroutine and
the function or subroutine is an exec. (This is an internal call to the IRXEXEC
routine.)

� An exec that was loaded needs to be freed.

� The language processor environment that originally opened the DD from which
execs are loaded is terminating and all files associated with the environment
must be closed.

The system-supplied load routine, IRXLOAD, tests for numbered records in the file.
If the records of a file are numbered, the routine removes the numbers when it
loads the exec. A record is considered to be numbered if:

� The record format of the file is variable and the first eight characters of the first
record are numeric, or

� The record format of the file is fixed and the last eight characters of the first
record are numeric.

If the first record of the file is not numbered, the routine loads the exec without
making any changes.

Any user-written program can call IRXLOAD to perform the functions that IRXLOAD
supports. You can also write your own exec load routine and call the routine from
an application program in any address space. For example, if you have an
application program that calls the IRXEXEC routine to run a REXX exec, you may
want to preload the exec into storage before calling IRXEXEC. To preload the exec,
your application program can call IRXLOAD. The program can also call your own
exec load routine.

TSO/E REXX tries to reuse a previously loaded exec if it appears that the exec has
not been changed. Otherwise, EXECUTIL EXECDD (CLOSEDD) causes a new
copy of the exec to be reloaded each time it is needed.

If you are writing an exec load routine that will be used in environments in which
compiled REXX execs run, note that your exec load routine may want to invoke a
compiler interface load routine. For information about the compiler interface load
routine and when it can be invoked, see OS/390 TSO/E Customization.

16-6 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

 Entry Specifications
For the exec load replaceable routine, the contents of the registers on entry are
described below. The address of the environment block can be specified in either
register 0 or in the environment block address parameter in the parameter list. For
more information, see “Using the Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 16-1 describes the parameters for the exec load routine.

Figure 16-1 (Page 1 of 3). Parameters for the Exec Load Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is
left justified, in uppercase, and padded to the right
with blanks. The valid functions are:

 � INIT
 � LOAD
 � TSOLOAD
 � FREE
 � STATUS
 � CLOSEDD
 � TERM

The functions are described in “Functions You Can
Specify for Parameter 1” on page 16-9.

Parameter 2 4 Specifies the address of the exec block
(EXECBLK). The exec block is a control block that
describes the exec to be loaded (LOAD or
TSOLOAD), to be checked (STATUS), or the DD to
be closed (CLOSEDD). “Format of the Exec Block”
on page 16-11 describes the exec block.

For the LOAD, TSOLOAD, STATUS, and
CLOSEDD functions, this parameter must contain a
valid exec block address. For the other functions,
this parameter is ignored.

 Chapter 16. Replaceable Routines and Exits 16-7

 Exec Load Routine

Figure 16-1 (Page 2 of 3). Parameters for the Exec Load Routine

Parameter Number of
Bytes

Description

Parameter 3 4 Specifies the address of the in-storage control
block (INSTBLK), which defines the structure of a
REXX exec in storage. The in-storage control block
contains pointers to each record in the exec and
the length of each record. “Format of the
In-Storage Control Block” on page 16-14 describes
the control block.

The exec load routine uses this parameter as an
input parameter for the FREE function only. The
routine uses the parameter as an output parameter
for the LOAD, TSOLOAD, STATUS, and FREE
functions. The parameter is ignored for the INIT,
TERM, and CLOSEDD functions.

As an input parameter for the FREE function, the
parameter contains the address of the in-storage
control block that represents the exec to be freed.
As an output parameter for the FREE function, the
parameter contains a 0 indicating the exec was
freed. If the exec could not be freed, the return
code in either register 15 or the return code
parameter (parameter 5) indicates the error
condition. “Return Codes” on page 16-17 describes
the return codes.

As an output parameter for the LOAD, TSOLOAD,
or STATUS functions, the parameter returns the
address of the in-storage control block that
represents the exec that was:

� Just loaded (LOAD or TSOLOAD function)
� Previously loaded (STATUS function)

For the LOAD, TSOLOAD, and STATUS functions,
the routine returns a value of 0 if the exec is not
loaded.

Parameter 4 4 The address of the environment block that
represents the environment in which you want the
exec load replaceable routine to run. This
parameter is optional.

If you specify a non-zero value for the environment
block address parameter, the exec load routine
uses the value you specify and ignores register 0.
However, the routine does not check whether the
address is valid. Therefore, you must ensure the
address you specify is correct or unpredictable
results can occur. For more information, see “Using
the Environment Block Address” on page 16-4.

16-8 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

Figure 16-1 (Page 3 of 3). Parameters for the Exec Load Routine

Parameter Number of
Bytes

Description

Parameter 5 4 A 4-byte field that the exec load replaceable routine
uses to return the return code.

The return code parameter is optional. If you use
this parameter, the exec load routine returns the
return code in the parameter and also in register
15. Otherwise, the routine uses register 15 only. If
the parameter list is invalid, the return code is
returned in register 15 only. “Return Codes” on
page 16-17 describes the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on in
the preceding parameter's address. For more
information about parameter lists, see “Parameter
Lists for TSO/E REXX Routines” on page 12-5.

Functions You Can Specify for Parameter 1
The functions that can be specified in parameter 1 are described below.

INIT
The routine performs any initialization that is required. During the
initialization of a language processor environment, the system calls the
exec load routine to initialize load processing.

LOAD
The routine loads the exec specified in the exec block from the ddname
specified in the exec block. “Format of the Exec Block” on page 16-11
describes the exec block.

The routine returns the address of the in-storage control block (parameter
3) that represents the loaded exec. “Format of the In-Storage Control
Block” on page 16-14 shows the format of the in-storage control block.

Note: The TSO/E IRXLOAD routine reuses an existing copy of a
previously loaded exec if one already exists in storage, and if it
appears that the exec did not change since the exec was originally
loaded. However, if the CLOSEXFL flag is on, indicating the
SYSEXEC data set should be closed after each exec is loaded from
SYSEXEC, IRXLOAD will not reuse a previously loaded exec copy
to satisfy a load request. Instead, each load request results in a
new copy of the exec being read into storage. For more information
about the CLOSEXFL flag, see 14-17.

TSOLOAD
The routine loads the exec specified in the exec block from the current list
of ddnames that TSO/E is using to search for REXX execs. For example,
the routine may search load libraries, any exec libraries as defined by the
TSO/E ALTLIB command, and SYSEXEC and SYSPROC. The complete
search order is described on page 4-3.

You can use the TSOLOAD function only in the TSO/E address space in a
language processor environment that is integrated into TSO/E. TSOLOAD
requires an environment that is integrated into TSO/E because TSOLOAD

 Chapter 16. Replaceable Routines and Exits 16-9

 Exec Load Routine

requests that the exec load routine use the current TSO/E search order to
locate the exec.

The TSOLOAD function is intended for use if you call the system-supplied
exec load routine (IRXLOAD) in TSO/E. TSOLOAD gives you the flexibility
to search more than one DD to locate a REXX exec compared to the
LOAD function, which only searches the DD specified in the exec block.
You can also use the TSOLOAD function if you write your own exec load
routine and then call your routine from application programs running in
TSO/E.

TSOLOAD is not intended for language processor environments that are
not integrated into TSO/E. Therefore, if you provide an exec load routine to
replace the system- supplied exec load routine in the module name table,
your routine that replaces the system routine need not handle the
TSOLOAD request. This is because you can replace the system-supplied
exec load routine only in environments that are not integrated into TSO/E.

For the TSOLOAD function, the exec load routine returns the:

� DD from which the exec was loaded. The routine returns the ddname in
the exec block (at offset +24) that you provide on the call.

� Address of the in-storage control block in parameter 3 of the parameter
list. The control block represents the loaded exec.

Note: The TSO/E IRXLOAD routine reuses an existing copy of a
previously loaded exec if one already exists in storage, and if it
appears that the exec did not change since the exec was originally
loaded. However, if the CLOSEXFL flag is on, indicating the
SYSEXEC data set should be closed after each exec is loaded from
SYSEXEC, IRXLOAD will not reuse a previously loaded exec copy
to satisfy a load request. Instead, each load request results in a
new copy of the exec being read into storage. For more information
about the CLOSEXFL flag, see 14-17.

FREE
The routine frees the exec represented by the in-storage control block that
is pointed to by parameter 3.

Note: If a user written load routine calls IRXLOAD to load an exec, the
user written load routine must also call IRXLOAD to free the exec. If
TSO/E REXX loads an exec, it also frees the exec. For information
about the IRXEXEC routine, see “The IRXEXEC Routine” on
page 12-13.

STATUS
The routine determines whether the exec specified in the exec block is
currently loaded in storage from the ddname specified in the exec block. If
the exec is loaded, the routine returns the address of the in-storage control
block in parameter 3. The address that the routine returns is the same
address that was returned for the LOAD function when the routine originally
loaded the exec into storage.

TERM
The routine performs any cleanup prior to termination of the language
processor environment. When the last language processor environment
under the task that originally opened the DD terminates, all files associated
with the environment are closed. In TSO/E REXX, when terminating the last

16-10 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

language processor environment under a task, IRXLOAD frees any execs
that were loaded by any language processor environment under the task
but which were not yet freed.

CLOSEDD
The routine closes the data set specified in the exec block, it does not free
any execs that have been loaded from this data set.

The CLOSEDD function allows you to free and reallocate data sets. Only
data sets that were opened on the current task can be closed.

Format of the Exec Block
The exec block (EXECBLK) is a control block that describes the:

� Exec to be loaded (LOAD or TSOLOAD function)

� Exec to be checked (STATUS function)

� DD to be closed (CLOSEDD function)

If a user-written program calls IRXLOAD or your own exec load routine, the
program must build the exec block and pass the address of the exec block on the
call. TSO/E provides a mapping macro, IRXEXECB, for the exec block. The
mapping macro is in SYS1.MACLIB. Figure 16-2 describes the format of the exec
block.

Figure 16-2 (Page 1 of 3). Format of the Exec Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ACRYN An eight-character field that
identifies the exec block. The field
must contain the character string
‘IRXEXECB’.

8 4 LENGTH Specifies the length of the exec
block, in bytes.

12 4 — Reserved.

16 8 MEMBER Specifies the member name of the
exec if the exec is in a partitioned
data set. If the exec is in a
sequential data set, this field is
blank.

For the TSOLOAD function, the
member name is required.

 Chapter 16. Replaceable Routines and Exits 16-11

 Exec Load Routine

Figure 16-2 (Page 2 of 3). Format of the Exec Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

24 8 DDNAME For a LOAD request, the field
specifies the ddname from which the
exec is to be loaded. For a
TSOLOAD request, this field is used
only for output; it is ignored on input.
On output, the field contains the
ddname from which the exec was
loaded. For a STATUS request, the
field specifies the ddname from
which the exec being checked was
loaded. For a CLOSEDD request,
the field specifies the ddname to be
closed.

An exec cannot be loaded from a
DD that has not been allocated. The
ddname specified must be allocated
to a data set containing REXX
execs or to a sequential data set
that contains an exec.

For the LOAD and STATUS
functions, this field can be blank. In
these cases, the ddname in the
LOADDD field of the module name
table is used.

32 8 SUBCOM Specifies the name of the initial host
command 4 environment when the
exec starts running.

If this field is blank, the environment
specified in the INITIAL field of the
host command environment table is
used.

40 4 DSNPTR Specifies the address of a data set
name that the PARSE SOURCE
instruction returns. The name
usually represents the name of the
exec load data set. The name can
be up to 54 characters long (44
characters for the fully qualified data
set name, 8 characters for the
member name, and 2 characters for
the left and right parentheses). The
field can be blank.

Note: For concatenated data sets,
the field may contain the
name of the first data set in
the sequence, although the
exec was loaded from a data
set other than the first one in
the sequence.

16-12 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

An exec cannot be loaded from a data set that has not been allocated. The
ddname specified (at offset +24) must be allocated to a data set containing REXX
execs or to a sequential data set that contains an exec. The fields at offset +40 and
+44 in the exec block are used only for input to the PARSE SOURCE instruction
and are for informational purposes only.

For the LOAD and STATUS functions, if a ddname is not specified in the exec
block (at offset +24), the routine uses the ddname in the LOADDD field in the
module name table for the language processor environment. The environment block
(ENVBLOCK) points to the PARMBLOCK, which contains the address of the
module name table.

Figure 16-2 (Page 3 of 3). Format of the Exec Block

Offset
(Decimal)

Number
of Bytes

Field Name Description

| 44| 4| DSNLEN| Specifies the length of the data set
| name that is pointed to by the
| address at offset +40. The length
| can be 0-54. If no data set name is
| specified, the length is 0.

| 48| 4| EXTNAME_PTR| Pointer to the extended execname.
| This field can be used to pass an
| execname if greater than eight
| characters. For example, this field
| may be used to pass
| pathname/filename of an
| hierarchical file system (HFS) file to
| a replaceable load routine that
| handles HFS files. (This name is not
| used by the TSO/E REXX load
| routine.)

| (This field is only valid if PTF for
| APAR OW28404 is applied.)

| 52| 4| EXTNAME_LEN| Specifies the length of the extended
| name pointed to by
| EXTNAME_PTR, or 0 if no extended
| name is specified. The maximum
| length of an extended name is 4096
| (x'1000'). Any length larger than this
| maximum value should be treated
| as 0 (that is, as no extended name
| specified).

| 56| 8| ------| Reserved

| Loading Execs Using an Extended Exec Name
| With the PTF for APAR OW28404 applied, the replaceable Exec LOAD routine
| interface is enhanced to allow extended execnames, that is, exec names that are
| longer than eight characters or that are case sensitive. Note that the new fields,
| EXECBLK_EXTNAME_PTR and EXECBLK_EXTNAME_LEN in the EXECBLK, and
| INSTBLK_EXTNAME_PTR and INSTBLK_EXTNAME_LEN in the INSTBLK, can
| only be utilized if the PTF for OW28404 is applied. The following describes the
| extension to the LOAD interface when OW28404 is applied.

 Chapter 16. Replaceable Routines and Exits 16-13

 Exec Load Routine

| For a LOAD request, the caller may request an exec with a name longer than eight
| characters, or an exec with a name that is case sensitive. If so, that extended
| name may be specified in a field pointed to by the EXEC_EXTNAME_PTR field of
| the EXECBLK. A name in the MEMBER field may also be specified. It is optional
| whether the LOAD routine will handle an extended execname. The LOAD routine
| may use the extended name pointed to by EXEC_EXTNAME_PTR (if present), or it
| may ignore this name and continue to use the EXEC_MEMBER field as the name
| of the exec to be loaded.

| Note: The EXEC_EXTNAME_PTR field can be used as a way to pass an
| hierarchical file system (HFS) path name, or a case sensitive exec identifier to a
| replaceable LOAD routine written specifically to handle such LOADs. However,
| note that the TSO/E default LOAD routine (IRXLOAD) does not load execs
| specified by an extended name. It loads only from a sequential data set or a
| partitioned data set (PDS) specified by EXEC_DDNAME, with a PDS member
| specified by EXEC_MEMBER.

| A replaceable LOAD routine can choose to ignore an extended name and use the
| MEMBER name instead, or it can choose to load using the extended name, if
| present.

| If the LOAD routine loads an exec specified by an extended execname, it should
| obtain storage to hold a copy of the extended name, and return an INSTBLK with
| INSTBLK_EXTNAME_PTR pointing to the copy of the extended name and
| INSTBLK_EXTNAME_LEN set to its length. If an extended name is not returned
| (as with the TSO/E default LOAD routine), INSTBLK_EXTNAME_PTR and
| INSTBLK_EXTNAME_LEN should be set to 0.

| When the load routine is called for a FREE request, it is responsible for freeing any
| INSTBLK and extended name storage it had obtained during the LOAD request.

Format of the In-Storage Control Block
The in-storage control block defines the structure of an exec in storage. It contains
pointers to each record in the exec and the length of each record.

The in-storage control block consists of a header and the records in the exec,
which are arranged as a vector of address/length pairs. Figure 16-3 shows the
format of the in-storage control block header. Figure 16-4 on page 16-17 shows
the format of the vector of records. TSO/E provides a mapping macro, IRXINSTB,
for the in-storage control block. The mapping macro is in SYS1.MACLIB.

Figure 16-3 (Page 1 of 4). Format of the In-Storage Control Block Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

0 8 ACRONYM An eight-character field that
identifies the control block. The field
must contain the characters
‘IRXINSTB’.

8 4 HDRLEN Specifies the length of the in-storage
control block header only. The value
must be 128 bytes.

12 4 — Reserved.

16-14 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

Figure 16-3 (Page 2 of 4). Format of the In-Storage Control Block Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

16 4 ADDRESS Specifies the address of the vector
of records. See Figure 16-4 on
page 16-17 for the format of the
address/length pairs.

If this field is 0, the exec contains no
statements.

20 4 USERLEN Specifies the length of the
address/length vector of records in
bytes. This is not the number of
records. The value is the number of
records multiplied by 8.

If this field is 0, the exec contains no
statements.

24 8 MEMBER Specifies the name of the exec. This
is the name of the member in the
partitioned data set from which the
exec was loaded. If the exec was
loaded from a sequential data set,

| this field is blank. If the exec was
| loaded using an extended
| execname specification (as pointed
| to by EXTNAME_PTR) this field can
| be left blank. (See the
| EXTNAME_PTR field below.)

The PARSE SOURCE instruction
| returns the folded member name in
| token3 of the PARSE SOURCE
| string. If this field is blank or if an
| extended execname is specified
| then the name that PARSE
| SOURCE returns in token3 is either:

| � a question mark (?), if no
| extended name is specified, or

| � the extended execname pointed
| to by EXTNAME_PTR, if
| specified. An extended name is
| not folded to uppercase within
| the PARSE SOURCE string.
| Any blanks in the extended
| name are changed to null
| characters (x'00') when the
| extended name is placed in the
| PARSE SOURCE string.

| Note: If EXTNAME_PTR and
| MEMBER are both specified,
| EXTNAME_PTR is used to build the
| PARSE SOURCE string token3.

32 8 DDNAME Specifies the ddname that
represents the exec load DD from
which the exec was loaded.

 Chapter 16. Replaceable Routines and Exits 16-15

 Exec Load Routine

Figure 16-3 (Page 3 of 4). Format of the In-Storage Control Block Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

40 8 SUBCOM Specifies the name of the initial host
command environment when the
exec starts running.

48 4 — Reserved.

52 4 DSNLEN Specifies the length of the data set
name that is specified at offset +56.
If a data set name is not specified,
this field is 0.

| 56| 54| DSNAME| A 54-byte field that contains the
| name of the data set, if known, from
| which the exec was loaded. The
| name can be up to 54 characters
| long (44 characters for the fully
| qualified data set name, 8
| characters for the member name,
| and 2 characters for the left and
| right parentheses).

| 110| 2| —| Reserved.

| 112| 4| EXTNAME_PTR| Pointer to the extended execname.
| The extended execname can be
| used instead of the MEMBER field
| to return the exec name of the
| loaded exec if the name is longer
| than eight characters or is case
| sensitive. For example, this field can
| be used to return the
| pathname/filename specification of
| an exec loaded from a Hierarchical
| File System (HFS) file.

| If specified, the PARSE SOURCE
| instruction returns the name pointed
| to by this field, without folding to
| uppercase, instead of the MEMBER
| name. (Any blanks within an
| extended name are changed to null
| characters (x'00') when moved into
| the PARSE SOURCE string.) See
| the discussion of PARSE SOURCE
| under MEMBER field above.

| (Note: The extended execname is
| not currently used by the default
| TSO/E REXX load routine).

| (This field is valid only if PTF for
| OW28404 is applied.)

16-16 OS/390 V2R8.0 TSO/E REXX Reference

 Exec Load Routine

At offset +16 in the in-storage control block header, the field points to the vector of
records that are in the exec. The records are arranged as a vector of
address/length pairs. Figure 16-4 shows the format of the address/length pairs.

The addresses point to the text of the record to be processed. This can be one or
more REXX clauses, parts of a clause that are continued with the REXX
continuation character (the continuation character is a comma), or a combination of
these. The address is the actual address of the record. The length is the length of
the record in bytes.

Figure 16-3 (Page 4 of 4). Format of the In-Storage Control Block Header

Offset
(Decimal)

Number
of Bytes

Field Name Description

| 116| 4| EXTNAME_LEN| Specifies the length of extended
| execname pointed to by
| EXTNAME_PTR, or 0 if no extended
| name is specified. The maximum
| length of an extended name is 4096
| (x'1000'). If a length larger than the
| maximum value is specified, the
| extended name is ignored.

| 120| 8| —| Reserved.

Figure 16-4. Vector of Records for the In-Storage Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 STMT@ Address of record 1

4 4 STMTLEN Length of record 1

8 4 STMT@ Address of record 2

12 4 STMTLEN Length of record 2

16 4 STMT@ Address of record 3

20 4 STMTLEN Length of record 3

x 4 STMT@ Address of record n

y 4 STMTLEN Length of record n

 Return Specifications
For the exec load routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-5 shows the return codes for the exec load routine. The routine returns
the return code in register 15. If you specify the return code parameter (parameter
5), the exec load routine also returns the return code in the parameter.

 Chapter 16. Replaceable Routines and Exits 16-17

 I/O Routine

Figure 16-5. Return Codes for the Exec Load Replaceable Routine

Return Code Description

-3 The exec could not be located. The exec is not loaded.

0 Processing was successful. The requested function completed.

4 The specified exec is not currently loaded. A return code of 4 is used
for the STATUS function only.

20 Processing was not successful. The requested function is not
performed. A return code of 20 occurs if:

� A ddname was not specified and was required (LOAD, STATUS,
and CLOSEDD functions)

� The TSOLOAD function was requested, but the current language
processor environment is not integrated into TSO/E

� The ddname was specified, but the DD has not been allocated

� An error occurred during processing.

The system also issues an error message that describes the error.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

 Input/Output Routine
The input/output (I/O) replaceable routine is also called the read input/write output
data routine. The system calls the I/O routine to:

� Read a record from a specified DD
� Write a record to a specified DD
� Open a DD.

The DD must be allocated to either a sequential data set or a single member of a
partitioned data set. The name of the system-supplied I/O routine is IRXINOUT.

Notes:

1. The system supplied I/O routine does not support I/O on files allocated to data
sets with spanned, track overflow, or undefined record formats.

2. To permit FORTRAN programs to call IRXINOUT, TSO/E provides an alternate
entry point for the IRXINOUT routine. The alternate entry point name is IRXIO.

If a read is requested, the routine returns a pointer to the record that was read and
the length of the record. If a write is requested, the caller provides a pointer to the
record to be written and the length of the record. If an open is requested, the
routine opens the file if the file is not yet open. The routine also returns a pointer to
an area in storage containing information about the file. You can use the IRXDSIB
mapping macro to map this area. The mapping macro is in SYS1.MACLIB.

16-18 OS/390 V2R8.0 TSO/E REXX Reference

 I/O Routine

You specify the name of the I/O routine in the IOROUT field in the module name
table. “Module Name Table” on page 14-20 describes the format of the module
name table. I/O processing is based on the QSAM access method.

The I/O routine is called for:

� Initialization. When IRXINIT initializes a language processor environment, the
system calls the I/O replaceable routine to initialize I/O processing.

 � Open, when:

– You use the LINESIZE built-in function in an exec

– Before the language processor does any output.

� For input, when:

– A PULL or a PARSE PULL instruction is processed, and the data stack is
empty, and the language processor environment is not integrated into
TSO/E (see page 14-8).

– A PARSE EXTERNAL instruction is processed in a language processor
environment that is not integrated into TSO/E (see page 14-8).

– The EXECIO command is processed

– A program outside of REXX calls the I/O replaceable routine for input of a
record.

� For output, when:

– A SAY instruction is processed in a language processor environment that is
not integrated into TSO/E (see page 14-8).

– Error messages must be written

– Trace (interactive debug facility) messages must be written

– A program outside of REXX calls the I/O replaceable routine for output of a
record.

� Termination. When the system terminates a language processor environment,
the I/O replaceable routine is called to cleanup I/O.

 Entry Specifications
For the I/O replaceable routine, the contents of the registers on entry are described
below. The address of the environment block can be specified in either register 0 or
in the environment block address parameter in the parameter list. For more
information, see “Using the Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Chapter 16. Replaceable Routines and Exits 16-19

 I/O Routine

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 16-6 describes the parameters for the I/O routine.

Figure 16-6 (Page 1 of 2). Input Parameters for the I/O Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function
name is left justified, in uppercase, and padded
to the right with blanks. The valid functions are:

 � INIT
 � OPENR
 � OPENW
 � OPENX
 � READ
 � READX
 � WRITE
 � TERM
 � CLOSE

“Functions Supported for the I/O Routine” on
page 16-21 describes the functions in more
detail.

Parameter 2 4 Specifies the address of the record read, the
record to be written, or the data set information
block, which is an area in storage that contains
information about the file (see page 16-25).

Parameter 3 4 Specifies the length of the data in the buffer
pointed to by parameter 2. On output for an
open request, parameter 3 contains the length
of the data set information block. “Buffer and
Buffer Length Parameters” on page 16-23
describes the buffer and buffer length in more
detail.

Parameter 4 8 An eight character string that contains the
name of a preallocated input or output DD. The
DD must be either a sequential data set or a
single member of a PDS. If a member of a
PDS is to be used, the DD must be specifically
allocated to the member of the PDS.

If the input or output file is not sequential, the
I/O routine returns a return code of 20.

16-20 OS/390 V2R8.0 TSO/E REXX Reference

 I/O Routine

Figure 16-6 (Page 2 of 2). Input Parameters for the I/O Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 5 4 For a read operation, this parameter is used on
output and specifies the absolute record
number of the last logical record read. For a
write to a DD that is opened for update, it can
be used to provide a record number to verify
the number of the record to be updated.
Verification of the record number can be
bypassed by specifying a 0.

This parameter is not used for the INIT,
OPENR, OPENW, OPENX, TERM, or CLOSE
functions. See “Line Number Parameter” on
page 16-24 for more information.

Parameter 6 4 The address of the environment block that
represents the environment in which you want
the I/O replaceable routine to run. This
parameter is optional.

If you specify a non-zero value for the
environment block address parameter, the I/O
routine uses the value you specify and ignores
register 0. However, the routine does not
check whether the address is valid. Therefore,
you must ensure the address you specify is
correct or unpredictable results can occur. For
more information, see “Using the Environment
Block Address” on page 16-4.

Parameter 7 4 A 4-byte field that the I/O replaceable routine
uses to return the return code.

The return code parameter is optional. If you
use this parameter, the I/O routine returns the
return code in the parameter and also in
register 15. Otherwise, the routine uses
register 15 only. If the parameter list is invalid,
the return code is returned in register 15 only.
“Return Codes” on page 16-27 describes the
return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on
in the preceding parameter's address. For
more information about parameter lists, see
“Parameter Lists for TSO/E REXX Routines” on
page 12-5.

Functions Supported for the I/O Routine
The function to be performed by the I/O routine is specified in parameter 1. The
valid functions are described below.

 Chapter 16. Replaceable Routines and Exits 16-21

 I/O Routine

INIT
The routine performs any initialization that is required. During the
initialization of a language processor environment, the I/O routine is called
to initialize I/O processing.

OPENR
The routine opens the specified DD for a read operation if the DD is not
already open. The ddname is specified in parameter 4.

The I/O routine returns the address of the data set information block in
parameter 2. It returns the length of the data set information block (DSIB) in
parameter 3. “Data Set Information Block” on page 16-25 describes the
block in more detail.

The routine opens the specified DD for a write operation if the DD is not
already open. The ddname is specified in parameter 4.

The I/O routine returns the address of the data set information block in
parameter 2. It returns the length of the data set information block (DSIB) in
parameter 3. “Data Set Information Block” on page 16-25 describes the
block in more detail.

OPENX
The routine opens the specified DD for an update operation if the DD is not
already open. The ddname is specified in parameter 4.

The I/O routine returns the address of the data set information block in
parameter 2. It returns the length of the data set information block (DSIB) in
parameter 3. “Data Set Information Block” on page 16-25 describes the
block in more detail.

READ
The routine reads data from the DD specified in parameter 4. It returns the
data in the buffer pointed to by the address in parameter 2. It also returns
the number of the record that was read in the line number parameter
(parameter 5).

The READ and READX functions are equivalent, except that the data set is
opened differently. Subsequent read operations to the same data set can
be done using either the READ or READX function because they do not
reopen the data set.

If the data set to be read is closed, the routine opens it for input and then
performs the read.

READX
The routine reads data from the DD specified in parameter 4. It returns the
data in the buffer pointed to by the address in parameter 2. It also returns
the number of the record that was read in the line number parameter
(parameter 5).

If the data set to be read is closed, the routine opens it for update and then
performs the read.

The READ and READX functions are equivalent, except that the data set is
opened differently. Subsequent read operations to the same data set can
be done using either the READ or READX function because they do not
reopen the data set.

16-22 OS/390 V2R8.0 TSO/E REXX Reference

 I/O Routine

WRITE
The routine writes data from the specified buffer to the specified DD. The
buffer is pointed to by the address in parameter 2 and the ddname is
specified in parameter 4.

If the data set is closed, the routine first opens it for output and then writes
the record. For sequential data sets, if the data set is allocated as OLD, the
first record that is written after the data set is opened is written as record
number 1. If a sequential data set is allocated as MOD, the record is added
at the end of the data set.

Note: MOD cannot be used to append data to a member of a PDS. You
can use MOD only when appending information to a sequential data
set. To append information to a member of a PDS, rewrite the
member with the additional records added.

When a data set is opened for update, the WRITE function is used to
rewrite the last record that was retrieved by the READ or READX function.
You can optionally use the line number parameter (parameter 5) to ensure
that the number of the record being updated agrees with the number of the
last record that was read.

TERM
The routine performs cleanup and closes any opened data sets.

CLOSE
The routine closes the DD specified in parameter 4. The CLOSE function
permits data sets to be freed and reallocated.

The CLOSE function is allowed only from the task under which the data set
was opened. If CLOSE is requested from a different task, the request is
ignored and a return code of 20 is returned.

Buffer and Buffer Length Parameters
Parameter 2 specifies the address of a buffer and parameter 3 specifies the buffer
length. These two parameters are not used for the INIT, TERM, and CLOSE
functions.

On input for a WRITE function, the buffer address points to a buffer that contains
the record to be written. The buffer length parameter specifies the length of the
data to be written from the buffer. The caller must provide the buffer address and
length.

For the WRITE function, if data is truncated during the write operation, the I/O
routine returns the length of the data that was actually written in the buffer length
parameter. A return code of 16 is also returned.

On output for a READ or READX function, the buffer address points to a buffer that
contains the record that was read. The buffer length parameter specifies the length
of the data being returned in the buffer.

For a READ or READX function, the I/O routine obtains the buffer needed to store
the record. The caller must copy the data that is returned into its own storage
before calling the I/O routine again for another request. The buffers are reused for
subsequent I/O requests.

 Chapter 16. Replaceable Routines and Exits 16-23

 I/O Routine

On output for an OPENR, OPENW, or OPENX function, the buffer address points
to the data set information block, which is an area in storage that contains
information about the file. The buffer length parameter returns the length of the data
set information block (DSIB) whose address is being returned. “Data Set
Information Block” on page 16-25 describes the format of this area. TSO/E
provides a mapping macro, IRXDSIB, that you can use to map the buffer area
returned for an open request.

For an OPENR, OPENW, or OPENX function, all of the information in the data set
information block does not have to be returned. The buffer length must be large
enough for all of the information being returned about the file or unpredictable
results can occur. The data set information block buffer must be large enough to
contain the flags field and any fields that have been set, as indicated by the flags
field (see page 16-25).

REXX does not check the content of the buffer for valid or printable characters. Any
hexadecimal characters may be passed.

The buffers that the I/O routine returns are reserved for use by the environment
block (ENVBLOCK) under which the original I/O request was made. The buffer
should not be used again until:

� A subsequent I/O request is made for the same environment block, or

� The I/O routine is called to terminate the environment represented by the
environment block (TERM function), in which case, the I/O buffers are freed
and the storage is made available to the system.

Any replaceable I/O routine must conform to this procedure to ensure that the exec
that is currently running accesses valid data.

If you provide your own replaceable I/O routines, your routine must support all of
the functions that the system-supplied I/O routine performs. All open requests must
open the specified file. However, for an open request, your replaceable I/O routine
need only fill in the data set information block fields for the logical record length
(LRECL) and its corresponding flag bit. These fields are DSIB_LRECL and
DSIB_LRECL_FLAG. The language processor needs these two fields to determine
the line length being used for its write operations. The language processor will
format all of its output lines to the width that is specified by the LRECL field. Your
routine can specify a LRECL (DSIB_LRECL field) of 0, which means that the
language processor will format its output using a width of 80 characters, which is
the default.

When the I/O routine is called with the TERM function, all buffers are freed.

Line Number Parameter
The line number parameter (parameter 5) is not used for the INIT, OPENR,
OPENW, OPENX, TERM, or CLOSE functions. The parameter is used as an input
parameter for the WRITE function and as an output parameter for the READ and
READX functions.

If you are writing to a DD that is opened for update, you can use this parameter to
verify the record being updated. The parameter must be either:

16-24 OS/390 V2R8.0 TSO/E REXX Reference

 I/O Routine

� A non-zero number that is checked against the record number of the last
record that was read for update. This ensures that the correct record is
updated. If the record numbers are identical, the record is updated. If not, the
record is not written and a return code of 20 is returned.

� 0 - No record verification is done. The last record that was read is
unconditionally updated.

If you are writing to a DD that is opened for output, the line number parameter is
ignored.

On output for the READ or READX functions, the parameter returns the absolute
record number of the last logical record that was read.

Data Set Information Block
The data set information block is a control block that contains information about a
file that the I/O replaceable routine opens. For an OPENR, OPENW, or OPENX
function request, the I/O routine returns the address of the data set information
block (DSIB) in parameter 2, and the length of the DSIB in parameter 3. TSO/E
provides a mapping macro IRXDSIB you can use to map the block. The mapping
macro is in SYS1.MACLIB.

Figure 16-7 shows the format of the control block.

Figure 16-7 (Page 1 of 3). Format of the Data Set Information Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

0 8 ID An eight character string that identifies the
information block. It contains the
characters ‘IRXDSIB’.

8 2 LENGTH The length of the data set information
block.

10 2 — Reserved.

12 8 DDNAME An eight character string that specifies the
ddname for which information is being
returned. This is the DD that the I/O
routine opened.

20 4 FLAGS A fullword of bits that are used as flags.
Only the first nine bits are used. The
remaining bits are reserved.

The flag bits indicate whether information
is returned in the fields at offset +24 -
offset +42. Each flag bit corresponds to
one of the remaining fields in the control
block. Information about how to use the
flag bits and their corresponding fields is
provided after the table.

 Chapter 16. Replaceable Routines and Exits 16-25

 I/O Routine

Figure 16-7 (Page 2 of 3). Format of the Data Set Information Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

24 2 LRECL The logical record length (LRECL) of the
data set. This field is required.

Note: The LRECL field and its
corresponding flag bit (at offset
+20) are the last required fields to
be returned in the data set
information block. The remaining
fields are not required.

26 2 BLKSZ The block size (BLKSIZE) of the data set.

28 2 DSORG The data set organization (DSORG) of the
data set.

� ‘0200’ - Data set is partitioned.
� ‘0300’ - Data set is partitioned and

unmovable.
� ‘4000’ - Data set is sequential.
� ‘4100’ - Data set is sequential and

unmovable.

30 2 RECFM The record format (RECFM) of the data
set.

� ‘F ’ - Fixed
� ‘FB’ - Fixed blocked
� ‘V ’ - Variable
� ‘VB’ - Variable blocked

32 4 GET_CNT The total number of records read by the
GET macro for this DCB.

36 4 PUT_CNT The total number of records written by the
PUT or PUTX macro for this DCB.

40 1 IO_MODE The mode in which the DCB was opened.

� ‘R’ - open for READ (uses GET
macro)

� ‘X’ - open for READX (update uses
GET and PUTX macros)

� ‘W’ - open for WRITE (uses PUT
macro)

� ‘L’ - open for exec load (uses READ
macro)

41 1 CC Carriage control information.

� ‘A’ - ANSI carriage control
� ‘M’ - machine carriage control
� ‘ ’ - no carriage control

42 1 TRC IBM 3800 Printing Subsystem character
set control information.

� ‘Y’ - character set control characters
are present

� ‘N’ - character set control characters
are not present

16-26 OS/390 V2R8.0 TSO/E REXX Reference

 I/O Routine

At offset +20 in the data set information block, there is a fullword of bits that are
used as flags. Only the first nine bits are used. The remaining bits are reserved.
The bits are used to indicate whether information is returned in each field in the
control block starting at offset +24. A bit must be set on if its corresponding field is
returning a value. If the bit is set off, its corresponding field is ignored.

The flag bits are:

� The LRECL flag. This bit must be on and the logical record length must be
returned at offset +24. The logical record length is the only data set attribute
that is required. The remaining eight attributes starting at offset +26 in the
control block are optional.

� The BLKSIZE flag. This bit must be set on if you are returning the block size at
offset +26.

� The DSORG flag. This bit must be set on if you are returning the data set
organization at offset +28.

� The RECFM flag. This bit must be set on if you are returning the record format
at offset +30.

� The GET flag. This bit must be set on if you are returning the total number of
records read at offset +32.

� The PUT flag. This bit must be set on if you are returning the total number of
records written at offset +36.

� The MODE flag. This bit must be set on if you are returning the mode in which
the DCB was opened at offset +40.

� The CC flag. This bit must be set on if you are returning carriage control
information at offset +41.

� The TRC flag. This bit must be set on if you are returning IBM 3800 Printing
Subsystem character set control information at offset +42.

Figure 16-7 (Page 3 of 3). Format of the Data Set Information Block

Offset
(Decimal)

Number of
Bytes

Field
Name

Description

43 1 — Reserved.

44 4 — Reserved.

 Return Specifications
For the I/O routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-8 shows the return codes for the I/O routine. The routine returns the
return code in register 15. If you specify the return code parameter (parameter 7),
the I/O routine also returns the return code in the parameter.

 Chapter 16. Replaceable Routines and Exits 16-27

 Host Command Environment Routine

Figure 16-8. Return Codes for the I/O Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

For an OPENR, OPENW, or OPENX request, the DCB was
successfully opened. The I/O routine returns the address of an area
of storage that contains information about the file. The address is
returned in the buffer address parameter (parameter 2). You can use
the IRXDSIB mapping macro to map this area.

4 Processing was successful. For a READ, READX, or WRITE, the
DCB was opened.

For an OPENR, OPENW, or OPENX, the DCB was already open in
the requested mode. The I/O routine returns the address of an area of
storage that contains information about the file. The address is
returned in the buffer address parameter (parameter 2). You can use
the IRXDSIB mapping macro to map this area.

8 This return code is used only for a READ or READX function.
Processing was successful. However, no record was read because
the end-of-file (EOF) was reached.

12 An OPENR, OPENW, or OPENX request was issued and the DCB
was already open, but not in the requested mode. The I/O routine
returns the address of an area of storage that contains information
about the file. The address is returned in the buffer address
parameter (parameter 2). You can use the IRXDSIB mapping macro
to map this area.

16 Output data was truncated for a write or update operation (WRITE
function). The I/O routine returns the length of the data that was
actually written in parameter 3.

20 Processing was not successful. The requested function is not
performed. One possibility is that a ddname was not specified. An
error message that describes the error is also issued.

24 Processing was not successful. During an OPENR, OPENX, READ,
or READX function, an empty data set was found in a concatenation
of data sets. The file was not successfully opened. The requested
function is not performed.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

Host Command Environment Routine
The host command environment replaceable routine is called to process all host
commands for a specific host command environment (see page 2-22 for the
definition of “host commands”). A REXX exec may contain host commands to be
processed. When the language processor processes an expression that it does not
recognize as a keyword instruction or function, it evaluates the expression and then
passes the string to the active host command environment. A specific environment
is in effect when the command is processed. The host command environment table
(SUBCOMTB table) is searched for the name of the active host command

16-28 OS/390 V2R8.0 TSO/E REXX Reference

 Host Command Environment Routine

environment. The corresponding routine specified in the table is then called to
process the string. For each valid host command environment, there is a
corresponding routine that processes the command.

In an exec, you can use the ADDRESS instruction to route a command string to a
specific host command environment and therefore to a specific host command
environment replaceable routine.

The names of the routines that are called for each host command environment are
specified in the ROUTINE field of the host command environment table. “Host
Command Environment Table” on page 14-25 describes the table.

You can provide your own replaceable routine for any one of the default
environments provided. You can also define your own host command environment
that handles certain types of “host commands” and provide a routine that processes
the commands for that environment.

 Entry Specifications
For a host command environment routine, the contents of the registers on entry are
described below. For more information about register 0, see “Using the
Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All
parameters are passed on the call. The high-order bit of the last address in the
parameter list must be set to 1 to indicate the end of the parameter list.
Figure 16-9 describes the parameters for a host command environment
replaceable routine.

 Chapter 16. Replaceable Routines and Exits 16-29

 Host Command Environment Routine

Figure 16-9. Parameters for a Host Command Environment Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The name of the host command environment that
is to process the string. The name is left justified,
in uppercase, and padded to the right with blanks.

Parameter 2 4 Specifies the address of the string to be processed.
REXX does not check the contents of the string for
valid or printable characters. Any characters can be
passed to the routine. REXX obtains and frees the
storage required to contain the string.

Parameter 3 4 Specifies the length of the string to be processed.

Parameter 4 4 Specifies the address of the user token. The user
token is a 16-byte field in the SUBCOMTB table for
the specific host command environment. “Host
Command Environment Table” on page 14-25
describes the user token field.

Parameter 5 4 Contains the return code of the host command that
was processed. This parameter is used only on
output. The value is a signed binary number.

After the host command environment replaceable
routine returns the value, REXX converts it into a
character representation of its equivalent decimal
number. The result of this conversion is placed into
the REXX special variable RC and is available to
the exec that invoked the command. Positive binary
numbers are represented as unsigned decimal
numbers. Negative binary numbers are represented
as signed decimal numbers. For example:

� If the command's return code is X'FFFFFF3E',
the special variable RC contains -193.

� If the command's return code is X'0000000C',
the special variable RC contains 12.

If you provide your own host command
environment routines, you should establish a
standard for the return codes that your routine
issues and the contents of this parameter. If a
standard is used, execs that issue commands to a
particular host command environment can check
for errors in command processing using consistent
REXX instructions. With the host command
environments that TSO/E provides, a return code of
-3 in the REXX special variable RC indicates the
environment could not locate the host command.
The -3 return code is a standard return code for
host commands that could not be processed. If
your routine processes an invalid command, it is
recommended that you return X'FFFFFFFE' as
the return code, which means the REXX special
variable RC will contain a -3.

16-30 OS/390 V2R8.0 TSO/E REXX Reference

 Host Command Environment Routine

 Error Recovery
When the host command environment routine is called, an error recovery routine
(ESTAE) is in effect. The one exception is if the language processor environment
was initialized with the NOESTAE flag set on. In this case, an ESTAE is not in
effect unless the host command environment replaceable routine establishes its
own ESTAE.

Unless the replaceable routine establishes its own ESTAE, REXX traps all abends
that occur. This includes abends that occur in any routines that are loaded by the
host command environment replaceable routine to process the command to be
executed. If an abend occurs and the host command environment routine has not
established a new level of ESTAE, REXX:

� Issues message IRX0250E if a system abend occurred or message IRX0251E
if a user abend occurred

� Issues message IRX0255E

The language processor is restarted with a FAILURE condition enabled. See
Chapter 7, Conditions and Condition Traps for information about conditions and
condition traps. The special variable RC will be set to the decimal equivalent of the
abend code as described in Figure 16-9 on page 16-29 for the return code
parameter (parameter 5).

 Return Specifications
For a host command environment routine, the contents of the registers on return
are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-10 shows the return codes for the host command environment routine.
These are the return codes from the replaceable routine itself, not from the
command that the routine processed. The command's return code is passed back
in parameter 5. See Chapter 7, Conditions and Condition Traps for information
about ERROR and FAILURE conditions and condition traps.

Figure 16-10 (Page 1 of 2). Return Codes for the Host Command Environment
Routine

Return Code Description

Less than or equal
to -13

If the value of the return code is -13 or less than -13, the routine
requested that the HOSTFAIL flag be turned on. This is a
TRACE NEGATIVE condition and a FAILURE condition is
trapped in the exec.

-1 – -12 If the value of the return code is from -1 to -12 inclusive, the
routine requested that the HOSTERR flag be turned on. This is a
TRACE ERROR condition and an ERROR condition is trapped in
the exec.

0 No error condition was indicated by the routine. No error
conditions are trapped (for example, to indicate a TRACE
condition).

 Chapter 16. Replaceable Routines and Exits 16-31

 Data Stack Routine

Figure 16-10 (Page 2 of 2). Return Codes for the Host Command Environment
Routine

Return Code Description

1 – 12 If the value of the return code is 1 - 12 inclusive, the routine
requested that the HOSTERR flag be turned on. This is a
TRACE ERROR condition and an ERROR condition is trapped in
the exec.

Greater than or
equal to 13

If the value of the return code is 13 or greater than 13, the
routine requested that the HOSTFAIL flag be turned on. This is a
TRACE NEGATIVE condition and a FAILURE condition is
trapped in the exec.

Data Stack Routine
The data stack routine is called to handle any requests for data stack services. The
routine is called when an exec wants to perform a data stack operation or when a
program needs to process data stack-related operations. The routine is called for
the following:

 � PUSH
 � PULL
 � QUEUE
 � QUEUED()
 � MAKEBUF
 � DROPBUF
 � NEWSTACK
 � DELSTACK
 � QSTACK
 � QBUF
 � QELEM
 � MARKTERM
 � DROPTERM

The name of the system-supplied data stack routine is IRXSTK. If you provide your
own data stack routine, your routine can handle all of the data stack requests or
your routine can perform pre-processing and then call the system routine, IRXSTK.
If your routine handles the data stack requests without calling the system-supplied
routine, your routine must manipulate its own data stack.

If your data stack routine performs pre-processing and then calls the system routine
IRXSTK, your routine must pass the address of the environment block for the
language processor environment to IRXSTK.

An application running in any address space can invoke IRXSTK to operate on the
data stack. The only requirement is that a language processor environment has
been initialized.

Parameter 1 indicates the type of function to be performed against the data stack. If
the data stack routine is called to pull an element off the data stack (PULL function)
and the data stack is empty, a return code of 4 indicates an empty data stack.
However, you can use the PULLEXTR function to bypass the data stack and read
from the input stream (for example, from the terminal in TSO/E foreground).

16-32 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack Routine

If the data stack routine is called and a data stack is not available, all services
operate as if the data stack were empty. A PUSH or QUEUE will seem to work, but
the pushed or queued data is lost. QSTACK returns a 0. NEWSTACK will seem to
work, but a new data stack will not be created and any subsequent data stack
functions will operate as if the data stack is permanently empty.

The maximum string that can be placed on the data stack is one byte less than 16
MB. REXX does not check the content of the string, so the string can contain any
hexadecimal characters.

If multiple data stacks are associated with a single language processor
environment, all data stack operations are performed on the last data stack that
was created under the environment. If a language processor environment is
initialized with the NOSTKFL flag off, a data stack is always available to execs that
run in that environment. The language processor environment might not have its
own data stack. The environment might share the data stack with its parent
environment depending on the setting of the NEWSTKFL flag when the
environment is initialized.

If the NEWSTKFL flag is on, a new data stack is initialized for the new
environment. If the NEWSTKFL flag is off and a previous environment on the chain
of environments was initialized with a data stack, the new environment shares the
data stack with the previous environment on the chain. “Using the Data Stack in
Different Environments” on page 14-69 describes how the data stack is shared
between language processor environments.

The name of the data stack replaceable routine is specified in the STACKRT field
in the module name table. “Module Name Table” on page 14-20 describes the
format of the module name table.

 Entry Specifications
For the data stack replaceable routine, the contents of the registers on entry are
described below. The address of the environment block can be specified in either
register 0 or in the environment block address parameter in the parameter list. For
more information, see “Using the Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure 16-11 describes the parameters for the data stack routine.

 Chapter 16. Replaceable Routines and Exits 16-33

 Data Stack Routine

Figure 16-11 (Page 1 of 2). Parameters for the Data Stack Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is
left justified, in uppercase, and padded to the right
with blanks. The valid functions are:

PUSH PULL
QUEUE PULLEXTR
MAKEBUF QUEUED
NEWSTACK DROPBUF
QSTACK DELSTACK
QELEM QBUF
DROPTERM MARKTERM

“Functions Supported for the Data Stack Routine”
on page 16-35 describes the functions in more
detail.

Parameter 2 4 The address of a fullword in storage that points to
a data stack element, a parameter string, or a
fullword of zeros. The use of this parameter
depends on the function requested. If the function
is DROPBUF, the parameter points to a character
string containing the number of the data stack
buffer from which to start deleting data stack
elements.

If the function is a function that places an element
on the data stack (for example, PUSH), the
address points to a string of bytes that the caller
wants to place on the data stack. There are no
restrictions on the string. The string can contain
any combination of hexadecimal characters.

For PULL and PULLEXTR, this parameter is not
used on input. On output, it specifies the address
of the string that was returned. For PULL, the string
was pulled from the data stack. For PULLEXTR,
the string was read from the input stream, for
example, the terminal or the SYSTSIN file. It is
recommended that you do not change the original
string and that you copy the original string into your
own dynamic storage. In addition, the original string
will no longer be valid when another data stack
operation is performed.

Parameter 3 4 The length of the string pointed to by the address
in parameter 2.

Parameter 4 4 A fullword binary number into which the result from
the call is stored. The value is the result of the
function performed and is valid only when the
return code from the routine is 0. For more
information about the results that can be returned
in parameter 4, see the descriptions of the
supported functions below and the individual
descriptions of the data stack commands in this
book.

16-34 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack Routine

Figure 16-11 (Page 2 of 2). Parameters for the Data Stack Routine

Parameter Number of
Bytes

Description

Parameter 5 4 The address of the environment block that
represents the environment in which you want the
data stack replaceable routine to run. This
parameter is optional.

If you specify a non-zero value for the environment
block address parameter, the data stack routine
uses the value you specify and ignores register 0.
However, the routine does not check whether the
address is valid. Therefore, you must ensure the
address you specify is correct or unpredictable
results can occur. For more information, see “Using
the Environment Block Address” on page 16-4.

Parameter 6 4 A 4-byte field that the data stack replaceable
routine uses to return the return code.

The return code parameter is optional. If you use
this parameter, the data stack routine returns the
return code in the parameter and also in register
15. Otherwise, the routine uses register 15 only. If
the parameter list is invalid, the return code is
returned in register 15 only. “Return Codes” on
page 16-37 describes the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on in
the preceding parameter's address. For more
information about parameter lists, see “Parameter
Lists for TSO/E REXX Routines” on page 12-5.

Functions Supported for the Data Stack Routine
The function to be performed by the data stack routine is passed in parameter 1.
The valid functions are described below. The functions operate on the currently
active data stack. For more information about each of the functions, see the
individual descriptions of the corresponding data stack commands in this book.

PUSH
Adds an element to the top of the data stack.

PULL
Retrieves an element off the top of the data stack.

PULLEXTR
Bypasses the data stack and reads a string from the input stream. In
TSO/E foreground, PULLEXTR reads from the terminal. In TSO/E
background, PULLEXTR reads from SYSTSIN. In non-TSO/E address
spaces, the PULLEXTR function reads from the input stream as defined by
the INDD field in the module name table. The default is SYSTSIN.

PULLEXTR is useful if the data stack is empty or you want to bypass the
data stack entirely. For example, suppose you use the PULL function and
the data stack routine returns with a return code of 4, which indicates that
the data stack is empty. You can then use the PULLEXTR function to read
a string from the input stream.

 Chapter 16. Replaceable Routines and Exits 16-35

 Data Stack Routine

QUEUE
Adds an element at the logical bottom of the data stack. If there is a buffer
on the data stack, the element is placed immediately above the buffer.

QUEUED
Returns the number of elements on the data stack, not including buffers.

MAKEBUF
Places a buffer on the top of the data stack. The return code from the data
stack routine is the number of the new buffer. The data stack initially
contains one buffer (buffer 0), but MAKEBUF can be used to create
additional buffers on the data stack. The first time MAKEBUF is issued for
a data stack, the value 1 is returned.

DROPBUF n
Removes all elements from the data stack starting from the “n”th buffer. All
elements that are removed are lost. If n is not specified, the last buffer that
was created and all subsequent elements that were added are deleted.

For example, if MAKEBUF was issued six times (that is, the last return
code from the MAKEBUF function was 6), and the command

DROPBUF 2

is issued, five buffers are deleted. These are buffers 2, 3, 4, 5, and 6.

DROPBUF 0 removes everything from the currently active data stack.

NEWSTACK
Creates a new data stack. The previously active data stack can no longer
be accessed until a DELSTACK is issued.

DELSTACK
Deletes the currently active data stack. All elements on the data stack are
lost. If the active data stack is the primary data stack (that is, only one data
stack exists and a NEWSTACK was not issued), all elements on the data
stack are deleted, but the data stack is still operational.

QSTACK
Returns the number of data stacks that are available to the running REXX
exec.

QBUF
Returns the number of buffers on the active data stack. If the data stack
contains no buffers, a 0 is returned.

QELEM
Returns the number of elements from the top of the data stack to the next
buffer. If QBUF = 0, then QELEM = 0.

MARKTERM
Marks the top of the active data stack with the equivalent of a TSO/E
terminal element, which is an element for the TSO/E input stack. The data
stack now functions as if it were just initialized. The previous data stack
elements cannot be accessed until a DROPTERM is issued. If you issue a
MARKTERM, you must issue a corresponding DROPTERM to delete the
terminal element that MARKTERM created.

MARKTERM is available only to calling programs to put a terminal element
on the data stack. It is not available to REXX execs.

16-36 OS/390 V2R8.0 TSO/E REXX Reference

 Data Stack Routine

DROPTERM
Removes all data stack elements that were added after a MARKTERM was
issued, including the terminal element created by MARKTERM. The data
stack status is restored to the same status prior to the MARKTERM.

DROPTERM is available only to calling programs to remove a terminal
element from the data stack. It is not available to REXX execs.

 Return Specifications
For the data stack routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-12 shows the return codes for the data stack routine. These are the
return codes from the routine itself. They are not the return codes from any of the
TSO/E REXX commands, such as NEWSTACK, DELSTACK, and QBUF that are
issued. The command's return code is placed into the REXX special variable RC,
which the exec can retrieve.

The data stack routine returns the return code in register 15. If you specify the
return code parameter (parameter 6), the routine also returns the return code in the
parameter.

Figure 16-12. Return Codes for the Data Stack Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

4 The data stack is empty. A return code of 4 is used only for the PULL
function.

8 A terminal marker, created by the MARKTERM function, was not on
the active data stack. A return code of 8 is used only for the
DROPTERM function.

20 Processing was not successful. An error condition occurred. The
requested function is not performed. An error message describing the
error may be issued.

If there is no error message, REXX may have been invoked
authorized. You cannot invoke a REXX exec or REXX service as
authorized in either TSO/E foreground or background.

28 Processing was not successful. A language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

 Chapter 16. Replaceable Routines and Exits 16-37

 Storage Management Routine

Storage Management Routine
REXX storage routines handle storage and have pools of storage available to
satisfy storage requests for REXX processing. If the pools of storage available to
the REXX storage routines are depleted, the routines then call the storage
management routine to request a storage pool. A storage pool is contiguous
storage that can be used by the REXX storage routines to satisfy storage requests
for REXX processing.

You can provide your own storage management routine that interfaces with the
REXX storage routines. If you provide your own storage management routine, when
the pools of storage are depleted, the REXX storage routines will call your storage
management routine for a storage pool. If you do not provide your own storage
management routine, GETMAIN and FREEMAIN are used to handle storage pool
requests. Providing your own storage management routine gives you an alternative
to the system using GETMAIN and FREEMAIN.

The storage management routine is called to obtain or free a storage pool for
REXX processing. The routine supplies a storage pool that is then managed by the
REXX storage routines.

The storage management routine is called when:

� REXX processing requests storage and a sufficient amount of storage is not
available in the pools of storage the REXX storage routines use.

� A storage pool needs to be freed. A storage pool may need to be freed when a
language processor environment is terminated or when the REXX storage
routines determine that a particular pool of storage can be freed.

Specify the name of the storage management routine in the GETFREER field in the
module name table. “Module Name Table” on page 14-20 describes the format of
the module name table.

 Entry Specifications
For the storage management replaceable routine, the contents of the registers on
entry are described below. For more information about register 0, see “Using the
Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. All
parameters are passed on the call. The high-order bit of the last address in the
parameter list must be set to 1 to indicate the end of the parameter list.

16-38 OS/390 V2R8.0 TSO/E REXX Reference

 Storage Management Routine

Figure 16-13 on page 16-39 describes the parameters for the storage
management routine.

Figure 16-13. Parameters for the Storage Management Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The name is left
justified, in uppercase, and padded to the right with
blanks. The following functions are valid:

GET
Obtain a storage pool above 16 MB in
virtual storage

GETLOW
Obtain a storage pool below 16 MB in
virtual storage

FREE
Free a storage pool

Parameter 2 4 Specifies the address of a storage pool. This
parameter is required as an input parameter for the
FREE function. It specifies the address of the
storage pool the routine should free.

This parameter is used as an output parameter for
the GET and GETLOW functions. The parameter
specifies the address of the storage pool the
routine obtained.

Parameter 3 4 Specifies the size of the storage pool, in bytes, to
be freed or that was obtained. On input for the
FREE function, this specifies the size of the
storage pool to be freed. This is the size of the
storage pool pointed to by parameter 2. All
requests for the FREE function will be for a single
storage pool that was previously obtained using
either GET or GETLOW.

On output for the GET and GETLOW functions, the
parameter specifies the size of the storage pool the
routine obtained. The size obtained must be at
least the size that was requested in parameter 4.
The TSO/E storage routines will use the size
returned in parameter 3.

Parameter 4 4 Specifies the size of the storage pool, in bytes, to
be obtained. This parameter is used as an input
parameter for the GET and GETLOW functions. It
specifies the size of the storage pool that is being
requested. The size of the storage pool that is
actually obtained is returned in parameter 3.

This parameter is not used for the FREE function.

Parameter 5 4 Specifies the subpool number from which the
storage pool should be obtained. This parameter is
used as input for all functions.

 Chapter 16. Replaceable Routines and Exits 16-39

 User ID Routine

 Return Specifications
For the storage management replaceable routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-14 shows the return codes for the storage management routine.

Figure 16-14. Return Codes for the Storage Management Replaceable Routine

Return Code Description

0 Processing was successful. The requested function completed.

20 Processing was not successful. An error condition occurred. Storage
was not obtained or freed.

User ID Routine
The user ID routine returns the same value as the USERID built-in function. The
system calls the user ID replaceable routine whenever the USERID built-in function
is issued in a language processor environment that is not integrated into TSO/E.
The routine then returns either the user ID, stepname, or jobname. The name of
the system-supplied user ID routine is IRXUID.

The name of the user ID replaceable routine is specified in the IDROUT field in the
module name table. “Module Name Table” on page 14-20 describes the format of
the module name table.

 Entry Specifications
For the user ID replaceable routine, the contents of the registers on entry are
described below. The address of the environment block can be specified in either
register 0 or in the environment block address parameter in the parameter list. For
more information, see “Using the Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Register 1 Address of the parameter list

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
Register 1 contains the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

16-40 OS/390 V2R8.0 TSO/E REXX Reference

 User ID Routine

Figure 16-15 on page 16-41 describes the parameters for the user ID routine.

Figure 16-15. Parameters for the User ID Replaceable Routine

Parameter Number of
Bytes

Description

Parameter 1 8 The function to be performed. The function name is
left justified, in uppercase, and padded to the right
with blanks. The valid functions are USERID and
TSOID. “Functions Supported for the User ID
Routine” on page 16-42 describes the functions in
detail.

Parameter 2 4 An address of storage into which the routine places
the user ID. On output, the area that this address
points to contains a character representation of the
user ID.

Parameter 3 4 The length of storage pointed to by the address in
parameter 2. On input, this value is the maximum
length of the area that is available to contain the
ID. The length supplied is 160 bytes.

The routine must change this parameter and return
the actual length of the character string it returns. If
the routine returns a 0, the USERID built-in function
returns a null value.

If the routine copies more characters into the
storage area than the storage provided, REXX may
abend and any results will be unpredictable.

Parameter 4 4 The address of the environment block that
represents the environment in which you want the
user ID replaceable routine to run. This parameter
is optional.

If you specify a non-zero value for the environment
block address parameter, the user ID routine uses
the value you specify and ignores register 0.
However, the routine does not check whether the
address is valid. Therefore, you must ensure the
address you specify is correct or unpredictable
results can occur. For more information, see “Using
the Environment Block Address” on page 16-4.

Parameter 5 4 A 4-byte field that the user ID replaceable routine
uses to return the return code.

The return code parameter is optional. If you use
this parameter, the user ID routine returns the
return code in the parameter and also in register
15. Otherwise, the routine uses register 15 only. If
the parameter list is invalid, the return code is
returned in register 15 only. “Return Codes” on
page 16-42 describes the return codes.

If you do not want to use the return code
parameter, you can end the parameter list at a
preceding parameter. Set the high-order bit on in
the preceding parameter's address. For more
information about parameter lists, see “Parameter
Lists for TSO/E REXX Routines” on page 12-5.

 Chapter 16. Replaceable Routines and Exits 16-41

 User ID Routine

Functions Supported for the User ID Routine
The function to be performed by the user ID routine is specified in parameter 1.
The valid functions are described below.

USERID
Returns the same value that the USERID built-in function would return in
an environment that is not integrated into TSO/E. The value returned may
be a user ID, a stepname, or a jobname. You can use the USERID function
only in environments that are not integrated into TSO/E.

TSOID
Returns the same value that the USERID built-in function would return in
an environment that is integrated into TSO/E. The value returned is the
TSO/E user ID. You can use the TSOID function only in a TSO/E address
space in an environment that is integrated into TSO/E.

The TSOID function is intended for use if an application program calls the
user ID routine, IRXUID, in a language processor environment that is
integrated into TSO/E to obtain the user ID. You can also use the TSOID
function if you write your own user ID routine and then call your routine
from application programs running in environments that are integrated into
TSO/E.

TSOID is intended only for language processor environments that are
integrated into TSO/E. Because you can replace the user ID routine only in
environments that are not integrated into TSO/E, your replaceable routine
does not have to support the TSOID function.

 Return Specifications
For the user ID replaceable routine, the contents of the registers on return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-16 shows the return codes for the user ID routine. The routine returns
the return code in register 15. If you specify the return code parameter (parameter
5), the user ID routine also returns the return code in the parameter.

Figure 16-16. Return Codes for the User ID Replaceable Routine

Return Code Description

0 Processing was successful. The user ID was returned or a null
character string was returned.

20 Processing was not successful. Either parameter 1 (function) was not
valid or parameter 3 (length) was less than or equal to 0. The user ID
was not obtained.

28 Processing was not successful. The language processor environment
could not be located.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or the
high-order bit of the last address in the parameter list is not set to 1 to
indicate the end of the parameter list.

16-42 OS/390 V2R8.0 TSO/E REXX Reference

 Message Identifier Routine

Message Identifier Routine
The message identifier replaceable routine is called to determine if the message
identifier (message ID) is to be displayed with an error message. The name of the
system-supplied message identifier routine is IRXMSGID.

Note: To permit FORTRAN programs to call IRXMSGID, TSO/E provides an
alternate entry point for the IRXMSGID routine. The alternate entry point
name is IRXMID.

The routine is called whenever a message is to be written when a REXX exec or
REXX routine (for example, IRXEXCOM or IRXIC) is running in:

� A non-TSO/E address space, or

� The TSO/E address space in a language processor environment that was not
integrated into TSO/E (the TSOFL flag is off)

The name of the message identifier replaceable routine is specified in the
MSGIDRT field in the module name table. “Module Name Table” on page 14-20
describes the format of the module name table.

 Entry Specifications
For the message identifier routine, the contents of the registers on entry are
described below. For more information about register 0, see “Using the
Environment Block Address” on page 16-4.

Register 0 Address of the current environment block

Registers 1-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
There is no parameter list for the message identifier routine. Return codes are used
to return information to the caller.

 Return Specifications
For the message identifier replaceable routine, the contents of the registers on
return are:

Registers 0-14 Same as on entry

Register 15 Return code

 Return Codes
Figure 16-17 shows the return codes for the message identifier routine.

Figure 16-17 (Page 1 of 2). Return Codes for the Message Identifier Replaceable
Routine

Return Code Description

0 Display the message identifier (message ID) with the message.

 Chapter 16. Replaceable Routines and Exits 16-43

 Exit Routines

Figure 16-17 (Page 2 of 2). Return Codes for the Message Identifier Replaceable
Routine

Return Code Description

Non-zero Do not display the message identifier (message ID) with the message.

REXX Exit Routines
There are many exit routines you can use to customize REXX processing. The
exits differ from other exit routines that TSO/E provides, such as exits for TSO/E
command processors. Some of the REXX exits have fixed names while others you
name yourself. Several exits receive parameters on entry and others receive no
parameters.

Generally, you use exit routines to customize a particular command or function on a
system-wide basis. You use the REXX exits to customize different aspects of REXX
processing on a language processor environment basis. The following highlights the
exits you can use for REXX. OS/390 TSO/E Customization describes the exits in
more detail. However, many of the exits receive the parameters that a caller
passed on a call to a REXX routine, such as IRXINIT and IRXEXEC. Therefore,
you will need to use OS/390 TSO/E Customization and this book for complete
information.

Some of the REXX exits do not have fixed names. You supply the name yourself
and then define the name in the appropriate fields in the module name table. In the
module name table, you also define the names of replaceable routines you provide.
However, unlike the replaceable routines, which you can provide only in language
processor environments that are not integrated into TSO/E, you can use the REXX
exits in any type of environment (integrated and not integrated into TSO/E). One
exception is the attention handling exit, which is available only in TSO/E (in an
environment that is integrated into TSO/E).

Exits for Language Processor Environment Initialization and
Termination

There are four exits you can use to customize the initialization and termination of
language processor environments in any address space. The names of the four
exits are fixed. If you provide one or more of these exits, the exit is invoked
whenever the IRXINIT and IRXTERM routines are called. The exits are invoked
whenever a user explicitly calls IRXINIT and IRXTERM or when the system
automatically calls the routines to initialize and terminate a language processor
environment. The exits are briefly described below. OS/390 TSO/E Customization
provides more information about each exit. Chapter 15, “Initialization and
Termination Routines” on page 15-1 describes the IRXINIT and IRXTERM routines
and their parameters.

IRXINITX
This is the pre-environment initialization exit routine. The exit is invoked
whenever the initialization routine IRXINIT is called to initialize a new
language processor environment. The exit receives control before IRXINIT
evaluates any parameters to use to initialize the environment. The exit
routine receives the same parameters that IRXINIT receives.

16-44 OS/390 V2R8.0 TSO/E REXX Reference

 Exit Routines

You can provide a pre-environment initialization exit in any type of
language processor environment (integrated and not integrated into
TSO/E).

IRXITTS or IRXITMV
There are two post-environment initialization exit routines:

� IRXITTS for environments that are integrated into TSO/E (the TSOFL
flag is on)

� IRXITMV for environments that are not integrated into TSO/E (the
TSOFL flag is off)

The IRXITTS exit is invoked whenever IRXINIT is called to initialize a new
environment and the environment is to be integrated into TSO/E. The
IRXITMV exit is invoked whenever IRXINIT is called to initialize a new
environment and the environment is not to be integrated into TSO/E. The
exits receive control after IRXINIT has initialized the language processor
environment and has created the control blocks for the environment, such
as the environment block and the parameter block. The exits do not receive
any parameters.

IRXTERMX
This is the environment termination exit routine. The exit is invoked
whenever the termination routine IRXTERM is called to terminate a
language processor environment. The exit receives control before
IRXTERM terminates the environment. The exit does not receive any
parameters.

You can provide an environment termination exit in any type of language
processor environment (integrated and not integrated into TSO/E).

Exec Initialization and Termination Exits
You can provide exits for exec initialization and termination. The exec initialization
exit is invoked after the variable pool for a REXX exec has been initialized, but
before the language processor processes the first instruction in the exec. The exec
termination exit is invoked after a REXX exec has completed, but before the
variable pool for the exec has been terminated.

The exec initialization and termination exits do not have fixed names. You name
the exits yourself and define the names in the following fields in the module name
table:

� EXECINIT - for the exec initialization exit
� EXECTERM - for the exec termination exit

The two exits are used on a language processor environment basis. You can
provide an exec initialization and exec termination exit in any type of environment
(integrated and not integrated into TSO/E). You define the exit names in the
module name table by:

� Providing your own parameters module that replaces the default module, or

� Calling IRXINIT to initialize a language processor environment and passing the
module name table on the call.

 Chapter 16. Replaceable Routines and Exits 16-45

 Exit Routines

“Changing the Default Values for Initializing an Environment” on page 14-41
describes how to provide your own parameters module. Chapter 15, “Initialization
and Termination Routines” on page 15-1 describes the IRXINIT routine.

Exec Processing (IRXEXEC) Exit Routine
You can provide an exec processing exit that is invoked whenever the IRXEXEC
routine is called to invoke a REXX exec. The IRXEXEC routine can be explicitly
called by a user or called by the system to invoke an exec. IRXEXEC is always
called by the system to handle exec processing. For example, if you run a REXX
exec in TSO/E using the EXEC command, the IRXEXEC routine is called to invoke
the exec. If you provide an exit routine for IRXEXEC, the exit is invoked.

The exit for the IRXEXEC routine does not have a fixed name. You name the exit
yourself and define the name in the IRXEXECX field in the module name table.

The exit is used on a language processor environment basis. You can provide an
exec processing exit in any type of environment (integrated and not integrated into
TSO/E). You define the exit name in the module name table by:

� Providing your own parameters module that replaces the default module, or

� Calling IRXINIT to initialize a language processor environment and passing the
module name table on the call.

“Changing the Default Values for Initializing an Environment” on page 14-41
describes how to provide your own parameters module. Chapter 15, “Initialization
and Termination Routines” on page 15-1 describes the IRXINIT routine.

The exit is invoked before the IRXEXEC routine loads the exec, if the exec is not
preloaded, and before IRXEXEC evaluates any parameters passed on the call.

Attention Handling Exit Routine
You can provide an attention handling exit routine that is invoked whenever an
exec is running in the TSO/E address space (in a language processor environment
that is integrated into TSO/E) and an attention interruption occurs. The exit does
not have a fixed name. You name the exit yourself and define the name in the
ATTNROUT field in the module name table.

The exit is used on a language processor environment basis. You can provide an
attention handling exit in the TSO/E address space only, in an environment that is
integrated into TSO/E (the TSOFL flag is on). You define the exit name in the
module name table by:

� Providing your own parameters module that replaces the default IRXTSPRM or
IRXISPRM module, or

� Calling IRXINIT to initialize a language processor environment and passing the
module name table on the call.

“Changing the Default Values for Initializing an Environment” on page 14-41
describes how to provide your own parameters module. Chapter 15, “Initialization
and Termination Routines” on page 15-1 describes the IRXINIT routine.

The exit is invoked when a REXX exec is running and the user presses the
attention interrupt key (usually the PA1 key). The exit gets control before REXX
attention processing issues the prompting message, IRX0920I, that asks the user to

16-46 OS/390 V2R8.0 TSO/E REXX Reference

 Exit Routines

enter a null line to continue exec processing or one of the immediate commands.
The exit is useful if your installation users are unfamiliar with TSO/E READY mode.

You can write an exit to:

� Halt the interpretation of the exec using either the EXECUTIL HI command or
the IRXIC routine

� Request that REXX attention processing not display the attention prompting
message

� Prohibit the use of the HE immediate command during REXX attention
processing.

For information about how the attention handling exit can communicate with REXX
attention processing, see OS/390 TSO/E Customization.

If you provide an attention handling exit routine, the exit should not invoke any
authorized commands or programs. Additionally, any unauthorized commands or
programs that the exit invokes should be invoked from an unauthorized TSO
service facility environment. Otherwise, unpredictable results may occur.

To invoke an unauthorized command or program from an unauthorized TSO
service facility environment, you can request the TSO service facility to set up an
unauthorized TSO service facility environment for the command or program
invocations. For information about using the TSO service facility, see OS/390
TSO/E Programming Services.

 Chapter 16. Replaceable Routines and Exits 16-47

 Exit Routines

16-48 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

Appendix A. Double-Byte Character Set (DBCS) Support

A Double-Byte Character Set supports languages that have more characters than
can be represented by 8 bits (such as Korean Hangeul and Japanese kanji). REXX
has a full range of DBCS functions and handling techniques.

These include:

� String handling capabilities with DBCS characters

� OPTIONS modes that handle DBCS characters in literal strings, symbols (for
example, variable names and labels), comments, and data operations

� A number of functions that specifically support the processing of DBCS
character strings

� Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as
described in Chapter 4, “Functions” on page 4-1. This explains how the
characters in a result are obtained from the characters of the arguments by
such actions as selecting, concatenating, and padding. The appendix
describes how the resulting characters are represented as bytes. This
internal representation is not usually seen if the results are printed. It may
be seen if the results are displayed on certain terminals.

 General Description
The following characteristics help define the rules used by DBCS to represent
extended characters:

� Each DBCS character consists of 2 bytes.

� Each SBCS character consists of 1 byte.

� There are no DBCS control characters.

� The codes are within the ranges defined in the table, which shows the valid
DBCS code for the DBCS blank. You cannot have a DBCS blank in a simple
symbol, in the stem of a compound variable, or in a label.

� DBCS alphanumeric and special symbols

A DBCS contains double-byte representation of alphanumeric and special
symbols corresponding to those of the Single-Byte Character Set (SBCS). In
EBCDIC, the first byte of a double-byte alphanumeric or special symbol is
X'42' and the second is the same hex code as the corresponding EBCDIC
code.

Here are some examples:

Figure A-1. DBCS Ranges

Byte EBCDIC

1st X'41' to X'FE'
2nd X'41' to X'FE'
DBCS blank X'4040'

 Copyright IBM Corp. 1988, 1999 A-1

 DBCS Support

X'42C1' is an EBCDIC double-byte A
X'4281' is an EBCDIC double-byte a
X'427D' is an EBCDIC double-byte quote

� No case translation

In general, there is no concept of lowercase and uppercase in DBCS.

 � Notational conventions

This appendix uses the following notational conventions:

DBCS character -> .A .B .C .D
SBCS character -> a b c d e
DBCS blank -> '. '
EBCDIC shift-out (X'ðE') -> <
EBCDIC shift-in (X'ðF') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS
characters from SBCS characters.

Enabling DBCS Data Operations and Symbol Use
The OPTIONS instruction controls how REXX regards DBCS data. To enable
DBCS operations, use the EXMODE option. To enable DBCS symbols, use the
ETMODE option on the OPTIONS instruction; this must be the first instruction in
the program. (See page 3-19 for more information.)

If OPTIONS ETMODE is in effect, the language processor does validation to
ensure that SO and SI are paired in comments. Otherwise, the contents of the
comment are not checked. The comment delimiters (/* and */) must be SBCS
characters.

Symbols and Strings
In DBCS, there are DBCS-only symbols and strings and mixed symbols and
strings.

DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
A DBCS-only symbol consists of only non-blank DBCS codes as indicated in
Figure A-1 on page A-1.

A mixed DBCS symbol is formed by a concatenation of SBCS symbols, DBCS-only
symbols, and other mixed DBCS symbols. In EBCDIC, the SO and SI bracket the
DBCS symbols and distinguish them from the SBCS symbols.

The default value of a DBCS symbol is the symbol itself, with SBCS characters
translated to uppercase.

A constant symbol must begin with an SBCS digit (ð–9) or an SBCS period. The
delimiter (period) in a compound symbol must be an SBCS character.

DBCS-Only Strings and Mixed SBCS/DBCS Strings
A DBCS-only string consists of only DBCS characters. A mixed SBCS/DBCS string
is formed by a combination of SBCS and DBCS characters. In EBCDIC, the SO
and SI bracket the DBCS data and distinguish it from the SBCS data. Because the
SO and SI are needed only in the mixed strings, they are not associated with the
DBCS-only strings.

A-2 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

In EBCDIC:

DBCS-only string -> .A.B.C
Mixed string -> ab<.A.B>
Mixed string -> <.A.B>
Mixed string -> ab<.C.D>ef

 Validation
The user must follow certain rules and conditions when using DBCS.

DBCS Symbol Validation
DBCS symbols are valid only if you comply with the following rules:

� The DBCS portion of the symbol must be an even number of bytes in length
� DBCS alphanumeric and special symbols are regarded as different to their

corresponding SBCS characters. Only the SBCS characters are recognized by
REXX in numbers, instruction keywords, or operators

� DBCS characters cannot be used as special characters in REXX
� SO and SI cannot be contiguous
� Nesting of SO or SI is not permitted
� SO and SI must be paired
� No part of a symbol consisting of DBCS characters may contain a DBCS blank.
� Each part of a symbol consisting of DBCS characters must be bracketed with

SO and SI.

Note: When you use DBCS symbols as variable names or labels, the maximum
length of a DBCS variable name is the same as the maximum length of an
SBCS variable name, 250 bytes, including any SO, SI, DBCS, and SBCS
characters. Each DBCS character is counted as 2 bytes and each SO or SI
is counted as 1 byte.

These examples show some possible misuses:

<.A.BC> -> Incorrect because of odd byte length
<.A.B><.C> -> Incorrect contiguous SO/SI
<> -> Incorrect contiguous SO/SI (null DBCS symbol)
<.A<.B>.C> -> Incorrectly nested SO/SI
<.A.B.C -> Incorrect because SO/SI not paired
<.A. .B> -> Incorrect because contains blank
'. A<.B><.C> -> Incorrect symbol

Mixed String Validation
The validation of mixed strings depends on the instruction, operator, or function. If
you use a mixed string with an instruction, operator, or function that does not allow
mixed strings, this causes a syntax error .

The following rules must be followed for mixed string validation:

� DBCS strings must be an even number of bytes in length, unless you have SO
and SI.

EBCDIC only:

� SO and SI must be paired in a string.
� Nesting of SO or SI is not permitted.

These examples show some possible misuses:

 Appendix A. Double-Byte Character Set (DBCS) Support A-3

 DBCS Support

'ab<cd' -> INCORRECT - not paired
'<.A<.B>.C> -> INCORRECT - nested
'<.A.BC>' -> INCORRECT - odd byte length

The end of a comment delimiter is not found within DBCS character sequences.
For example, when the program contains /\ < \/, then the \/ is not recognized as
ending the comment because the scanning is looking for the > (SI) to go with the <
(SO) and not looking for \/.

When a variable is created, modified, or referred to in a REXX program under
OPTIONS EXMODE, it is validated whether it contains a correct mixed string or
not. When a referred variable contains a mixed string that is not valid, it depends
on the instruction, function, or operator whether it causes a syntax error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER instructions
all require valid mixed strings with OPTIONS EXMODE in effect.

Using DBCS Symbols as Variable Names or Labels
To enable the use of DBCS characters in variable names and labels, use the
ETMODE option of the OPTIONS instruction. For more information, see “OPTIONS”
on page 3-19.

The following are some ways that DBCS names can be used:

� as variables or labels within your program
� as constant symbols
� as a STEM name on EXECIO or as a trapping variable for the OUTTRAP

function
� to pass parameters on the LINKPGM, ATTCHPGM, LINKMVS, LU62,

CPICOMM, and APPCMVS host command environments
� with functions like SYMBOL and DATATYPE
� in arguments of functions (like LENGTH)
� with the variable access routines IKJCT441 and IRXEXCOM.

The following example shows a program using a DBCS variable name and a DBCS
subroutine label:

/\ REXX \/
OPTIONS 'ETMODE' /\ ETMODE to enable DBCS variable names \/
MI<.X.E.D>=1 /\ Set mixed DBCS variable name \/
<.S.Y.M.D> = 1ð /\ Variable with DBCS characters between

Shift-out (<) and Shift-in (>) \/
call <.D.B.C.S.R.T.N> /\ Call subroutine, with DBCS name \/

...
<.D.B.C.S.R.T.N>: /\ Subroutine with DBCS name \/
do i = 1 to 1ð
if x.i = <.S.Y.M.D> then /\ Does x.i match the DBCS variable's

 value? \/
say 'Value of the DBCS variable is: '<.S.Y.M.D>

 end
 exit ð

A-4 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

 Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

 PARSE
In EBCDIC:

x1 = '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1
w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 1 w1
w1 -> '<><.A.B><. . ><.E><.F><>'

PARSE VAR x1 w1 .
w1 -> '<.A.B>'

The leading and trailing SO and SI are unnecessary for word parsing and, thus,
they are stripped off. However, one pair is still needed for a valid mixed DBCS
string to be returned.

PARSE VAR x1 . w2
w2 -> '<. ><.E><.F><>'

Here the first blank delimited the word and the SO is added to the string to ensure
the DBCS blank and the valid mixed string.

PARSE VAR x1 w1 w2
w1 -> '<.A.B>'
w2 -> '<. ><.E><.F><>'

PARSE VAR x1 w1 w2 .
w1 -> '<.A.B>'
w2 -> '<.E><.F>'

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <.A.B><><.C.D>'

PARSE VAR x2 w1 '' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

PARSE VAR x2 w1 '<>' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

PARSE VAR x2 w1 '<><>' w2
w1 -> 'abc<>def <.A.B><><.C.D>'
w2 -> ''

Note that for the last three examples '', <>, and <><> are each a null string (a
string of length ð). When parsing, the null string matches the end of string. For this
reason, w1 is assigned the value of the entire string and w2 is assigned the null
string.

 Appendix A. Double-Byte Character Set (DBCS) Support A-5

 DBCS Support

PUSH and QUEUE
The PUSH and QUEUE instructions add entries to the data stack. Because an
element on the data stack can be up to 1 byte less than 16 megabytes, truncation
will probably never occur. However, if truncation splits a DBCS string, REXX
ensures that the integrity of the SO-SI pairing is kept under OPTIONS EXMODE.

SAY and TRACE
The SAY and TRACE instructions write information to either the user's terminal or
the output stream (the default is SYSTSPRT). Similar to the PUSH and QUEUE
instructions, REXX ensures the SO-SI pairs are kept for any data that is separated
to meet the requirements of the terminal line size or the OUTDD file.

When the data is split up in shorter lengths, again the DBCS data integrity is kept
under OPTIONS EXMODE. In EBCDIC, if the terminal line size is less than 4, the
string is treated as SBCS data, because 4 is the minimum for mixed string data.

 UPPER
Under OPTIONS EXMODE, the UPPER instruction translates only SBCS
characters in contents of one or more variables to uppercase, but it never
translates DBCS characters. If the content of a variable is not valid mixed string
data, no uppercasing occurs.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters —Logical character lengths are used when counting the
length of a string (that is, 1 byte for one SBCS logical character, 2 bytes for
one DBCS logical character). In EBCDIC, SO and SI are considered to be
transparent, and are not counted, for every string operation.

2. Character extraction from a string —Characters are extracted from a string on
a logical character basis. In EBCDIC, leading SO and trailing SI are not
considered as part of one DBCS character. For instance, .A and .B are
extracted from <.A.B>, and SO and SI are added to each DBCS character
when they are finally preserved as completed DBCS characters. When multiple
characters are consecutively extracted from a string, SO and SI that are
between characters are also extracted. For example, .A><.B is extracted from
<.A><.B>, and when the string is finally used as a completed string, the SO
prefixes it and the SI suffixes it to give <.A><.B>.

Here are some EBCDIC examples:

A-6 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

S1 = 'abc<>def'

SUBSTR(S1,3,1) -> 'c'
SUBSTR(S1,4,1) -> 'd'
SUBSTR(S1,3,2) -> 'c<>d'

S2 = '<><.A.B><>'

SUBSTR(S2,1,1) -> '<.A>'
SUBSTR(S2,2,1) -> '<.B>'
SUBSTR(S2,1,2) -> '<.A.B>'
SUBSTR(S2,1,3,'x') -> '<.A.B><>x'

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> '<.A>'
SUBSTR(S3,3,2) -> 'c<><.A>'
DELSTR(S3,3,1) -> 'ab<><.A.B>'
DELSTR(S3,4,1) -> 'abc<><.B>'
DELSTR(S3,3,2) -> 'ab<.B>'

3. Character concatenation —String concatenation can only be done with valid
mixed strings. In EBCDIC, adjacent SI and SO (or SO and SI) that are a result
of string concatenation are removed. Even during implicit concatenation as in
the DELSTR function, unnecessary SO and SI are removed.

4. Character comparison —Valid mixed strings are used when comparing strings
on a character basis. A DBCS character is always considered greater than an
SBCS one if they are compared. In all but the strict comparisons, SBCS blanks,
DBCS blanks, and leading and trailing contiguous SO and SI (or SI and SO) in
EBCDIC are removed. SBCS blanks may be added if the lengths are not
identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank
characters are also removed for comparison.

Note: The strict comparison operators do not cause syntax errors even if you
specify mixed strings that are not valid.

In EBCDIC:

'<.A>' = '<.A. >' -> 1 /\ true \/
'<><><.A>' = '<.A><><>' -> 1 /\ true \/

 '<> <.A>' = '<.A>' -> 1 /\ true \/
'<.A><><.B>' = '<.A.B>' -> 1 /\ true \/

'abc' < 'ab<. >' -> ð /\ false \/

5. Word extraction from a string —“Word” means that characters in a string are
delimited by an SBCS or a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also
removed when words are separated in a string, but contiguous SO and SI (or
SI and SO) in a word are not removed or separated for word operations.
Leading and trailing contiguous SO and SI (or SI and SO) of a word are not
removed if they are among words that are extracted at the same time.

In EBCDIC:

 Appendix A. Double-Byte Character Set (DBCS) Support A-7

 DBCS Support

W1 = '<><. .A. . .B><.C. .D><>'

SUBWORD(W1,1,1) -> '<.A>'
SUBWORD(W1,1,2) -> '<.A. . .B><.C>'
SUBWORD(W1,3,1) -> '<.D>'
SUBWORD(W1,3) -> '<.D>'

W2 = '<.A. .B><.C><> <.D>'

SUBWORD(W2,2,1) -> '<.B><.C>'
SUBWORD(W2,2,2) -> '<.B><.C><> <.D>'

Built-in Function Examples
Examples for built-in functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams, refer to Chapter 4, “Functions” on page 4-1.

 ABBREV
In EBCDIC:

ABBREV('<.A.B.C>','<.A.B>') -> 1
ABBREV('<.A.B.C>','<.A.C>') -> ð
ABBREV('<.A><.B.C>','<.A.B>') -> 1
ABBREV('aa<>bbccdd','aabbcc') -> 1

Applying the character comparison and character extraction from a string rules.

 COMPARE
In EBCDIC:

COMPARE('<.A.B.C>','<.A.B><.C>') -> ð
COMPARE('<.A.B.C>','<.A.B.D>') -> 3
COMPARE('ab<>cde','abcdx') -> 5
COMPARE('<.A><>','<.A>','<. >') -> ð

Applying the character concatenation for padding, character extraction from a
string, and character comparison rules.

 COPIES
In EBCDIC:

COPIES('<.A.B>',2) -> '<.A.B.A.B>'
COPIES('<.A><.B>',2) -> '<.A><.B.A><.B>'
COPIES('<.A.B><>',2) -> '<.A.B><.A.B><>'

Applying the character concatenation rule.

 DATATYPE
DATATYPE('<.A.B>') -> 'CHAR'
DATATYPE('<.A.B>','D') -> 1
DATATYPE('<.A.B>','C') -> 1
DATATYPE('a<.A.B>b','D') -> ð
DATATYPE('a<.A.B>b','C') -> 1
DATATYPE('abcde','C') -> ð
DATATYPE('<.A.B','C') -> ð

A-8 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

Note: If string is not a valid mixed string and C or D is specified as type, ð is
returned.

 FIND
FIND('<.A. .B.C> abc','<.B.C> abc') -> 2
FIND('<.A. .B><.C> abc','<.B.C> abc') -> 2
FIND('<.A. . .B> abc','<.A> <.B>') -> 1

Applying the word extraction from a string and character comparison rules.

INDEX, POS, and LASTPOS
INDEX('<.A><.B><><.C.D.E>','<.D.E>') -> 4
POS('<.A>','<.A><.B><><.A.D.E>') -> 1
LASTPOS('<.A>','<.A><.B><><.A.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

INSERT and OVERLAY
In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.B>','<.C.D><>',2) -> '<.C.D.A.B><>'
INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

OVERLAY('<.A.B>','<.C.D><>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',2) -> '<.C.A.B>'
OVERLAY('<.A.B>','<.C.D><><.E>',3) -> '<.C.D><><.A.B>'
OVERLAY('<.A.B>','<.C.D><>',4,,'<.E>') -> '<.C.D><.E.A.B>'
OVERLAY('<.A>','<.C.D><.E>',2) -> '<.C.A><.E>'

Applying the character extraction from a string and character comparison rules.

 JUSTIFY
JUSTIFY('<><. .A. . .B><.C. .D>',1ð,'p')
 -> '<.A>ppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',11,'p')
 -> '<.A>pppp<.B><.C>ppp<.D>'
JUSTIFY('<><. .A. . .B><.C. .D>',1ð,'<.P>')
 -> '<.A.P.P.P.B><.C.P.P.P.D>'
JUSTIFY('<><.X. .A. . .B><.C. .D>',11,'<.P>')
 -> '<.X.P.P.A.P.P.B><.C.P.P.D>'

Applying the character concatenation for padding and character extraction from a
string rules.

LEFT, RIGHT, and CENTER
In EBCDIC:

LEFT('<.A.B.C.D.E>',4) -> '<.A.B.C.D>'
LEFT('a<>',2) -> 'a<> '
LEFT('<.A>',2,'\') -> '<.A>\'
RIGHT('<.A.B.C.D.E>',4) -> '<.B.C.D.E>'
RIGHT('a<>',2) -> ' a'
CENTER('<.A.B>',1ð,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E>'
CENTER('<.A.B>',11,'<.E>') -> '<.E.E.E.E.A.B.E.E.E.E.E>'
CENTER('<.A.B>',1ð,'e') -> 'eeee<.A.B>eeee'

 Appendix A. Double-Byte Character Set (DBCS) Support A-9

 DBCS Support

Applying the character concatenation for padding and character extraction from a
string rules.

 LENGTH
In EBCDIC:

LENGTH('<.A.B><.C.D><>') -> 4

Applying the counting characters rule.

 REVERSE
In EBCDIC:

REVERSE('<.A.B><.C.D><>') -> '<><.D.C><.B.A>'

Applying the character extraction from a string and character concatenation rules.

 SPACE
In EBCDIC:

SPACE('a<.A.B. .C.D>',1) -> 'a<.A.B> <.C.D>'
SPACE('a<.A><><. .C.D>',1,'x') -> 'a<.A>x<.C.D>'
SPACE('a<.A><. .C.D>',1,'<.E>') -> 'a<.A.E.C.D>'

Applying the word extraction from a string and character concatenation rules.

 STRIP
In EBCDIC:

STRIP('<><.A><.B><.A><>',,'<.A>') -> '<.B>'

Applying the character extraction from a string and character concatenation rules.

SUBSTR and DELSTR
In EBCDIC:

SUBSTR('<><.A><><.B><.C.D>',1,2) -> '<.A><><.B>'
DELSTR('<><.A><><.B><.C.D>',1,2) -> '<><.C.D>'
SUBSTR('<.A><><.B><.C.D>',2,2) -> '<.B><.C>'
DELSTR('<.A><><.B><.C.D>',2,2) -> '<.A><><.D>'
SUBSTR('<.A.B><>',1,2) -> '<.A.B>'
SUBSTR('<.A.B><>',1) -> '<.A.B><>'

Applying the character extraction from a string and character concatenation rules.

SUBWORD and DELWORD
In EBCDIC:

SUBWORD('<><. .A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><. .A. . .B><.C. .D>',1,2) -> '<><. .D>'
SUBWORD('<><.A. . .B><.C. .D>',1,2) -> '<.A. . .B><.C>'
DELWORD('<><.A. . .B><.C. .D>',1,2) -> '<><.D>'
SUBWORD('<.A. .B><.C><> <.D>',1,2) -> '<.A. .B><.C>'
DELWORD('<.A. .B><.C><> <.D>',1,2) -> '<.D>'

Applying the word extraction from a string and character concatenation rules.

A-10 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

 TRANSLATE
In EBCDIC:

TRANSLATE('abcd','<.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','abc') -> '<.A.B.C>d'
TRANSLATE('abcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>bcd','<><.A.B.C>','ab<>c') -> '<.A.B.C>d'
TRANSLATE('a<>xcd','<><.A.B.C>','ab<>c') -> '<.A>x<.C>d'

Applying the character extraction from a string, character comparison, and
character concatenation rules.

 VERIFY
In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

Applying the character extraction from a string and character comparison rules.

WORD, WORDINDEX, and WORDLENGTH
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORD(W,1) -> '<.A>'
WORDINDEX(W,1) -> 2
WORDLENGTH(W,1) -> 1

Y = '<><.A. . .B><.C. .D>'

WORD(Y,1) -> '<.A>'
WORDINDEX(Y,1) -> 1
WORDLENGTH(Y,1) -> 1

Z = '<.A .B><.C> <.D>'

WORD(Z,2) -> '<.B><.C>'
WORDINDEX(Z,2) -> 3
WORDLENGTH(Z,2) -> 2

Applying the word extraction from a string and (for WORDINDEX and
WORDLENGTH) counting characters rules.

 WORDS
In EBCDIC:

W = '<><. .A. . .B><.C. .D>'

WORDS(W) -> 3

Applying the word extraction from a string rule.

 Appendix A. Double-Byte Character Set (DBCS) Support A-11

 DBCS Support

 WORDPOS
In EBCDIC:

WORDPOS('<.B.C> abc','<.A. .B.C> abc') -> 2
WORDPOS('<.A.B>','<.A.B. .A.B><. .B.C. .A.B>',3) -> 4

Applying the word extraction from a string and character comparison rules.

DBCS Processing Functions
This section describes the functions that support DBCS mixed strings. These
functions handle mixed strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as
opposed to LENGTH(string), which is measured in characters).

 Counting Option
In EBCDIC, when specified in the functions, the counting option can control
whether the SO and SI are considered present when determining the length. Y
specifies counting SO and SI within mixed strings. N specifies not to count the SO
and SI, and is the default.

 Function Descriptions
The following are the DBCS functions and their descriptions.

 DBADJUST

55─ ──DBADJUST(string ──┬ ┬────────────) ──────────────────────────────5%
└ ┘──,operation

In EBCDIC, adjusts all contiguous SI and SO (or SO and SI) characters in string
based on the operation specified. The following are valid operations. Only the
capitalized and highlighted letter is needed; all characters following it are ignored.

Blank changes contiguous characters to blanks
(X'4040').

Remove removes contiguous characters, and is the default.

Here are some EBCDIC examples:

DBADJUST('<.A><.B>a<>b','B') -> '<.A. .B>a b'
DBADJUST('<.A><.B>a<>b','R') -> '<.A.B>ab'
DBADJUST('<><.A.B>','B') -> '<. .A.B>'

 DBBRACKET

55─ ──DBBRACKET(string) ───5%

In EBCDIC, adds SO and SI brackets to a DBCS-only string. If string is not a
DBCS-only string, a SYNTAX error results. That is, the input string must be an
even number of bytes in length and each byte must be a valid DBCS value.

A-12 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

Here are some EBCDIC examples:

DBBRACKET('.A.B') -> '<.A.B>'
DBBRACKET('abc') -> SYNTAX error
DBBRACKET('<.A.B>') -> SYNTAX error

 DBCENTER

55─ ──DBCENTER(string,length ──┬ ┬───────────────────────── ──) ────────5%
 └ ┘──, ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length with string centered in it, with pad characters added
as necessary to make up length. The default pad character is a blank. If string is
longer than length, it is truncated at both ends to fit. If an odd number of characters
are truncated or added, the right-hand end loses or gains one more character than
the left-hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBCENTER('<.A.B.C>',4) -> ' <.B> '
DBCENTER('<.A.B.C>',3) -> ' <.B>'
DBCENTER('<.A.B.C>',1ð,'x') -> 'xx<.A.B.C>xx'
DBCENTER('<.A.B.C>',1ð,'x','Y') -> 'x<.A.B.C>x'
DBCENTER('<.A.B.C>',4,'x','Y') -> '<.B>'
DBCENTER('<.A.B.C>',5,'x','Y') -> 'x<.B>'
DBCENTER('<.A.B.C>',8,'<.P>') -> ' <.A.B.C> '
DBCENTER('<.A.B.C>',9,'<.P>') -> ' <.A.B.C.P>'
DBCENTER('<.A.B.C>',1ð,'<.P>') -> '<.P.A.B.C.P>'
DBCENTER('<.A.B.C>',12,'<.P>','Y') -> '<.P.A.B.C.P>'

 DBCJUSTIFY

55─ ──DBCJUSTIFY(string,length ──┬ ┬───────────────────────── ──) ──────5%
 └ ┘──, ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

formats string by adding pad characters between nonblank characters to justify to
both margins and length of bytes length (length must be nonnegative). Rules for
adjustments are the same as for the JUSTIFY function. The default pad character
is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some examples:

 Appendix A. Double-Byte Character Set (DBCS) Support A-13

 DBCS Support

DBCJUSTIFY('<><AA BB><CC>',2ð,,'Y')
-> '<AA> <BB> <CC>'

DBCJUSTIFY('<>< AA BB>< CC>',2ð,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC>'

DBCJUSTIFY('<>< AA BB>< CC>',21,'<XX>','Y')
 -> '<AAXXXXXXBBXXXXXXCC> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','Y')
 -> '<AAXXXXBB> '

DBCJUSTIFY('<>< AA BB>< CC>',11,'<XX>','N')
 -> '<AAXXBBXXCC> '

 DBLEFT

55─ ──DBLEFT(string,length ──┬ ┬───────────────────────── ──) ──────────5%
 └ ┘──, ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBLEFT('ab<.A.B>',4) -> 'ab<.A>'
DBLEFT('ab<.A.B>',3) -> 'ab '
DBLEFT('ab<.A.B>',4,'x','Y') -> 'abxx'
DBLEFT('ab<.A.B>',3,'x','Y') -> 'abx'
DBLEFT('ab<.A.B>',8,'<.P>') -> 'ab<.A.B.P>'
DBLEFT('ab<.A.B>',9,'<.P>') -> 'ab<.A.B.P> '
DBLEFT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBLEFT('ab<.A.B>',9,'<.P>','Y') -> 'ab<.A.B> '

 DBRIGHT

55─ ──DBRIGHT(string,length ──┬ ┬───────────────────────── ──) ─────────5%
 └ ┘──, ──┬ ┬───── ──┬ ┬─────────

└ ┘─pad─ └ ┘──,option

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

A-14 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

DBRIGHT('ab<.A.B>',4) -> '<.A.B>'
DBRIGHT('ab<.A.B>',3) -> ' <.B>'
DBRIGHT('ab<.A.B>',5,'x','Y') -> 'x<.B>'
DBRIGHT('ab<.A.B>',1ð,'x','Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>') -> '<.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',9,'<.P>') -> ' <.P>ab<.A.B>'
DBRIGHT('ab<.A.B>',8,'<.P>','Y') -> 'ab<.A.B>'
DBRIGHT('ab<.A.B>',11,'<.P>','Y') -> ' ab<.A.B>'
DBRIGHT('ab<.A.B>',12,'<.P>','Y') -> '<.P>ab<.A.B>'

 DBRLEFT

55─ ──DBRLEFT(string,length ──┬ ┬───────── ──) ─────────────────────────5%
└ ┘──,option

returns the remainder from the DBLEFT function of string. If length is greater than
the length of string, returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRLEFT('ab<.A.B>',4) -> '<.B>'
DBRLEFT('ab<.A.B>',3) -> '<.A.B>'
DBRLEFT('ab<.A.B>',4,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',3,'Y') -> '<.A.B>'
DBRLEFT('ab<.A.B>',8) -> ''
DBRLEFT('ab<.A.B>',9,'Y') -> ''

 DBRRIGHT

55─ ──DBRRIGHT(string,length ──┬ ┬───────── ──) ────────────────────────5%
└ ┘──,option

returns the remainder from the DBRIGHT function of string. If length is greater than
the length of string, returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBRRIGHT('ab<.A.B>',4) -> 'ab'
DBRRIGHT('ab<.A.B>',3) -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5) -> 'a'
DBRRIGHT('ab<.A.B>',4,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',5,'Y') -> 'ab<.A>'
DBRRIGHT('ab<.A.B>',8) -> ''
DBRRIGHT('ab<.A.B>',8,'Y') -> ''

 Appendix A. Double-Byte Character Set (DBCS) Support A-15

 DBCS Support

 DBTODBCS

55─ ──DBTODBCS(string) ──5%

converts all passed, valid SBCS characters (including the SBCS blank) within string
to the corresponding DBCS equivalents. Other single-byte codes and all DBCS
characters are not changed. In EBCDIC, SO and SI brackets are added and
removed where appropriate.

Here are some EBCDIC examples:

DBTODBCS('Rexx 1988') -> '<.R.e.x.x. .1.9.8.8>'
DBTODBCS('<.A> <.B>') -> '<.A. .B>'

Note: In these examples, the .x is the DBCS character corresponding to an SBCS
x.

 DBTOSBCS

55─ ──DBTOSBCS(string) ──5%

converts all passed, valid DBCS characters (including the DBCS blank) within string
to the corresponding SBCS equivalents. Other DBCS characters and all SBCS
characters are not changed. In EBCDIC, SO and SI brackets are removed where
appropriate.

Here are some EBCDIC examples:

DBTOSBCS('<.S.d>/<.2.-.1>') -> 'Sd/2-1'
DBTOSBCS('<.X. .Y>') -> '<.X> <.Y>'

Note: In these examples, the .d is the DBCS character corresponding to an SBCS
d. But the .X and .Y do not have corresponding SBCS characters and are
not converted.

 DBUNBRACKET

55─ ──DBUNBRACKET(string) ───5%

In EBCDIC, removes the SO and SI brackets from a DBCS-only string enclosed by
SO and SI brackets. If the string is not bracketed, a SYNTAX error results.

Here are some EBCDIC examples:

DBUNBRACKET('<.A.B>') -> '.A.B'
DBUNBRACKET('ab<.A>') -> SYNTAX error

 DBVALIDATE

55─ ──DBVALIDATE(string ──┬ ┬────── ──) ────────────────────────────────5%
└ ┘──,'C'

A-16 OS/390 V2R8.0 TSO/E REXX Reference

 DBCS Support

returns 1 if the string is a valid mixed string or SBCS string. Otherwise, returns ð.
Mixed string validation rules are:

1. Only valid DBCS character codes

2. DBCS string is an even number of bytes in length

3. EBCDIC only — Proper SO and SI pairing.

In EBCDIC, if C is omitted, only the leftmost byte of each DBCS character is
checked to see that it falls in the valid range for the implementation it is being run
on (that is, in EBCDIC, the leftmost byte range is from X'41' to X'FE').

Here are some EBCDIC examples:

z='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(z) -> ð

y='C1C2ðE11121314ðF'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> ð

 DBWIDTH

55─ ──DBWIDTH(string ──┬ ┬───────── ──) ────────────────────────────────5%
└ ┘──,option

returns the length of string in bytes.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

Here are some EBCDIC examples:

DBWIDTH('ab<.A.B>','Y') -> 8
DBWIDTH('ab<.A.B>','N') -> 6

 Appendix A. Double-Byte Character Set (DBCS) Support A-17

 DBCS Support

A-18 OS/390 V2R8.0 TSO/E REXX Reference

 IRXTERMA Routine

 Appendix B. IRXTERMA Routine

The IRXTERMA routine terminates a language processor environment. IRXTERMA
differs from the IRXTERM termination routine. IRXTERM terminates a language
processor environment only if no active REXX execs are currently running in the
environment. IRXTERMA terminates all active REXX execs under a language
processor environment, and optionally terminates the environment. If you customize
REXX processing and initialize a language processor environment using the
IRXINIT initialization routine, when you terminate the environment, it is
recommended that you use the IRXTERM termination routine. IRXTERM is
described in “Termination Routine – IRXTERM” on page 15-17.

Note: To permit FORTRAN programs to call IRXTERMA, TSO/E provides an
alternate entry point for the IRXTERMA routine. The alternate entry point
name is IRXTMA.

On the call to IRXTERMA, you specify whether IRXTERMA should terminate the
environment in addition to terminating all active execs that are currently running in
the environment. You can optionally pass the address of the environment block that
represents the environment in which you want IRXTERMA to run. You can pass the
address either in parameter 2 or in register 0. If you do not pass an environment
block address, IRXTERMA locates the current non-reentrant environment that was
created at the same task level and runs in that environment.

IRXTERMA does not terminate an environment if:

� The environment was not initialized under the current task

� The environment was the first environment initialized under the task and other
environments are still initialized under the task.

However, IRXTERMA does terminate all active execs running in the environment.

IRXTERMA invokes the exec load routine to free each exec in the environment.
The exec load routine is the routine identified by the EXROUT field in the module
name table, which is one of the parameters for the initialization routine, IRXINIT. All
execs in the environment are freed regardless of whether they were pre-loaded
before the IRXEXEC routine was called. IRXTERMA also frees the storage for each
exec in the environment.

IRXTERMA sets the ENVBLOCK_TERMA_CLEANUP flag to indicate that
IRXTERMA is cleaning up the environment. IRXTERMA frees all active execs and
optionally terminates the environment itself. This ENVBLOCK_TERMA_CLEANUP
flag may be used by the replaceable routines to allow special processing during
abnormal termination. If IRXTERMA does not terminate the environment, the flag is
cleared upon exit from IRXTERMA.

 Entry Specifications
For the IRXTERMA termination routine, the contents of the registers on entry are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

 Copyright IBM Corp. 1988, 1999 B-1

 IRXTERMA Routine

Registers 2-12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

 Parameters
In register 1, you pass the address of a parameter list, which consists of a list of
addresses. Each address in the parameter list points to a parameter. The
high-order bit of the last address in the parameter list must be set to 1 to indicate
the end of the parameter list. For more information about passing parameters, see
“Parameter Lists for TSO/E REXX Routines” on page 12-5.

Figure B-1 shows the parameters for IRXTERMA.

Figure B-1. Parameters for IRXTERMA

Parameter Number of
Bytes

Description

Parameter 1 4 A fullword field in which you specify whether you
want to terminate the environment in addition to
terminating all active execs running in the
environment. Specify one of the following:

� 0 — terminates all execs and the environment

� X'80000000' — terminates all execs, but does
not terminate the environment.

Parameter 2 4 The address of the environment block that
represents the environment you want IRXTERMA
to terminate. This parameter is optional.

If you specify an environment block address,
IRXTERMA uses the value you specify and ignores
register 0. However, IRXTERMA does not check
whether the address is valid. Therefore, you must
ensure the address you specify is correct or
unpredictable results can occur.

If you do not want to use this parameter, you
cannot simply specify an address of 0. If you
specify 0, IRXTERMA tries to use 0 as a valid
address and fails with a return code of 28. To not
use this parameter, end the parameter list at
parameter 1 by setting the high-order bit on in the
address that points to parameter 1.

You can also use register 0 to specify the address
of an environment block. If you use register 0,
IRXTERMA checks whether the address is valid. If
the address is valid, IRXTERMA terminates that
environment. Otherwise, IRXTERMA locates the
current non-reentrant environment that was created
at the same task level and terminates that
environment.

B-2 OS/390 V2R8.0 TSO/E REXX Reference

 IRXTERMA Routine

 Return Specifications
For the IRXTERMA termination routine, the contents of the registers on return are:

Register 0 If you passed the address of an environment block
in register 0, IRXTERMA returns the address of the
environment block for the previous environment. If
you did not pass an address in register 0, the
register contains the same value as on entry.

If IRXTERMA returns with return code 100 or 104,
register 0 contains the abend and reason code.
“Return Codes” describes the return codes and
how IRXTERMA returns the abend and reason
codes for return codes 100 and 104.

Registers 1-14 Same as on entry

Register 15 Return code

 Return Codes
Figure B-2 shows the return codes for the IRXTERMA routine.

Figure B-2 (Page 1 of 2). Return Codes for IRXTERMA

Return Code Description

0 Processing was successful. If IRXTERMA also terminated the
environment, the environment was not the last environment on the
task.

4 Processing was successful. If IRXTERMA also terminated the
environment, the environment was the last environment on the task.

20 Processing was not successful. IRXTERMA could not terminate the
environment.

28 Processing was not successful. The environment could not be found.

100 Processing was not successful. A system abend occurred while
IRXTERMA was terminating the environment. IRXTERMA tries to
terminate the environment again. If termination is still unsuccessful,
the environment cannot be used.

The system may issue one or more messages that describe the
abend. In addition, register 0 contains the abend code and the abend
reason code. IRXTERMA returns the abend code in the two
low-order bytes of register 0. IRXTERMA returns the abend reason
code in the high-order two bytes of register 0. If the abend reason
code is greater than two bytes, IRXTERMA returns only the two
low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

 Appendix B. IRXTERMA Routine B-3

 IRXTERMA Routine

Figure B-2 (Page 2 of 2). Return Codes for IRXTERMA

Return Code Description

104 Processing was not successful. A user abend occurred while
IRXTERMA was terminating the environment. IRXTERMA tries to
terminate the environment again. If termination is still unsuccessful,
the environment cannot be used.

The system may issue one or more messages that describe the
abend. In addition, register 0 contains the abend code and the abend
reason code. IRXTERMA returns the abend code in the two
low-order bytes of register 0. IRXTERMA returns the abend reason
code in the high-order two bytes of register 0. If the abend reason
code is greater than two bytes, IRXTERMA returns only the two
low-order bytes of the abend reason code. See OS/390 MVS System
Codes for information about the abend codes and reason codes.

B-4 OS/390 V2R8.0 TSO/E REXX Reference

 Execs for MVS Operator Activities

Appendix C. Writing REXX Execs to Perform MVS Operator
Activities

From TSO/E, you can establish an extended MCS console session using the
TSO/E CONSOLE command. After you activate a console session, you can issue
MVS system and subsystem commands and obtain command responses. This
appendix describes the different commands and functions you can use in REXX
execs to set up and use a console session.

Activating a Console Session and Issuing MVS Commands
TSO/E provides the CONSOLE command that lets you perform MVS operator
activities from your TSO/E session. You use the CONSOLE command to activate
an extended MCS console session. After you activate a console session, you can
then issue MVS system and subsystem commands and obtain command
responses. The MVS system and subsystem commands you can use during a
console session depend on the MVS command authority defined for the user
console. For more information, see OS/390 MVS Planning: Operations.

To activate a console session, use the TSO/E CONSOLE command with the
ACTIVATE keyword, for example:

CONSOLE ACTIVATE

After you activate a console session, you can use the CONSOLE command with
the SYSCMD keyword to issue MVS system and subsystem commands from a
REXX exec. For example:

"CONSOLE SYSCMD(system_command)"

You need not activate the console session from within the REXX exec. You could
use the CONSOLE command from TSO/E READY mode to activate a console
session and then invoke an exec that issues MVS system and subsystem
commands.

To deactivate a console session, use the CONSOLE command with the
DEACTIVATE keyword, for example:

CONSOLE DEACTIVATE

To use the TSO/E CONSOLE command, you must have CONSOLE command
authority. For more information, see OS/390 TSO/E System Programming
Command Reference.

Using the CONSOLE Host Command Environment
TSO/E provides the CONSOLE host command environment that lets you issue
MVS system and subsystem commands from a REXX exec. Using the CONSOLE
environment eliminates the need for you to repeatedly use the TSO/E CONSOLE
command with the SYSCMD keyword to issue MVS commands. With ADDRESS
CONSOLE, you need only enter the name of the command.

 Copyright IBM Corp. 1988, 1999 C-1

 Execs for MVS Operator Activities

You can use ADDRESS CONSOLE to issue a single MVS system or subsystem
command, for example:

ADDRESS CONSOLE "system_command"

You can also use ADDRESS CONSOLE and then issue several MVS system or
subsystem commands from the CONSOLE host command environment, for
example:

/\ REXX program ... \/
...

"CONSOLE ACTIVATE"
...

ADDRESS CONSOLE
"mvs_cmd1"
...

"mvs_cmd2"
...

"mvs_cmd3"
...

EXIT

If you have established CONSOLE as the host command environment and you
want to enter TSO/E commands, use the ADDRESS TSO instruction to change the
host command environment to TSO. The following example shows how to use the
ADDRESS instruction to change between the TSO and CONSOLE host command
environments.

/\ REXX program ... \/
 . . .
"tso_cmd" /\ initial environment is TSO \/
"CONSOLE ACTIVATE"
...

ADDRESS CONSOLE /\ change environment to CONSOLE for all commands \/
"mvs_cmd"
...

"mvs_cmd"
ADDRESS TSO tso_cmd /\ change environment to TSO for one command \/
...

"mvs_cmd"
...

ADDRESS TSO /\ change environment to TSO for all commands \/
"tso_cmd"
...

ADDRESS CONSOLE mvs_cmd /\ change environment to CONSOLE for one command \/
...

"tso_cmd"
...

"CONSOLE DEACTIVATE"
...

EXIT

For more information about using the ADDRESS keyword instruction, see
“ADDRESS” on page 3-1.

To use the CONSOLE host command environment, you must have CONSOLE
command authority. You must also activate a console session before using

C-2 OS/390 V2R8.0 TSO/E REXX Reference

 Execs for MVS Operator Activities

ADDRESS CONSOLE. If you use ADDRESS CONSOLE and issue an MVS
command before you activate a console session, the CONSOLE environment will
not be able to locate the command you issued. In this case, the REXX special
variable RC is set to -3 and the FAILURE condition occurs. The -3 return code
indicates that the host command environment could not locate the command. In this
case, the environment could not locate the command because a console session is
not active.

The MVS system and subsystem commands you can use during a console session
depend on the MVS command authority defined for the user console. For more
information, see OS/390 MVS Planning: Operations.

Processing Messages During a Console Session
You can use the TSO/E CONSPROF command to control the processing of
messages during a console session. Like the CONSOLE command, you must have
CONSOLE command authority to use the CONSPROF command.

Usually, you issue the CONSPROF command to tailor a console profile before
activating a console session. However, you can also use CONSPROF during a
console session to change the profile settings.

There are two types of messages that are routed to the user's console:

� Solicited messages, which are messages that are responses to MVS system
and subsystem commands that were issued during the console session.

� Unsolicited messages, which are any messages that are not direct responses
to MVS system or subsystem commands. For example, an unsolicited message
can be a message that another user sends you or a broadcast message.

You can use the CONSPROF command with the SOLDISPLAY and
UNSOLDISPLAY keywords to specify whether solicited messages and unsolicited
messages should be displayed at the terminal or saved for later retrieval. See
OS/390 TSO/E System Programming Command Reference for more information
about the CONSPROF command.

If messages are not displayed at the terminal during a console session, you can
use the TSO/E external function GETMSG to retrieve messages. Using GETMSG,
you can retrieve either solicited or unsolicited messages. For more information, see
“GETMSG” on page 4-42.

The TSO/E external function SYSVAR has the SOLDISP and UNSDISP arguments
that relate to the SOLDISPLAY and UNSOLDISPLAY keywords on the CONSPROF
command. You can use these SYSVAR arguments to determine whether solicited
and unsolicited messages are being displayed. For more information, see
“SYSVAR” on page 4-76.

If messages are not displayed at the terminal, the system stores the messages in
message tables. The system stores solicited messages in the solicited message
table and unsolicited messages in the unsolicited message table. You can use the
SOLNUM and UNSNUM arguments of the TSO/E external function SYSVAR (see
page 4-76) to determine the current size of the message tables. You can also use
the CONSPROF command to change the current size of each table. The size you
specify cannot exceed the maximum size set by your installation in SYS1.PARMLIB

 Appendix C. Writing REXX Execs to Perform MVS Operator Activities C-3

 Execs for MVS Operator Activities

(member IKJTSOxx). If you do not specify the table size, TSO/E uses the default
that your installation defines in SYS1.PARMLIB (member IKJTSOxx).

If you write execs that retrieve messages using GETMSG rather than displaying the
messages at the terminal, note the following.

� If a message table exceeds 100% capacity, any new messages are not routed
to the user's console until you resolve the message capacity situation.

� TSO/E provides two exits for the CONSOLE command that your installation can
use to handle the capacities of the message tables. An exit is invoked when a
message table reaches 80% capacity. Another exit is invoked when a table
reaches 100% capacity. If your installation provides CONSOLE exits, an exit
may be invoked during processing of the exec if the message tables reach 80%
or 100% capacity. Exit processing depends on the exits that your installation
provides. OS/390 TSO/E Customization describes the exits for the CONSOLE
command and how to set up the sizes for the message tables.

If you retrieve messages using the GETMSG function and then want to display the
message to the user, you can use the SYSVAR external function to obtain
information related to displaying the message. The MFTIME, MFOSNM, MFJOB,
and MFSNMJBX arguments of the SYSVAR function indicate whether the user
requested that certain types of information should be displayed with the message,
such as the time stamp or the originating job name. For more information about the
arguments, see “SYSVAR” on page 4-76. To obtain information, such as the time
stamp or originating job name, you can use the additional MDB variables that the
GETMSG function sets. For more information, see Appendix D, Additional
Variables That GETMSG Sets.

Using the CART to Associate Commands and Their Responses
The command and response token (CART) is a keyword on the TSO/E CONSOLE
command and an argument on the GETMSG external function. You can use the
CART to associate MVS system and subsystem commands your exec issues with
the corresponding responses from the commands that are routed to the user's
console. To use a CART to associate commands and their responses, solicited
messages that are routed to the user's console should not be displayed at the
terminal. You must store solicited messages and then retrieve the messages using
the GETMSG function.

When you issue an MVS system or subsystem command with a CART, the CART
is associated with any messages (responses) that the command issues. When you
use GETMSG to retrieve responses from the MVS command, use the same CART
on the GETMSG function.

If you issue MVS commands during a console session and have never specified a
CART, the default CART value is ‘0000000000000000’X. When you specify a
CART, the CART remains in effect for all subsequent MVS commands you issue
until you specify a different CART.

You can use a CART in different ways depending on how you issue MVS system
and subsystem commands in the exec. If you use the CONSOLE command with
the SYSCMD keyword to issue an MVS command, you can use the CART keyword
on the CONSOLE command to specify a CART. For example:

C-4 OS/390 V2R8.0 TSO/E REXX Reference

 Execs for MVS Operator Activities

"CONSOLE SYSCMD(system_command) CART(APð9ðð32)"

In the example, the CART value AP090032 is used for all subsequent MVS
commands until you use another CART.

If you use the CONSOLE host command environment, you can specify the CART in
several ways. If you use ADDRESS CONSOLE to issue a single MVS system or
subsystem command and you want to use a CART, first use ADDRESS CONSOLE
and specify the word CART followed by the CART value. You must separate the
word CART and the CART value with a blank. Then use ADDRESS CONSOLE and
specify the command. For example:

ADDRESS CONSOLE "CART AP12ð349"
ADDRESS CONSOLE "system_command"

Again, the CART is used for all subsequent MVS system and subsystem
commands until you use another CART value.

You can also use ADDRESS CONSOLE to change the host command environment
for all subsequent commands. If you want to use a CART for specific commands,
enter the word CART followed by a blank, followed by the CART value. The CART
remains in effect until you use another CART value.

For example, suppose you use ADDRESS CONSOLE to issue a series of MVS
commands. For the first command, you want to use a CART of APP50000. For the
second command, you want to use a CART of APP50001. For the third, fourth, and
fifth commands, you want to use a CART of APP522. For the remaining
commands, you want to use a CART of APP5100. You could specify the CART
values as follows:

/\ REXX program \/
...

ADDRESS CONSOLE
"CART APP5ðððð"
"mvs_cmd1"
...

"CART APP5ððð1"
"mvs_cmd2"
...

"CART APP522"
"mvs_cmd3"
"mvs_cmd4"
"mvs_cmd5"
...

"CART APP51ðð"
"mvs_cmd6"
...

EXIT

Considerations for Multiple Applications
If you have two or more programs that issue MVS system and subsystem
commands during a console session and the programs will run simultaneously in a
user's TSO/E address space, the programs must use CART values to ensure they
retrieve messages intended only for their program. If two programs that use the
CONSOLE command's services coexist in one TSO/E address space, you should
be aware of the following:

 Appendix C. Writing REXX Execs to Perform MVS Operator Activities C-5

 Execs for MVS Operator Activities

� You should issue all MVS system and subsystem commands with a CART.

� Use the first 4 bytes of the CART as an application identifier. Installations
should establish standards so that each program uses an identifier that
identifies the program. Whenever the program uses a CART, the CART should
begin with the four byte identifier.

� You should not display solicited messages at the terminal. Each application
should use GETMSG to explicitly retrieve solicited messages intended for that
application.

� You cannot selectively retrieve unsolicited messages. You can have unsolicited
messages displayed or you can have one application retrieve all unsolicited
messages using GETMSG.

� When you use GETMSG to retrieve a solicited message, you can use the mask
argument with the cart argument as follows. Use a MASK of
‘FFFFFFFF00000000’X. The CART should contain the application identifier as
the first four bytes. For more information about using a MASK, see “GETMSG”
on page 4-42.

You may also want to use CART values if you have an exec that calls a second
exec and both execs issue MVS commands during a console session. You could
establish a four byte application identifier for each exec and then use the CART
and MASK on the GETMSG function to retrieve solicited messages intended for
that exec. You could also simply use unique CART values.

Example of Determining Results From Commands in One Exec
You can use CART values in one exec to determine the results from particular
commands. For example, if you issue MVS commands and want to perform
different processing based on each command, use a unique CART value for each
command invocation. When you use GETMSG to retrieve solicited messages from
a specific command, specify the same CART that you used when you invoked the
command.

The following illustrates the use of the CART for determining the results of two
specific commands. From TSO/E READY mode, activate a console session and
then start two system printers (PRT1 and PRT2). Specify a unique CART for each
START command. After you start the printers, call the CHKPRT exec and pass the
value of the CART as an argument. For example:

READY

CONSPROF SOLDISP(NO) SOLNUM(4ðð)
CONSOLE ACTIVATE
CONSOLE SYSCMD($S PRT1) CART('PRT1ððð1')
CONSOLE SYSCMD($S PRT2) CART('PRT2ððð2')
EXEC MY.EXEC(CHKPRT) 'PRT1ððð1' EXEC
EXEC MY.EXEC(CHKPRT) 'PRT2ððð2' EXEC

The exec you invoke (CHKPRT) checks whether the printers were started
successfully. The exec uses the arguments you pass on the invocation (CART
values) as the CART on the GETMSG function. Figure C-1 on page C-7 shows the
example exec.

C-6 OS/390 V2R8.0 TSO/E REXX Reference

 Execs for MVS Operator Activities

/\ REXX exec to check start of printers \/
ARG CARTVAL
GETCODE = GETMSG('PRTMSG.','SOL',CARTVAL,,6ð)
IF GETCODE = ð THEN
 DO

IF POS('$HASPððð',PRTMSG.1) ¬= ð THEN
SAY "Printer started successfully."

 ELSE
DO INDXNUM = 1 TO PRTMSG.ð

 SAY PRTMSG.INDXNUM
 END
 END
ELSE
SAY "GETMSG error retrieving message. Return code is" GETCODE

EXIT

Figure C-1. Example Exec (CHKPRT) to Check Start of Printers

For more information about the GETMSG function, see page 4-42. For more
information about the TSO/E CONSOLE command, see OS/390 TSO/E System
Programming Command Reference.

 Appendix C. Writing REXX Execs to Perform MVS Operator Activities C-7

 Execs for MVS Operator Activities

C-8 OS/390 V2R8.0 TSO/E REXX Reference

 Additional GETMSG Variables

Appendix D. Additional Variables That GETMSG Sets

The TSO/E external function GETMSG retrieves a message that has been issued
during a console session and stores the message in variables. On the call to
GETMSG, you specify the msgstem argument. GETMSG places each line of the
message text it retrieves into successive variables identified by the msgstem you
specify. For more information about GETMSG, see “GETMSG” on page 4-42.

In addition to the variables into which GETMSG places the retrieved message (as
specified by the msgstem argument), GETMSG sets other variables that contain
additional information about the message that was retrieved. One set of variables
relates to the entire message itself (that is, to all lines of message text that
GETMSG retrieves, regardless of how many lines of text the message has).
“Variables GETMSG Sets For the Entire Message” describes these variables.

The second set of variables is an array of variables that GETMSG sets for each
line of message text that GETMSG retrieves. “Variables GETMSG Sets For Each
Line of Message Text” on page D-6 describes these variables.

Variables GETMSG Sets For the Entire Message
GETMSG sets specific variables that relate to the entire message that it retrieves.
GETMSG sets these variables, regardless of how many lines of text the retrieved
message contains.

The names of the variables that GETMSG sets correspond to the field names in the
message data block (MDB) in MVS/ESA System Product. The variable names
consist of the msgstem you specified on the call to GETMSG followed by the name
of the field in the MDB. That is, TSO/E uses the name of the field in the MDB as
the suffix for the variable name and concatenates the MDB field name to the
msgstem. For example, one field in the MDB is MDBLEN, which is the length of the
MDB. If you specify msgstem as “CONSMSG.” (with a period), REXX returns the
length of the MDB in the variable:

CONSMSG.MDBLEN

If you specify msgstem as “CMSG” (without a period), the variable name would be
CMSGMDBLEN.

Figure D-1 describes the variables GETMSG sets for a message that it retrieves.
For any variable that needs a minimum MVS release to have a proper value
returned, this minimum prerequisite release is listed in the second column.

For detailed information about the MDB and each field in the MDB, see OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

Figure D-1 (Page 1 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBLEN Length of the MDB, in decimal.

MDBTYPE MDB type, in decimal.

 Copyright IBM Corp. 1988, 1999 D-1

 Additional GETMSG Variables

Figure D-1 (Page 2 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBMID Four character MDB identifier, which is ‘MDB ’.

MDBVER Version of the MDB; 4-byte hexadecimal value.

MDBGLEN General object length of the MDB, in decimal.

MDBGTYPE General object type of the MDB, in decimal.

MDBGMID Four byte message identifier, in hexadecimal.

MDBGSYID One byte system ID, in hexadecimal. The value is the same as the
first byte of the MDBGMID variable (message identifier).

MDBGSEQ Three byte sequence number, in hexadecimal. The value is the
same as the last three bytes of the MDBGMID variable (message
identifier).

MDBGTIMH Time stamp in the format:

hh.mm.ss

 where hh is hours, mm is minutes, and ss is seconds.

MDBGTIMT Time stamp in the format:

.th

 where th is tenths of seconds, .36, for example.

MDBGDSTP Date stamp in the format yyyyddd, where yyyy is the year and ddd
is the number of days, including the current day, so far in the year.

MDBGDOM General DOM indicator. Contains the value YES or NO that
indicates whether messages that match the message ID are to be
deleted.

MDBGALRM YES or NO to indicate whether the processor alarm is sounded.

MDBGHOLD Hold indicator: YES or NO to indicate whether the message should
be held until DOMed or deleted by other external means.

MDBGFCON Foreground control presentation attribute, in decimal.

MDBGFCOL Foreground color presentation attribute, in decimal.

MDBGFHIL Foreground highlighting presentation attribute, in decimal.

MDBGFINT Foreground intensity presentation attribute, in decimal.

MDBGBCON Background control presentation attribute, in decimal.

MDBGBCOL Background color presentation attribute, in decimal.

MDBGBHIL Background highlighting presentation attribute, in decimal.

MDBGBINT Background intensity presentation attribute, in decimal.

MDBGOSNM Eight character originating system name.

MDBGJBNM Eight character job name.

MDBCLEN Control object length of the MDB, in decimal.

MDBCTYPE Control object type of the MDB, in decimal.

MDBCPROD Sixteen character originating system identifier.

MDBCVER MVS CP object version level; 4-byte hexadecimal value.

MDBCPNAM Four character control program name.

MDBCFMID Eight character FMID of the originating system.

D-2 OS/390 V2R8.0 TSO/E REXX Reference

 Additional GETMSG Variables

Figure D-1 (Page 3 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBCERC Routing codes; 16-byte hexadecimal value.

MDBCDESC Descriptor codes; 2-byte hexadecimal value.

MDBDESCA YES or NO to indicate whether the message pertains to a system
failure.

MDBDESCB YES or NO to indicate whether the message requires an immediate
action.

MDBDESCC YES or NO to indicate whether the message requires an eventual
action.

MDBDESCD YES or NO to indicate whether the message pertains to system
status.

MDBDESCE YES or NO to indicate whether the message is an immediate
command response.

MDBDESCF YES or NO to indicate whether the message pertains to job status.

MDBDESCG YES or NO to indicate whether or not the message was issued by
an application program or application processor.

MDBDESCH YES or NO to indicate whether the message is directed to an
out-of-line area.

MDBDESCI YES or NO to indicate whether the message pertains to an operator
request.

MDBDESCJ YES or NO to indicate whether the message is a track command
response.

MDBDESCK YES or NO to indicate whether the message requires a critical
eventual action.

MDBDESCL YES or NO to indicate whether the message is an important
informational message.

MDBDESCM 4.3.0 YES or NO to indicate: previously automated.

MDBCMLVL Message level; 2-byte hexadecimal value.

MDBMLR YES or NO to indicate whether the message is a WTOR.

MDBMLIA YES or NO to indicate whether the message requires an immediate
action.

MDBMLCE YES or NO to indicate whether the message requires a critical
eventual action.

MDBMLE YES or NO to indicate whether the message requires an eventual
action.

MDBMLI YES or NO to indicate whether the message is an informational
message.

MDBMLBC YES or NO to indicate whether the message is a broadcast
message.

MDBCSUPP 5.1.0 YES or NO to indicate whether the message is suppressed.

MDBCMCSC YES or NO to indicate whether the message is a command
response.

MDBCAUTH YES or NO to indicate whether the message was issued by an
authorized program.

 Appendix D. Additional Variables That GETMSG Sets D-3

 Additional GETMSG Variables

Figure D-1 (Page 4 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBCRETN YES or NO to indicate whether the message is retained by AMRF.

MDBCSPVD 5.2.0 YES or NO to indicate: WQE backlog message.

MDBCPRTY Message priority, in decimal.

MDBCASID ASID of the issuer; 2-byte hexadecimal value.

MDBCTCB TCB of the job step; 4-byte hexadecimal value.

MDBCTOKN Token that the issuer of the message used, in decimal.

MDBCSYID System ID, in decimal.

MDBDMSGI YES or NO to indicate whether operator messages with the specific
message ID (as specified by the MDBGSYID variable) should be
deleted.

MDBDSYSI YES or NO to indicate whether operator messages with the specific
system ID (as specified by the MDBGMID variable) should be
deleted.

MDBDASID YES or NO to indicate whether operator messages with the specific
ASID (as specified by the MDBCASID variable) should be deleted.

MDBDJTCB YES or NO to indicate whether operator messages with the specific
job step TCB (as specified by the MDBCTOKN variable) should be
deleted.

MDBDTOKN YES or NO to indicate whether operator messages with the specific
token (as specified by the MDBCTCB variable) should be deleted.

MDBCUD YES or NO to indicate whether the message was received because
the message is undeliverable and the console is set up to handle
undeliverable messages.

MDBCFUDO YES or NO to indicate whether the message was queued by UD
only. Note that if the value is YES, the message may have been
previously received.

MDBCAUT 4.3.0 YES or NO to indicate: QUEUE via automation.

MDBCHC 5.1.0 YES or NO to indicate: QUEUE via hardcopy.

MDBCOCMD 5.2.0 YES or NO to indicate: Echo operator command.

MDBCICMD 5.2.0 YES or NO to indicate: Echo internal command.

MDBCWTL 5.2.0 YES or NO to indicate: result of WTL macro.

MDBCFIDO YES or NO to indicate whether the message was queued by ID
only. Note that if the value is YES, the message may have been
previously received.

MDBCOJID Eight character originating job ID.

MDBCKEY Eight character retrieval key.

MDBCAUTO Eight character automation token.

MDBCCART Eight character command and response token (CART).

MDBCCNID Console ID; 4-byte hexadecimal value.

MDBMSGTA YES or NO to indicate whether the message was issued because
job names were being monitored.

MDBMSGTB YES or NO to indicate whether the message was issued because
status was being monitored.

D-4 OS/390 V2R8.0 TSO/E REXX Reference

 Additional GETMSG Variables

Figure D-1 (Page 5 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBMSGTC YES or NO to indicate whether monitor is active.

MDBMSGTD YES or NO to indicate whether the QID field exists in the WPL
(AOS/1).

MDBMSGTF YES or NO to indicate whether the message was issued because
sessions were being monitored.

MDBCRPYL Length of the reply ID, in decimal. The reply ID is returned in the
variable MDBCRPYI, which is described below.

MDBCRPYI EBCDIC representation of the reply ID.

MDBCTOFF The offset in the message text field to the beginning of the
message, in decimal.

MDBCRPYB Reply ID, in decimal.

MDBCAREA One character area ID.

MDBCLCNT Number of lines of message text in the message, in decimal.

MDBCOJBN Eight character originating job name.

MDBCSPLX 5.1.0 8-character SYSPLEX name.

MDBCRCMT 5.2.0 YES or NO to indicate whether the message text was changed.

MDBCRCRC 5.2.0 YES or NO to indicate whether routing code(s) were changed.

MDBCRCDC 5.2.0 YES or NO to indicate whether descriptor code(s) were changed.

MDBCRQPC 5.2.0 YES or NO to indicate: queued to a particular active console.

MDBCRQUN 5.2.0 YES or NO to indicate: queued to a particular console
unconditionally.

MDBCRQRC 5.2.0 YES or NO to indicate: queued by routing codes only.

MDBCRCCN 5.2.0 YES or NO to indicate whether the console ID was changed.

MDBCRPML 5.2.0 YES or NO to indicate whether minor lines were processed.

MDBCRDTM 5.2.0 YES or NO to indicate whether the message was deleted.

MDBCROMS 5.2.0 YES or NO to indicate: MPF suppression was overridden.

MDBCRFHC 5.2.0 YES or NO to indicate: hardcopy forced.

MDBCRNHC 5.2.0 YES or NO to indicate: no hardcopy was forced.

MDBCRHCO 5.2.0 YES or NO to indicate: only hardcopy forced.

MDBCRBCA 5.2.0 YES or NO to indicate: broadcast message to active consoles.

MDBCRBCN 5.2.0 YES or NO to indicate: did not broadcast message to active
consoles.

MDBCRNRT 5.2.0 YES or NO to indicate: AMRF did not retain this message.

MDBCRRET 5.2.0 YES or NO to indicate: AMRF retained this message.

MDBCRCKY 5.2.0 YES or NO to indicate: changed the retrieval key.

MDBCRCFC 5.2.0 YES or NO to indicate: changed the 4-byte console ID.

MDBCRCMF 5.2.0 YES or NO to indicate: changed the message type flags.

MDBCRANO 5.2.0 YES or NO to indicate: automation was not required.

MDBCRAYS 5.2.0 YES or NO to indicate: automation was required and/or automation
token updated.

 Appendix D. Additional Variables That GETMSG Sets D-5

 Additional GETMSG Variables

Figure D-1 (Page 6 of 6). Variables GETMSG Sets For An Entire Message

Variable Suffix Name Prerequ.
Release

Description

MDBCQHCO 5.2.0 YES or NO to indicate: message issued as hardcopy only.

MDBCHUD 5.2.0 UD to hardcopy flag

MDBCSNSV 5.2.0 YES or NO to indicate: not serviced by any WTO user exit routine.

MDBCSEER 5.2.0 YES or NO to indicate: ESTAE error in ieavx600.

MDBCSNSI 5.2.0 YES or NO to indicate: not serviced due to an incompatible request.

MDBCSAUT 5.2.0 YES or NO to indicate: automation specified.

MDBCSQED 5.2.0 YES or NO to indicate: not queued to any console.

MDBCSSSI 5.2.0 YES or NO to indicate: suppressed by a subsystem.

MDBCSWTO 5.2.0 YES or NO to indicate: suppressed by a WTO user exit routine.

MDBCSMPF 5.2.0 YES or NO to indicate: suppressed by MPF.

MDBCCNNM 5.2.0 8-character console name.

MDBMCSB 5.2.0 YES or NO to indicate: MCSFLAG=REG0 was specified.

MDBMCSH 5.2.0 YES or NO to indicate: MCSFLAG=QREG0 was specified.

MDBMCSI 5.2.0 YES or NO to indicate: MCSFLAG=NOTIME was specified.

Variables GETMSG Sets For Each Line of Message Text
GETMSG also sets an array of variables for the message it retrieves. The variables
are set for each line of message text for the retrieved message.

The variable names are compound symbols. The stem of each variable name is the
same for all lines of message text. The value following the period (.) in the variable
name is the line number of the line of message text.

The names of the variables correspond to the field names in the message data
block (MDB) in MVS/ESA System Product. The variable names consist of the
msgstem you specified on the call to GETMSG, followed by the name of the field in
the MDB, followed by a period (.), which is then followed by the line number of the
message text. For example, one field in the message data block is MDBTTYPE,
which is the text object type of the MDB. If you specify msgstem as “CMSG.” (with a
period), and GETMSG retrieves a message that has three lines of message text,
GETMSG sets the following MDBTTYPE variables:

CMSG.MDBTTYPE.1 (corresponding to the first line of message text)

CMSG.MDBTTYPE.2 (corresponding to the second line of message text)

CMSG.MDBTTYPE.3 (corresponding to the third line of message text)

If you specified the msgstem as “CMSG” (without a period), GETMSG sets the three
variables as CMSGMDBTTYPE.1, CMSGMDBTTYPE.2, and CMSGMDBTTYPE.3.

Figure D-2 describes the array of variables that GETMSG sets for each line of
message text.

D-6 OS/390 V2R8.0 TSO/E REXX Reference

 Additional GETMSG Variables

Figure D-2. Variables GETMSG Sets For Each Line of Message Text

Variable Suffix
Name

Description

MDBTLEN.n Text object length of the MDB, in decimal.

MDBTTYPE.n Text object type of the MDB, in decimal.

MDBTCONT.n YES or NO to indicate whether the line of message text
consists of control text.

MDBTLABT.n YES or NO to indicate whether the line of message text
consists of label text.

MDBTDATT.n YES or NO to indicate whether the line of message text
consists of data text.

MDBTENDT.n YES or NO to indicate whether the line of message text
consists of end text.

MDBTPROT.n YES or NO to indicate whether the line of message text
consists of prompt text.

MDBTFPAF.n YES or NO to indicate whether the text object presentation
attribute field overrides the general object presentation attribute
field.

MDBTPCON.n Presentation control attribute, in decimal.

MDBTPCOL.n Presentation color attribute, in decimal.

MDBTPHIL.n Presentation highlighting attribute, in decimal.

MDBTPINT.n Presentation intensity attribute, in decimal.

 Appendix D. Additional Variables That GETMSG Sets D-7

 Additional GETMSG Variables

D-8 OS/390 V2R8.0 TSO/E REXX Reference

 Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

 Copyright IBM Corp. 1988, 1999 E-1

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM's future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply

E-2 OS/390 V2R8.0 TSO/E REXX Reference

reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the
purposes of developing, using, marketing, or distributing application programs
conforming to IBM's application programming interfaces.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of OS/390 TSO/E REXX language processor.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

 � CICS
� Common User Access

 � DFSMS
 � DFSMS/MVS
 � IBM
 � IBMLink
 � IMS
 � Language Environment
 � MVS/DFP
 � MVS/ESA
 � MVS/SP
 � Operating System/2
 � OS/2
 � OS/390
 � Operating System/400
 � OS/400
 � PrintManager
 � RACF
 � SP
 � SAA
� Systems Application Architecture

 � VM/ESA

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names may be trademarks or service marks of
others.

 Appendix E. Notices E-3

E-4 OS/390 V2R8.0 TSO/E REXX Reference

 Bibliography

 Bibliography

 Related Publications

You may also need to refer to the following books for
more information.

TSO/E Publications

� OS/390 TSO/E REXX User's Guide, SC28-1974

� OS/390 TSO/E Customization, SC28-1965

� OS/390 TSO/E Command Reference, SC28-1969

� OS/390 TSO/E System Programming Command
Reference, SC28-1972

� OS/390 TSO/E Programming Services, SC28-1971

� OS/390 TSO/E Programming Guide, SC28-1970

� OS/390 TSO/E CLISTs, SC28-1973

� OS/390 TSO/E Messages, GC28-1978

SAA Publications

� SAA Common Programming Interface REXX Level
2 Reference, SC24-5549

� SAA Common Programming Interface
Communications Reference, SC26-4399

MVS/ESA Publications

� OS/390 MVS Planning: APPC/MVS Management,
GC28-1807

� OS/390 MVS Programming: Writing TPs for
APPC/MVS, GC28-1775

� OS/390 MVS Initialization and Tuning Reference,
SC28-1752

� OS/390 MVS Programming: Authorized Assembler
Services Reference ALE-DYN, GC28-1764

� OS/390 MVS System Messages, Vol 1 (ABA-ASA),
GC28-1784

� OS/390 MVS System Messages, Vol 2 (ASB-EZM),
GC28-1785

� OS/390 MVS System Codes, GC28-1780

� OS/390 MVS Data Areas, Vol 1 (ABEP-DALT),
SY28-1164

� OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE),
SY28-1165

� OS/390 MVS Data Areas, Vol 3 (IVT-RCWK),
SY28-1166

� OS/390 MVS Data Areas, Vol 4 (RD-SRRA),
SY28-1167

� OS/390 MVS Data Areas, Vol 5 (SSAG-XTLST),
SY28-1168.

ISPF Publications

� OS/390 ISPF Services Guide, SC28-1272

� OS/390 ISPF Dialog Developer's Guide and
Reference, SC28-1273.

IBM Compiler and Library for REXX/370

� Introducing the Next Step in REXX Programming,
G511-1430

� User's Guide and Reference, SH19-8160.

 Copyright IBM Corp. 1988, 1999 X-1

 Bibliography

X-2 OS/390 V2R8.0 TSO/E REXX Reference

 Index

 Index

Special Characters
-3 return code 2-23, 16-30
, (comma)

as continuation character 2-9
in CALL instruction 3-5
in function calls 4-1
in parsing template list 3-3, 5-11
separator of arguments 3-5, 4-1

: (colon)
as a special character 2-8
in a label 2-15

! prefix on TRACE option 3-33
? prefix on TRACE option 3-33
/ (division operator) 2-11, 6-3
// (remainder operator) 2-11, 6-6
/= (not equal operator) 2-12
/== (strictly not equal operator) 2-12
. (period)

as placeholder in parsing 5-3
causing substitution in variable names 2-18
in numbers 6-2

< (less than operator) 2-12
<< (strictly less than operator) 2-12
<<= (strictly less than or equal operator) 2-13
<= (less than or equal operator) 2-12
<> (less than or greater than operator) 2-12
* (multiplication operator) 2-11, 6-3
- tracing flag 3-35
** (power operator) 2-11, 6-5
\ (NOT operator) 2-13
\< (not less than operator) 2-12
\<< (strictly not less than operator) 2-13
\= (not equal operator) 2-12
\== (strictly not equal operator) 2-12
\> (not greater than operator) 2-12
\>> (strictly not greater than operator) 2-13
& (AND logical operator) 2-13
&& (exclusive OR operator) 2-13
% (integer division operator) 2-11, 6-6
+ (addition operator) 2-11, 6-3
+++ tracing flag 3-35
= (equal sign)

assignment indicator 2-16
equal operator 2-12
immediate debug command 11-1
in DO instruction 3-7
in parsing template 5-5

== (strictly equal operator) 2-11, 2-12, 6-3
- (subtraction operator) 2-11
> (greater than operator) 2-12

>.> tracing flag 3-35
>< (greater than or less than operator) 2-12
>= (greater than or equal operator) 2-12
>> (strictly greater than operator) 2-12
>>= (strictly greater than or equal operator) 2-13
>>> tracing flag 3-35
>C> tracing flag 3-35
>F> tracing flag 3-35
>L> tracing flag 3-35
>O> tracing flag 3-35
>P> tracing flag 3-35
>V> tracing flag 3-35
| (inclusive OR operator) 2-13
|| (concatenation operator) 2-11

to eliminate erroneous string interpretation 2-6

A
ABBREV function

description 4-7
example 4-7
testing abbreviations 4-7
using to select a default 4-7

abbreviations
testing with ABBREV function 4-7

ABS function
description 4-8
example 4-8

absolute value
finding using ABS function 4-8
function 4-8
used with power 6-5

abuttal 2-11
accessing REXX variables 12-46
action taken when a condition is not trapped 7-2
action taken when a condition is trapped 7-3
active loops 3-16
addition

description 6-4
operator 2-11

additional operator examples 6-6
ADDRESS function

description 4-8
determining current environment 4-8
example 4-8

ADDRESS instruction
description 3-1
example 3-2
settings saved during subroutine calls 3-7

address of environment block
obtaining 15-1
passing to REXX routines 12-4, 14-4, 14-39

 Copyright IBM Corp. 1988, 1999 X-3

 Index

address setting 3-3, 3-7
address spaces

name of for language processor environment 14-14
running execs in non-TSO/E 8-5
running execs in TSO/E 8-8
using REXX in different 8-1
using REXX in non-TSO/E 8-4
using REXX in TSO/E 8-6

advanced topics in parsing 5-11
algebraic precedence 2-13
allocation information

about a data set 4-49
retrieving with LISTDSI 4-49

alphabetic character word options in TRACE 3-32
alphabetics

checking with DATATYPE 4-14
used as symbols 2-6

alphanumeric checking with DATATYPE 4-14
altering

flow within a repetitive DO loop 3-16
special variables 2-21
TRACE setting 4-34

alternate entry point names 14-64
alternate exec libraries 2-1, 14-53
alternate messages flag 14-18
ALTLIB command 2-1, 14-53
ALTMSGS flag 14-18
AND, logical operator 2-13
ANDing character strings together 4-9
APPC/MVS

transaction programs 2-25
APPC/MVS logical unit (LU) name. 4-59
APPCMVS host command environment 2-25
ARG function

description 4-8
example 4-9

ARG instruction
description 3-3
example 3-3

ARG option of PARSE instruction 3-21
argument list for function package 12-35
arguments

checking with ARG function 4-8
of functions 3-3, 4-1
of subroutines 3-3, 3-4
passing to functions 4-1
retrieving with ARG function 4-8
retrieving with ARG instruction 3-3
retrieving with the PARSE ARG instruction 3-21

arithmetic
basic operator examples 6-5
comparisons 6-7
errors 6-10
exponential notation example 6-9
numeric comparisons, example 6-7
NUMERIC settings 3-18

arithmetic (continued)
operation rules 6-4
operator examples 6-6
operators 2-11, 6-1, 6-3
overflow 6-10
precision 6-3
underflow 6-10
whole numbers 6-10

array
initialization of 2-19
setting up 2-18

assigning
data to variables 3-20

assignment
description 2-16
indicator (=) 2-16
multiple assignments 5-6
of compound variables 2-18, 2-19

associating MVS commands and responses 4-46, C-4
associative storage 2-18
ATBCMREX pseudonym file 2-28
ATBCTREX pseudonym file 2-28
ATBPBREX pseudonym file 2-28
ATTACH host command environment 2-30
attaching programs 2-30
ATTCHMVS host command environment 2-30
ATTCHPGM host command environment 2-30
attention handling exit 16-3, 16-46
ATTNROUT field (module name table) 14-23
authorized

invoking REXX exec as 8-9, 12-10
automatic initialization of language processor

environments
in non-TSO/E address space 14-7
in TSO/E address space 14-5

B
B variable

erroneous concatenation with literal string 2-6
B2X function

description 4-11
example 4-11

backslash, use of 2-8, 2-13
base control program (BCP) level 4-59
basic operator examples 6-5
BCP level 4-59
binary

digits 2-6
strings

description 2-6
nibbles 2-6

to hexadecimal conversion 4-11
binary string interpretation

release dependency 2-6

X-4 OS/390 V2R8.0 TSO/E REXX Reference

 Index

BITAND function
description 4-9
example 4-10
logical bit operations 4-9

BITOR function
description 4-10
example 4-10
logical bit operations, BITOR 4-10

bits checked using DATATYPE 4-14
BITXOR function

description 4-10
example 4-10
logical bit operations, BITXOR 4-10

blanks
adjacent to special character 2-3
as concatenation operator 2-11
in parsing, treatment of 5-2
removal with STRIP function 4-30

boolean operations 2-13
bottom of program reached during execution 3-13
bracketed DBCS strings

DBBRACKET function A-12
DBUNBRACKET function A-16

built-in functions
ABBREV 4-7
ABS 4-8
ADDRESS 4-8
ARG 4-8
B2X 4-11
BITAND 4-9
BITOR 4-10
BITXOR 4-10
C2D 4-13
C2X 4-14
calling 3-4
CENTER 4-11
CENTRE 4-11
COMPARE 4-12
CONDITION 4-12
COPIES 4-13
D2C 4-19
D2X 4-19
DATATYPE 4-14
DATE 4-16
DBCS functions A-12
definition 3-4
DELSTR 4-18
DELWORD 4-18
description 4-7
DIGITS 4-18
ERRORTEXT 4-20
EXTERNALS 4-20
FIND 4-21
FORM 4-21
FORMAT 4-21
FUZZ 4-22

built-in functions (continued)
INDEX 4-23
INSERT 4-23
JUSTIFY 4-24
LASTPOS 4-24
LEFT 4-24
LENGTH 4-25
LINESIZE 4-25
MAX 4-26
MIN 4-26
OVERLAY 4-27
POS 4-27
QUEUED 4-27
RANDOM 4-28
REVERSE 4-28
RIGHT 4-29
SIGN 4-29
SOURCELINE 4-29
SPACE 4-30
STRIP 4-30
SUBSTR 4-31
SUBWORD 4-31
SYMBOL 4-31
TIME 4-32
TRACE 4-34
TRANSLATE 4-34
TRUNC 4-35
USERID 4-35
VALUE 4-36
VERIFY 4-37
WORD 4-37
WORDINDEX 4-37
WORDLENGTH 4-38
WORDPOS 4-38
WORDS 4-38
X2B 4-39
X2C 4-40
X2D 4-40
XRANGE 4-39

BY phrase of DO instruction 3-7

C
C2D function

description 4-13
example 4-13
implementation maximum 4-14

C2X function
description 4-14
example 4-14

CALL instruction
description 3-4
example 3-6
implementation maximum 3-7

calling REXX routines, general considerations 12-3

 Index X-5

 Index

calls
recursive 3-6

CART (command and response token) 4-46, C-4
CENTER function

description 4-11
example 4-11

centering a string using
CENTER function 4-11
CENTRE function 4-11

CENTRE function
description 4-11
example 4-11

chains of environments 14-3, 14-36
change value in specific storage address 4-72
changing defaults for initializing language processor

environments 14-41
changing destination of commands 3-1
changing maximum number of language processor

environments 14-67
character

definition 2-3
position of a string 4-24
position using INDEX 4-23
removal with STRIP function 4-30
strings, ANDing 4-9
strings, exclusive-ORing 4-10
strings, ORing 4-10
to decimal conversion 4-13
to hexadecimal conversion 4-14
word options, alphabetic in TRACE 3-32

characteristics of language processor
environment 13-1, 14-9

See also language processor environment
check existence of a data set 4-74
checking arguments with ARG function 4-8
clauses

assignment 2-16
commands 2-16
continuation of 2-9
description 2-3, 2-15
instructions 2-15
keyword instructions 2-16
labels 2-15
null 2-15

clock, elapsed time
See elapsed-time clock

close data set flag 14-17
CLOSEXFL flag 14-17
CMDSOFL flag 14-15
code page 2-3
collating sequence using XRANGE 4-39
collections of variables 4-36
colon

as a special character 2-8
as label terminators 2-15
in a label 2-15

combining string and positional patterns 5-12
comma

as continuation character 2-9
in CALL instruction 3-5
in function calls 4-1
in parsing template list 3-3, 5-11
separator of arguments 3-5, 4-1

command
-3 return code 2-23
alternative destinations 2-20
clause 2-16
definition of host 2-22
destination of 3-1
errors, trapping 7-1
inhibiting with TRACE instruction 3-33
issuing MVS system and subsystem 2-24, C-1
issuing to host 2-20
obtaining name of last command processed 4-77
reserved names 9-3
responses from MVS 4-42, C-3
return codes from 2-23
set prompting on/off 4-67
trap lines of output 4-63
TSO/E REXX 10-1

command and response token (CART) 4-46, C-4
command environments

See environment
command inhibition

See TRACE instruction
command search order flag 14-15
comments

description 2-4
examples 2-4
REXX exec identifier 2-2

common programming interface 1-1
COMPARE function

description 4-12
example 4-12

comparisons
numeric, example 6-7
of numbers 2-12, 6-7
of strings

description 2-12
using COMPARE 4-12

compiler programming routine
IRXERS 14-67
IRXHST 14-67
IRXRTE 14-67

compiler programming table 14-58, 14-60
compiler run-time processor

considerations for exec load routine 16-6
interface routines 14-58, 14-60
invoke compiler interface load routine 16-6
obtain evaluation block 12-61, 12-62

compound
symbols 2-18

X-6 OS/390 V2R8.0 TSO/E REXX Reference

 Index

compound (continued)
variable

description 2-18
setting new value 2-19

compression of execs 14-54
concatenation

of strings 2-11
operator

|| 2-11
abuttal 2-11
blank 2-11

conceptual overview of parsing 5-13
condition

action taken when not trapped 7-2
action taken when trapped 7-3
definition 7-1
ERROR 7-1
FAILURE 7-1
HALT 7-1
information 7-5
information, definition 3-7
NOVALUE 7-2
saved during subroutine calls 3-6
SYNTAX 7-2
trap information using CONDITION 4-12
trapping of 7-1
traps, notes 7-4

CONDITION function
description 4-12
example 4-13

conditional
loops 3-7
phrase 3-10

considerations for calling REXX routines 12-3
CONSOLE command 2-24, 4-42, C-1
CONSOLE host command environment 2-24, C-1
console profile 4-42, C-3
console session

activating C-1
associating commands and responses 4-46, C-4
CONSOLE environment 2-24, C-1
deactivating C-1
determining options in effect 4-80
issuing MVS system commands 2-24, C-1
processing messages during C-3
retrieving messages 4-42

CONSPROF command 4-42, C-3
constant symbols 2-17
content addressable storage 2-18
continuation

character 2-9
clauses 2-9
example 2-9
of data for display 3-28

control
display of TSO/E messages 4-57, 4-63

control (continued)
message display during console session 4-46, C-3
prompting from interactive commands 4-67
search order for REXX execs 14-19

control blocks
environment block (ENVBLOCK) 14-4, 14-58
evaluation (EVALBLOCK) 12-27, 12-36
exec block (EXECBLK) 12-20
for language processor environment 14-3, 14-58
in-storage (INSTBLK) 12-23
parameter block (PARMBLOCK) 14-9, 14-60
request (SHVBLOCK) 12-49
return result from exec 12-27
shared variable (SHVBLOCK) 12-49
SHVBLOCK 12-49
vector of external entry points 14-64
work block extension 14-61

control variable 3-9
controlled loops 3-9
conversion

binary to hexadecimal 4-11
character to decimal 4-13
character to hexadecimal 4-14
conversion functions 4-7
decimal to character 4-19
decimal to hexadecimal 4-19
formatting numbers 4-21
functions 4-41
hexadecimal to binary 4-39
hexadecimal to character 4-40
hexadecimal to decimal 4-40

COPIES function
description 4-13
example 4-13

copying a string using COPIES 4-13
copying information to and from data sets 10-4
counting

option in DBCS A-12
words in a string 4-38

CPICOMM host command environment 2-25
CPPL

in work block extension 14-63
passing on call to IRXEXEC 12-18

CPU serial numbers, retrieving 4-73
creating

buffer on the data stack 10-28
new data stack 10-30, 14-72
non-reentrant environment 15-1
reentrant environment 15-1

current non-reentrant environment, locating 15-1
current terminal line width 4-25
customizing services

description 13-1
environment characteristics 13-1

See also language processor environment
exit routines 13-1

 Index X-7

 Index

customizing services (continued)
general considerations for calling routines 12-3
language processor environments 14-1
replaceable routines 13-1, 13-6, 13-7

See also replaceable routines
summary of 8-3

D
D2C function

description 4-19
example 4-19
implementation maximum 4-19

D2X function
description 4-19
example 4-19
implementation maximum 4-20

data
length 2-10
terms 2-10

Data Facility Hierarchical Storage Manager (DFHSM),
status of 4-78

data set
check existence of 4-74
copying information to and from 10-4
obtain allocation, protection, directory

information 4-49
sequence numbers 2-2, 16-6

data stack
counting lines in 4-27
creating 10-30, 14-72
creating a buffer 10-28
deleting 10-2
DELSTACK command 10-2
discarding a buffer 10-3
DROPBUF command 10-3
dropping a buffer 10-3
MAKEBUF command 10-28
NEWSTACK command 10-30, 14-72
number of buffers 10-31
number of elements on 10-33
primary 14-72
QBUF command 10-31
QELEM command 10-33
QSTACK command 10-35
querying number of elements on 10-33
querying the number of 10-35
querying the number of buffers 10-31
reading from with PULL 3-25
replaceable routine 16-32
secondary 14-72
sharing between environments 14-69
use in different environments 14-69
writing to with PUSH 3-26
writing to with QUEUE 3-27

data stack flag 14-16
DATATYPE function

description 4-14
example 4-15

date and version of the language processor 3-23
DATE function

description 4-16
example 4-17

DBADJUST function
description A-12
example A-12

DBBRACKET function
description A-12
example A-13

DBCENTER function
description A-13
example A-13

DBCS
built-in function descriptions A-12
built-in function examples A-8
characters A-1
counting option A-12
description A-1
enabling data operations and symbol use A-2
EXMODE A-2
function handling A-6
functions

DBADJUST A-12
DBBRACKET A-12
DBCENTER A-13
DBCJUSTIFY A-13
DBLEFT A-14
DBRIGHT A-14
DBRLEFT A-15
DBRRIGHT A-15
DBTODBCS A-16
DBTOSBCS A-16
DBUNBRACKET A-16
DBVALIDATE A-17
DBWIDTH A-17

handling A-1
instruction examples A-5
mixed SBCS/DBCS string A-2
mixed string validation example A-3
mixed symbol A-2
notational conventions A-2
only string 4-15
parsing characters 5-12
processing functions A-12
SBCS strings A-1
shift-in (SI) characters A-2, A-7
shift-out (SO) characters A-2, A-7
string, DBCS-only A-2
string, mixed SBCS/DBCS A-2
strings 3-19, A-1
strings and symbols A-2

X-8 OS/390 V2R8.0 TSO/E REXX Reference

 Index

DBCS (continued)
support A-1, A-17
symbol validation and example A-3
symbol, DBCS-only A-2
symbol, mixed A-2
symbols and strings A-2
validation, mixed string A-3

DBLEFT function
description A-14
example A-14

DBRIGHT function
description A-14
example A-14

DBRLEFT function
description A-15
example A-15

DBRRIGHT function
description A-15
example A-15

DBTODBCS function
description A-16

DBTOSBCS function
description A-16
example A-16

DBUNBRACKET function
description A-16
example A-16

DBVALIDATE function
description A-17
example A-17

DBWIDTH function
description A-17
example A-17

DD from which execs are loaded 14-21
debug, interactive 11-1
debugging programs 11-1

See also interactive debug
See also TRACE instruction
-3 return code 2-23
EXECUTIL command 10-19
immediate commands 10-28
return codes from commands 2-23

decimal
arithmetic 6-1, 6-10
to character conversion 4-19
to hexadecimal conversion 4-19

default
environment 2-21
selecting with ABBREV function 4-7

defaults for initializing language processor
environments 14-31

defaults provided for parameters modules 14-31
delayed state

description 7-1
deleting

part of a string 4-18

deleting (continued)
words from a string 4-18

deleting a data stack 10-2
delimiters in a clause

See colon
See semicolons

DELSTACK command 10-2
DELSTR function

description 4-18
example 4-18

DELWORD function
description 4-18
example 4-18

derived names of variables 2-18
description

of built-in functions for DBCS A-12
DFHSM, status of 4-78
DFSMS indicator (MVSVAR function) 4-60
DIGITS function

description 4-18
example 4-18

DIGITS option of NUMERIC instruction 3-18, 6-3
direct interface to variables (IRXEXCOM) 12-46
directory names, function packages

IRXFLOC 12-38, 12-40
IRXFUSER 12-38, 12-40

directory, function package 12-40
example of 12-43
format 12-40
format of entries 12-41
specifying in function package table 12-45

discarding a buffer on the data stack 10-3
displaying data

See SAY instruction
displaying message IDs 16-43
division

description 6-4
operator 2-11

DO instruction
See also loops
description 3-7
example 3-10

Double-Byte Character Set
See DBCS

DROP instruction
description 3-12
example 3-12

DROPBUF command 10-3
dropping a buffer on the data stack 10-3
dummy instruction

See NOP instruction

E
EFPL (external function parameter list) 12-34

 Index X-9

 Index

elapsed-time clock
measuring intervals with 4-32
saved during subroutine calls 3-7

ELSE keyword
See IF instruction

enabled for variable access (IRXEXCOM) 12-46
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 3-9

engineering notation 6-9
entry point names 14-64
environment

addressing of 3-1
default 3-2, 3-21
determining current using ADDRESS function 4-8
host command 2-21
language processor 13-3, 14-1
name, definition 3-2
SAA supported 1-1
temporary change of 3-1

environment block
description 14-4, 14-39, 14-58
format 14-58
obtaining address of 15-1
overview for calling REXX routines 12-4
passing on call to REXX routines 12-4, 14-4, 14-39

environment table for number of language processor
environments 14-68

equal
operator 2-12
sign

in parsing template 5-4, 5-5
to indicate assignment 2-8, 2-16

equality, testing of 2-12
error

-3 return code 2-23
definition 2-22
during execution of functions 4-6
from commands 2-21
messages

control display of TSO/E messages 4-57, 4-63
displaying the message ID 16-43
replaceable routine for message ID 16-43
retrieving with ERRORTEXT 4-20

traceback after 3-35
trapping 7-1

ERROR condition of SIGNAL and CALL
instructions 7-5

error number
correspondence to error message 12-73
correspondence to error messages 4-20
correspondence to message number 12-78

ERRORTEXT function
description 4-20
example 4-20

ESTAE, recovery 14-18
ETMODE 3-19
evaluation block

for function packages 12-34, 12-36
for IRXEXEC routine 12-27
obtaining a larger one 12-60

evaluation of expressions 2-10
example

ABBREV function 4-7
ABS function 4-8
ADDRESS function 4-8
ADDRESS instruction 3-2
ARG function 4-9
ARG instruction 3-3
B2X function 4-11
basic arithmetic operators 6-5
BITAND function 4-10
BITOR function 4-10
BITXOR function 4-10
built-in function in DBCS A-8
C2D function 4-13
C2X function 4-14
CALL instruction 3-6
CENTER function 4-11
CENTRE function 4-11
character 2-9
clauses 2-9
combining positional pattern and parsing into

words 5-7
combining string and positional patterns 5-12
combining string pattern and parsing into words 5-7
comments 2-4
COMPARE function 4-12
CONDITION function 4-13
continuation 2-9
COPIES function 4-13
D2C function 4-19
D2X function 4-19
DATATYPE function 4-15
DATE function 4-17
DBADJUST function A-12
DBBRACKET function A-13
DBCENTER function A-13
DBCS instruction A-5
DBLEFT function A-14
DBRIGHT function A-14
DBRLEFT function A-15
DBRRIGHT function A-15
DBTOSBCS function A-16
DBUNBRACKET function A-16
DBVALIDATE function A-17
DBWIDTH function A-17
DELSTR function 4-18
DELWORD function 4-18
DIGITS function 4-18
DO instruction 3-10

X-10 OS/390 V2R8.0 TSO/E REXX Reference

 Index

example (continued)
DROP instruction 3-12
ERRORTEXT function 4-20
EXIT instruction 3-13
exponential notation 6-9
expressions 2-14
FIND function 4-21
FORM function 4-21
FORMAT function 4-22
FUZZ function 4-22
IF instruction 3-13
INDEX function 4-23
INSERT function 4-23
INTERPRET instruction 3-14, 3-15
ITERATE instruction 3-16
JUSTIFY function 4-24
LASTPOS function 4-24
LEAVE instruction 3-17
LEFT function 4-25
LENGTH function 4-25
MAX function 4-26
MIN function 4-26
mixed string validation A-3
NOP instruction 3-17
numeric comparisons 6-7
OVERLAY function 4-27
parsing instructions 5-10
parsing multiple strings in a subroutine 5-11
period as a placeholder 5-3
POS function 4-27
PROCEDURE instruction 3-24
PULL instruction 3-26
PUSH instruction 3-26
QUEUE instruction 3-27
QUEUED function 4-27
RANDOM function 4-28
REVERSE function 4-28
RIGHT function 4-29
SAY instruction 3-28
SELECT instruction 3-29
SIGL, special variable 7-6
SIGN function 4-29
SIGNAL instruction 3-30
simple templates, parsing 5-1
SOURCELINE function 4-29
SPACE function 4-30
special characters 2-8
STRIP function 4-30
SUBSTR function 4-31
SUBWORD function 4-31
SYMBOL function 4-32
symbol validation A-3
templates containing positional patterns 5-5
templates containing string patterns 5-3
TIME function 4-33
TRACE function 4-34

example (continued)
TRACE instruction 3-34
TRANSLATE function 4-34
TRUNC function 4-35
UPPER instruction 3-35
using a variable as a positional pattern 5-8
using a variable as a string pattern 5-8
VALUE function 4-36
VERIFY function 4-37
WORD function 4-37
WORDINDEX function 4-37
WORDLENGTH function 4-38
WORDPOS function 4-38
WORDS function 4-38
X2B function 4-39
X2C function 4-40
X2D function 4-40
XRANGE function 4-39

exception conditions saved during subroutine calls 3-6
exclusive OR operator 2-13
exclusive-ORing character strings together 4-10
exec block (EXECBLK) 12-20, 16-11
exec identifier 2-2
exec information, determining

availability of ISPF dialog manager services 4-77
exec invocation 4-77
foreground/background processing 4-76
last command processed 4-77
last subcommand processed 4-77
name used to invoke exec 4-77
size of message tables 4-81
whether messages are displayed 4-81

exec initialization exit 16-3, 16-45
exec libraries

defining alternate using ALTLIB 14-53
storing REXX execs 14-52
SYSEXEC 14-52
SYSPROC 14-52

exec load replaceable routine 16-5
exec processing exit (IRXEXECX) 16-3, 16-46
exec processing routines

IRXEXEC 12-13
IRXJCL 12-10

exec termination exit 16-3, 16-45
EXECINIT field (module name table) 14-23
EXECIO command 10-4
execs

compression of in VLF 14-54
description xvii
for MVS operator activities C-1
loading of 16-5
overview of writing 8-1
preloading 16-5
running in MVS batch 8-5, 12-10
running in non-TSO/E 8-5, 12-10
running in TSO/E 8-8, 12-10

 Index X-11

 Index

execs (continued)
storing in SYSEXEC or SYSPROC 2-1, 14-52
writing for non-TSO/E 8-4
writing for TSO/E 8-6

EXECTERM field (module name table) 14-24
EXECUTIL command 10-19
executing a REXX exec

from MVS batch 12-10
in non-TSO/E 8-5, 12-9
in TSO/E 8-8, 12-9
restriction 8-9, 12-10
using IRXEXEC routine 12-13
using IRXJCL routine 12-10

execution
by language processor 2-2
of data 3-14

EXIT instruction
description 3-12
example 3-13

exit routines 13-7, 16-44
attention handling 16-3, 16-46
exec initialization 16-3, 16-45
exec processing 16-3, 16-46
exec termination 16-3, 16-45
for IRXEXEC 16-3, 16-46
IRXINITX 16-3, 16-44
IRXITMV 16-3, 16-45
IRXITTS 16-3, 16-45
IRXTERMX 16-3, 16-45
language processor environment initialization 16-3,

16-44
language processor environment termination 16-3,

16-44
EXMODE

in DBCS A-2
with OPTIONS instruction 3-19

exponential notation
description 6-1, 6-8
example 6-9
usage 2-7

exponentiation
description 6-8
operator 2-11

EXPOSE option of PROCEDURE instruction 3-23
exposed variable 3-23
expressions

evaluation 2-10
examples 2-14
parsing of 3-23
results of 2-10
tracing results of 3-32

EXROUT field (module name table) 14-22
external

data queue
counting lines in 4-27
reading from with PULL 3-25
writing to with PUSH 3-26

external (continued)
data queue (continued)

writing to with QUEUE 3-27
functions

description 4-2
GETMSG 4-42
MSG 4-57
search order 4-3

instruction, UPPER 3-35
routine

calling 3-4
definition 3-4

subroutines
description 4-2
providing in function packages 12-32
search order 4-3
writing 12-32

variables
access with VALUE function 4-36

external entry points
alternate names 14-64
IRXEX 12-13
IRXEXC 12-46
IRXEXCOM 12-46
IRXEXEC 12-13
IRXHLT 12-71
IRXIC 12-57
IRXINIT 15-1
IRXINOUT 16-18
IRXINT 15-1
IRXIO 16-18
IRXJCL 12-10
IRXLD 16-5
IRXLIN 12-79
IRXLOAD 16-5
IRXMID 16-43
IRXMSGID 16-43
IRXRLT 12-60
IRXSAY 12-68
IRXSTK 16-32
IRXSUB 12-53
IRXSUBCM 12-53
IRXTERM 15-17
IRXTERMA B-1
IRXTMA B-1
IRXTRM 15-17
IRXTXT 12-73
IRXUID 16-40

external function parameter list (EFPL) 12-34
external functions

LISTDSI 4-49
MVSVAR 4-58
OUTTRAP 4-63
PROMPT 4-67
providing in function packages 12-32
SETLANG 4-70

X-12 OS/390 V2R8.0 TSO/E REXX Reference

 Index

external functions (continued)
STORAGE 4-72
SYSCPUS 4-73
SYSDSN 4-74
SYSVAR 4-76
writing 12-32

EXTERNAL option of PARSE instruction 3-21
EXTERNALS function

description 4-20
extracting

substring 4-31
word from a string 4-37
words from a string 4-31

F
FAILURE condition of SIGNAL and CALL

instructions 7-1, 7-5
failure, definition 2-22
FIFO (first-in/first-out) stacking 3-27
FIND function

description 4-21
example 4-21

finding
mismatch using COMPARE 4-12
string in another string 4-23, 4-27
string length 4-25
word length 4-38

flags for language processor environment 14-12,
14-15

ALTMSGS 14-18
CLOSEXFL 14-17
CMDSOFL 14-15
defaults provided 14-31
FUNCSOFL 14-15
LOCPKFL 14-17
NEWSCFL 14-17
NEWSTKFL 14-16
NOESTAE 14-18
NOLOADDD 14-19
NOMSGIO 14-19
NOMSGWTO 14-19
NOPMSGS 14-18
NOREADFL 14-16
NOSTKFL 14-16
NOWRTFL 14-16
RENTRANT 14-18
restrictions on settings 14-46, 14-52
SPSHARE 14-18
STORFL 14-18
SYSPKFL 14-17
TSOFL 14-8, 14-15
USERPKFL 14-17

flags, tracing
- 3-35
+++ 3-35

flags, tracing (continued)
>.> 3-35
>>> 3-35
>C> 3-35
>F> 3-35
>L> 3-35
>O> 3-35
>P> 3-35
>V> 3-35

flow of control
unusual, with CALL 7-1
unusual, with SIGNAL 7-1
with CALL/RETURN 3-4
with DO construct 3-7
with IF construct 3-13
with SELECT construct 3-28

flow of REXX exec processing 13-2
FOR phrase of DO instruction 3-7
FOREVER repetitor on DO instruction 3-7
FORM function

description 4-21
example 4-21

FORM option of NUMERIC instruction 3-18, 6-9
FORMAT function

description 4-21
example 4-22

formatting
DBCS blank adjustments A-12
DBCS bracket adding A-12
DBCS bracket stripping A-16
DBCS EBCDIC to DBCS A-16
DBCS string width A-17
DBCS strings to SBCS A-16
DBCS text justification A-13
numbers for display 4-21
numbers with TRUNC 4-35
of output during tracing 3-34
text centering 4-11
text justification 4-24
text left justification 4-24, A-14
text left remainder justification A-15
text right justification 4-29, A-14
text right remainder justification A-15
text spacing 4-30
text validation function A-17

FORTRAN programs, alternate entry points for external
entry points 14-64

FUNCSOFL flag 14-15
function package flags 14-17
function package table 12-45, 14-10, 14-28

defaults provided 14-31
defining function packages products provide 12-39

function packages
add entries in directory 10-19, 10-23
change entries in directory 10-19, 10-23
description 12-32

 Index X-13

 Index

function packages (continued)
directory 12-40
directory names 12-38, 12-40

IRXFLOC 12-38, 12-40
IRXFUSER 12-38, 12-40
specifying in function package table 12-45
system-supplied 12-38, 12-40

example of directory 12-43
external function parameter list 12-34
format of entries in directory 12-41
function package table 12-45
getting larger area to store result 12-60
getting larger evaluation block 12-60
interface for writing code 12-33
IRXFLOC 12-38, 12-40
IRXFUSER 12-38, 12-40
link-editing the code 12-40
overview 12-1
parameters code receives 12-34
provided by IBM products 12-39
rename entries in directory 10-19, 10-23
summary of 8-2
system-supplied directory names 12-38, 12-40
types of

local 12-38
system 12-38
user 12-38

writing 12-32
function search order flag 14-15
function, built-in

See built-in functions
functions 4-1, 4-41

ABS 4-8
ADDRESS 4-8
ARG 4-8
B2X 4-11
BITAND 4-9
BITOR 4-10
BITXOR 4-10
built-in 4-7, 4-40
built-in, description 4-7
C2D 4-13
C2X 4-14
call, definition 4-1
calling 4-1
CENTER 4-11
CENTRE 4-11
COMPARE 4-12
CONDITION 4-12
COPIES 4-13
D2C 4-19
D2X 4-19
DATATYPE 4-14
DATE 4-16
definition 4-1
DELSTR 4-18

functions (continued)
DELWORD 4-18
description 4-1
DIGITS 4-18
ERRORTEXT 4-20
external 4-2
EXTERNALS 4-20
FIND 4-21
forcing built-in or external reference 4-3
FORM 4-21
FORMAT 4-21
FUZZ 4-22
INDEX 4-23
INSERT 4-23
internal 4-2
JUSTIFY 4-24
LASTPOS 4-24
LEFT 4-24
LENGTH 4-25
LINESIZE 4-25
MAX 4-26
MIN 4-26
numeric arguments of 6-10
OVERLAY 4-27
POS 4-27
processing in DBCS A-12
providing in function packages 12-32
QUEUED 4-27
RANDOM 4-28
return from 3-27
REVERSE 4-28
RIGHT 4-29
search order 4-3
SIGN 4-29
SOURCELINE 4-29
SPACE 4-30
STRIP 4-30
SUBSTR 4-31
SUBWORD 4-31
SYMBOL 4-31
TIME 4-32
TRACE 4-34
TRANSLATE 4-34
TRUNC 4-35
TSO/E external 4-41
USERID 4-35
VALUE 4-36
variables in 3-23
VERIFY 4-37
WORD 4-37
WORDINDEX 4-37
WORDLENGTH 4-38
WORDPOS 4-38
WORDS 4-38
writing external 12-32
X2B 4-39

X-14 OS/390 V2R8.0 TSO/E REXX Reference

 Index

functions (continued)
X2C 4-40
X2D 4-40
XRANGE 4-39

FUZZ
controlling numeric comparison 6-7
option of NUMERIC instruction 3-18, 6-7

FUZZ function
description 4-22
example 4-22

G
general concepts 2-1, 2-38
general considerations for calling REXX routines 12-3
get result routine (IRXRLT) 12-60
GETFREER field (module name table) 14-22
GETMSG function 4-42

additional variables set D-1
variables related to MDB D-1

getting a larger evaluation block 12-60
global variables

access with VALUE function 4-36
GOTO, unusual 7-1
greater than operator 2-12
greater than or equal operator (>=) 2-12
greater than or less than operator (><) 2-12
group, DO 3-8
grouping instructions to run repetitively 3-7
guard digit 6-3

H
HALT condition of SIGNAL and CALL instructions 7-1,

7-5
Halt Execution (HE) immediate command 10-26
Halt Interpretation (HI) immediate command 10-27,

11-1, 12-57
Halt Typing (HT) immediate command 10-27, 12-57
halt, trapping 7-1
halting a looping program 11-3

from a program 12-57
HI immediate command 10-27
using the IRXIC routine 12-57
with EXECUTIL command 10-19

HE (Halt Execution) immediate command 10-26, 11-3
hexadecimal

See also conversion
checking with DATATYPE 4-14
digits 2-5
strings

description 2-5
implementation maximum 2-5

to binary, converting with X2B 4-39
to character, converting with X2C 4-40
to decimal, converting with X2D 4-40

HI (Halt Interpretation) immediate command 10-27,
11-3, 12-57

host command environment
APPCMVS 2-25
ATTACH 2-30
ATTCHMVS 2-30
ATTCHPGM 2-30
change entries in SUBCOMTB table 12-53
check existence of 10-36
CONSOLE 2-24, C-1
CPICOMM 2-25
description 2-21
IRXSUBCM routine 12-53
ISPEXEC 2-24, 8-7
ISREDIT 2-24, 8-7
LINK 2-30
LINKMVS 2-30
LINKPGM 2-30
LU62 2-25
MVS 2-29
replaceable routine 16-28
TSO 2-23

host command environment table 14-10, 14-25
defaults provided 14-31

host commands
-3 return code 2-23, 16-30
console session 2-24, C-1
definition of 2-22
interrupting 11-5
issuing commands to underlying operating

system 2-20
issuing MVS system and subsystem 2-24, C-1
return codes from 2-23
TSO/E REXX 10-1
using in non-TSO/E 8-4
using in TSO/E 8-6, 8-7

hours calculated from midnight 4-32
how to use this book xvii
HT (Halt Typing) immediate command 10-27, 12-57

I
I/O

replaceable routine 16-18
to and from data sets 10-4

identifying users 4-35
IDROUT field (module name table) 14-23
IF instruction

description 3-13
example 3-13

IKJCT441 variable access routine 12-46
IKJTSOEV service 8-1, 8-9
immediate commands 10-28

HE (Halt Execution) 10-26, 11-3
HI (Halt Interpretation) 10-27, 11-3, 12-57
HT (Halt Typing) 10-27, 12-57

 Index X-15

 Index

immediate commands (continued)
issuing from program 12-57
RT (Resume Typing) 10-36, 12-57
TE (Trace End) 10-38, 11-3, 12-57
TS (Trace Start) 10-39, 11-3, 12-57

implementation maximum
C2D function 4-14
CALL instruction 3-7
D2C function 4-19
D2X function 4-20
hexadecimal strings 2-5
literal strings 2-5
MAX function 4-26
MIN function 4-26
numbers 2-8
operator characters 2-19
storage limit 2-1
symbols 2-7
TIME function 4-33
X2D function 4-41

implied semicolons 2-9
imprecise numeric comparison 6-7
in-storage control block (INSTBLK) 12-23
in-storage parameter list 15-9
inclusive OR operator 2-13
INDD field (module name table) 14-21
indefinite loops 3-9

See also looping program
indentation during tracing 3-34
INDEX function

description 4-23
example 4-23

indirect evaluation of data 3-14
inequality, testing of 2-12
infinite loops 3-7

See also looping program
inhibition of commands with TRACE instruction 3-33
initialization

of arrays 2-19
of compound variables 2-19
of language processor environments 14-2, 15-1

for user-written TMP 14-6
in non-TSO/E address space 14-7
in TSO/E address space 14-5

routine (IRXINIT) 14-5, 15-1
initialization routine (IRXINIT)

description 15-1
how environment values are determined 14-34
how values are determined 15-8
in-storage parameter list 15-9
output parameters 15-12
overview 14-5
parameters module 15-9
reason codes 15-12
restrictions on values 15-10
specifying values 15-10

initialization routine (IRXINIT) (continued)
to initialize an environment 15-1
to locate an environment 15-1
user-written TMP 14-6
values used to initialize environment 14-34

input/output
replaceable routine 16-18
to and from data sets 10-4

INSERT function
description 4-23
example 4-23

inserting a string into another 4-23
INSTBLK (in-storage control block) 12-23
instructions

ADDRESS 3-1
ARG 3-3
CALL 3-4
definition 2-15
DO 3-7
DROP 3-12
EXIT 3-12
IF 3-13
INTERPRET 3-14
ITERATE 3-16
keyword 2-16

description 3-1
LEAVE 3-16
NOP 3-17
NUMERIC 3-18
OPTIONS 3-19
PARSE 3-20
parsing, summary 5-9
PROCEDURE 3-23
PULL 3-25
PUSH 3-26
QUEUE 3-27
RETURN 3-27
SAY 3-28
SELECT 3-28
SIGNAL 3-29
TRACE 3-31
UPPER 3-35

integer
arithmetic 6-1, 6-10
division

description 6-1, 6-6
operator 2-11

integrated language processor environments (into
TSO/E) 13-5, 14-8

interactive debug 3-31, 11-1
See also TRACE instruction

interface for writing functions and subroutines 12-33
interface to variables (IRXEXCOM) 12-46
internal

functions
description 4-2
return from 3-27

X-16 OS/390 V2R8.0 TSO/E REXX Reference

 Index

internal (continued)
functions (continued)

variables in 3-23
routine

calling 3-4
definition 3-4

INTERPRET instruction
description 3-14
example 3-14, 3-15

interpretive execution of data 3-14
interrupting exec interpretation 12-57
interrupting program execution 10-23, 10-27, 11-3
invoking

built-in functions 3-4
REXX execs 8-5, 8-8
routines 3-4

IOROUT field (module name table) 14-22
IRXANCHR load module 14-68
IRXARGTB mapping macro 12-22, 12-35
IRXDSIB mapping macro 16-18, 16-25
IRXEFMVS 12-39
IRXEFPCK 12-39
IRXEFPL mapping macro 12-34
IRXENVB mapping macro 14-58
IRXENVT mapping macro 14-68
IRXERS compiler programming routine 14-67
IRXEVALB mapping macro 12-28, 12-36
IRXEX alternate entry point 12-13
IRXEXC alternate entry point 12-46
IRXEXCOM variable access routine 12-46
IRXEXEC routine 12-9, 12-13

argument list 12-22
description 12-9, 12-13
evaluation block 12-27
exec block 12-20
getting larger area to store result 12-60
getting larger evaluation block 12-60
in-storage control block 12-23
overview 12-1
parameters 12-15
return codes 12-30
returning result from exec 12-27

IRXEXECB mapping macro 12-20, 16-11
IRXEXECX exec processing exit 16-3, 16-46
IRXEXECX field (module name table) 14-23
IRXEXTE mapping macro 14-64
IRXFLOC 12-38, 12-40
IRXFPDIR mapping macro 12-40
IRXFUSER 12-38, 12-40
IRXHLT routine 12-71
IRXHST compiler programming routine 14-67
IRXIC routine 12-57
IRXINIT initialization routine 14-5, 15-1
IRXINITX exit 16-3, 16-44
IRXINOUT I/O routine 16-18

IRXINSTB mapping macro 12-23, 16-14
IRXINT alternate entry point 15-1
IRXIO alternate entry point 16-18
IRXISPRM parameters module 14-9, 14-31
IRXITMV exit 16-3, 16-45
IRXITTS exit 16-3, 16-45
IRXJCL routine 12-9, 12-10

description 12-9
invoking 12-11
overview 12-1
parameters 12-11
return codes 12-12

IRXLD alternate entry point 16-5
IRXLIN routine 12-79
IRXLOAD exec load routine 16-5
IRXMID alternate entry point 16-43
IRXMODNT mapping macro 14-20
IRXMSGID message ID routine 16-43
IRXPACKT mapping macro 14-29
IRXPARMB mapping macro 14-13, 14-60
IRXPARMS parameters module 14-9, 14-31
IRXREXX1 (sample for IRXPARMS) 14-41
IRXREXX2 (sample for IRXTSPRM) 14-41
IRXREXX3 (sample for IRXISPRM) 14-41
IRXRLT get result routine 12-60
IRXRTE compiler programming routine 14-67
IRXSAY routine 12-68
IRXSHVB mapping macro 12-49
IRXSTK data stack routine 16-32
IRXSUB alternate entry point 12-53
IRXSUBCM routine 12-53
IRXSUBCT mapping macro 12-56, 14-26
IRXTERM termination routine 14-5, 15-17
IRXTERMA termination routine B-1
IRXTERMX exit 16-3, 16-45
IRXTMA alternate entry point B-1
IRXTRM alternate entry point 15-17
IRXTSPRM parameters module 14-9, 14-31
IRXTXT routine 12-73
IRXUID user-ID routine 16-40
IRXWORKB mapping macro 14-62
ISPEXEC host command environment 2-24
ISPF

determining availability of dialog manager
services 4-77

host command environments 2-24
interrupting execs 11-5
using ISPF services 2-24, 8-7

ISREDIT host command environment 2-24
issuing host commands 2-21
ITERATE instruction

See also DO instruction
description 3-16
example 3-16
use of variable on 3-16

 Index X-17

 Index

J
JES name and level 4-78
JES network node name 4-79
justification, text right, RIGHT function 4-29
JUSTIFY function

description 4-24
example 4-24

justifying text with JUSTIFY function 4-24

K
keyword

See also instructions
conflict with commands 9-1
description 3-1
mixed case 3-1
reservation of 9-1

L
label

as target of CALL 3-4
as target of SIGNAL 3-30
description 2-15
duplicate 3-30
in INTERPRET instruction 3-15
search algorithm 3-30

language
codes for REXX messages

determining current 4-70
in parameter block 14-11
in parameters module 14-11
SETLANG function 4-70
setting 4-70

determining
for REXX messages 4-70
primary in UPT 4-80
secondary in UPT 4-80
whether terminal supports DBCS 4-79
whether terminal supports Katakana 4-80

processor date and version 3-23
processor, execution 2-2
structure and syntax 2-2

language processor environment
automatic initialization in non-TSO/E 14-7
automatic initialization in TSO/E 14-5
chains of 14-3, 14-36
changing the defaults for initializing 14-41
characteristics 14-9
considerations for calling REXX routines 12-4
control blocks for 14-3, 14-58
data stack in 14-69
description 13-3, 14-1
flags and masks 14-15
how environments are located 14-38
initializing for user-written TMP 14-6

language processor environment (continued)
integrated into TSO/E 14-8
maximum number of 14-3, 14-67
non-reentrant 15-1
not integrated into TSO/E 14-8
obtaining address of environment block 15-1
overview for calling REXX routines 12-4
reentrant 15-1
restrictions on values for 14-45
sharing data stack 14-69
terminating 15-17, B-1
types of 13-5, 14-8
user-written TMP 14-6

LASTPOS function
description 4-24
example 4-24

leading
blank removal with STRIP function 4-30
zeros

adding with the RIGHT function 4-29
removing with STRIP function 4-30

LEAVE instruction
See also DO instruction
description 3-16
example 3-17
use of variable on 3-16

leaving your program 3-12
LEFT function

description 4-24
example 4-25

LENGTH function
description 4-25
example 4-25

less than operator (<) 2-12
less than or equal operator (<=) 2-12
less than or greater than operator (<>) 2-12
level of RACF installed 4-78
level of TSO/E installed 4-79
LIFO (last-in/first-out) stacking 3-26
line length and width of terminal 4-25
LINESIZE function

description 4-25
LINK host command environment 2-30
linking to programs 2-30
LINKMVS host command environment 2-30
LINKPGM host command environment 2-30
list

template
ARG instruction 3-3
PARSE instruction 3-20
PULL instruction 3-26

LISTDSI function 4-49
function codes 4-48
reason codes 4-54
variables set by 4-51

X-18 OS/390 V2R8.0 TSO/E REXX Reference

 Index

literal string
description 2-4
erroneous interpretation as binary string 2-6
implementation maximum 2-5
patterns 5-3

LOADDD field (module name table) 14-21
loading a REXX exec 16-5
local function packages 12-38
locating

phrase in a string 4-21
string in another string 4-23, 4-27
word in a string 4-37

locating current non-reentrant environment 15-1
LOCPKFL flag 14-17
logical

bit operations
BITAND 4-9
BITOR 4-10
BITXOR 4-10

operations 2-13
logical unit (LU) name of APPC/MVS 4-59
logon procedure

obtain name of for current session 4-76
looping program

halting 11-3, 12-57
tracing 10-21, 10-23, 11-3, 12-57

loops
See also DO instruction
See also looping program
active 3-16
execution model 3-10
indefinite loops 11-3
infinite loops 11-3
modification of 3-16
repetitive 3-8
termination of 3-16

lowercase symbols 2-6
LU62 host command environment 2-25

M
MAKEBUF command 10-28
managing storage 16-38
mapping macros

IRXARGTB (argument list for function
packages) 12-35

IRXARGTB (argument list for IRXEXEC) 12-22
IRXDSIB (data set information block) 16-18, 16-25
IRXEFPL (external function parameter list) 12-34
IRXENVB (environment block) 14-58
IRXENVT (environment table) 14-68
IRXEVALB (evaluation block) 12-28, 12-36
IRXEXECB (exec block) 12-20, 16-11
IRXEXTE (vector of external entry points) 14-64
IRXFPDIR (function package directory) 12-40
IRXINSTB (in-storage control block) 12-23, 16-14

mapping macros (continued)
IRXMODNT (module name table) 14-20
IRXPACKT (function package table) 14-29
IRXPARMB (parameter block) 14-13, 14-60
IRXSHVB (SHVBLOCK) 12-49
IRXSUBCT (host command environment

table) 12-56, 14-26
IRXWORKB (work block extension) 14-62

mask settings 14-14
masks for language processor environment 14-14,

14-15
MAX function

description 4-26
example 4-26
implementation maximum 4-26

maximum number of language processor
environments 14-3, 14-67

MDB (message data block) D-1
message data block (MDB) D-1
message identifier replaceable routine 16-43
message IDs, displaying 16-43
message table

change current size C-3
definition C-3
determine current size 4-81

messages
control display of TSO/E messages 4-57, 4-63
language for REXX 4-70, 14-11
retrieving during console session 4-42, C-3
solicited 4-42, C-3
unsolicited 4-42, C-3

MIN function
description 4-26
example 4-26
implementation maximum 4-26

minutes calculated from midnight 4-32
mixed DBCS string 4-15
module name table

ATTNROUT field 14-23
defaults provided 14-31
description 14-20
EXECINIT field 14-23
EXECTERM field 14-24
EXROUT field 14-22
format 14-20
GETFREER field 14-22
IDROUT field 14-23
in parameter block 14-10
INDD field 14-21
IOROUT field 14-22
IRXEXECX field 14-23
LOADDD field 14-21
MSGIDRT field 14-24
OUTDD field 14-21
part of parameters module 14-10
STACKRT field 14-23

 Index X-19

 Index

MSG function 4-57
MSGIDRT field (module name table) 14-24
multi-system global resource serialization complex,

system name 4-60
multi-way call 3-5, 3-30
multiple

assignments in parsing 5-6
string parsing 5-11

multiplication
description 6-4
operator 2-11

MVS batch
running exec in 12-9, 12-10

MVS host command environment 2-29
MVS symbolic name (MVSVAR function) 4-61
MVS sysplex name (MVSVAR function) 4-61
MVS system and subsystem commands

issuing from exec 2-24, C-1
processing messages 4-42, C-3
retrieving responses 4-42, C-3

MVS/DFP level 4-59
MVSVAR function 4-58

N
names

of functions 4-2
of programs 3-21
of subroutines 3-4
of TSO/E REXX external entry points 14-64
of variables 2-7
reserved command names 9-3

negation
of logical values 2-13
of numbers 2-11

nesting of control structures 3-7
network node name of JES 4-79
new data stack flag 14-16
new data stack, creating 10-30
new host command environment flag 14-17
NEWSCFL flag 14-17
NEWSTACK command 10-30, 14-72
NEWSTKFL flag 14-16
nibbles 2-6
node name of JES 4-79
NOESTAE flag 14-18
NOETMODE 3-19
NOEXMODE 3-19
NOLOADDD flag 14-19
NOMSGIO flag 14-19
NOMSGWTO flag 14-19
non-reentrant environment 14-18, 15-1
non-TSO/E address spaces

creating TSO/E environment 8-1, 8-9
host command environments 2-23
initialization of language processor

environment 14-7

non-TSO/E address spaces (continued)
overview of running an exec 8-5
writing execs for 8-4

NOP instruction
description 3-17
example 3-17

NOPMSGS flag 14-18
NOREADFL flag 14-16
NOSTKFL flag 14-16
not equal operator 2-12
not greater than operator 2-12
not less than operator 2-12
NOT operator 2-8, 2-13
notation

engineering 6-9
exponential, example 6-9
scientific 6-9

note
condition traps 7-4

Notices E-1
NOVALUE condition

not raised by VALUE function 4-36
of SIGNAL instruction 7-5
on SIGNAL instruction 7-2
use of 9-1

NOWRTFL flag 14-16
null

clauses 2-15
strings 2-4, 2-10

null instruction
See NOP instruction

number of language processor environments, changing
maximum 14-68

numbers
arithmetic on 2-11, 6-1, 6-3
checking with DATATYPE 4-14
comparison of 2-12, 6-7
description 2-7, 6-1, 6-2
formatting for display 4-21
implementation maximum 2-8
in DO instruction 3-7
truncating 4-35
use in the language 6-10
whole 6-10

numeric
comparisons, example 6-7
options in TRACE 3-34

NUMERIC instruction
description 3-18
DIGITS option 3-18
FORM option 3-18, 6-9
FUZZ option 3-18
option of PARSE instruction 3-21, 6-9
settings saved during subroutine calls 3-6

X-20 OS/390 V2R8.0 TSO/E REXX Reference

 Index

O
obtaining a larger evaluation block 12-60
operations

arithmetic 6-4
tracing results 3-31

operator
arithmetic

description 2-10, 6-1, 6-3
list 2-11

as special characters 2-8
characters

description 2-8
implementation maximum 2-19

comparison 2-12, 6-7
concatenation 2-11
examples 6-5, 6-6
logical 2-13
precedence (priorities) of 2-13

options
alphabetic character word in TRACE 3-32
numeric in TRACE 3-34
prefix in TRACE 3-33

OPTIONS instruction
description 3-19

OR, logical
exclusive 2-13
inclusive 2-13

ORing character strings together 4-10
OTHERWISE clause

See SELECT instruction
OUTDD field (module name table) 14-21
output trapping 4-63
OUTTRAP function 4-63
overflow, arithmetic 6-10
OVERLAY function

description 4-27
example 4-27

overlaying a string onto another 4-27
overview of parsing 5-13
overview of REXX processing in different address

spaces 8-1

P
¬ (NOT operator) 2-13
¬< (not less than operator) 2-12
¬<< (strictly not less than operator) 2-13
¬= (not equal operator) 2-12
¬== (strictly not equal operator) 2-12
¬> (not greater than operator) 2-12
¬>> (strictly not greater than operator) 2-13
packing a string with X2C 4-40
pad character, definition 4-7
page, code 2-3

parameter block 14-9
format 14-10, 14-60
relationship to parameters modules 14-9

parameters modules
changing the defaults 14-41
default values for 14-31
defaults 14-2, 14-9, 14-31

IRXISPRM 14-9, 14-31
IRXPARMS 14-9, 14-31
IRXTSPRM 14-9, 14-31

for IRXINIT 15-9
format of 14-10
providing you own 14-41
relationship to parameter block 14-9
restrictions on values for 14-45

parentheses
adjacent to blanks 2-8
in expressions 2-13
in function calls 4-1
in parsing templates 5-8

PARSE instruction
description 3-20
NUMERIC option 6-9

PARSE SOURCE token 14-12
parsing

advanced topics 5-11
combining patterns and parsing into words 5-7
combining string and positional patterns 5-12
conceptual overview 5-13
definition 5-1
description 5-1, 5-15
equal sign 5-5
examples

combining positional pattern and parsing into
words 5-7

combining string and positional patterns 5-12
combining string pattern and parsing into

words 5-7
parsing instructions 5-10
parsing multiple strings in a subroutine 5-11
period as a placeholder 5-3
simple templates 5-1
templates containing positional patterns 5-5
templates containing string patterns 5-3
using a variable as a positional pattern 5-8
using a variable as a string pattern 5-8

into words 5-1
multiple assignments 5-6
multiple strings 5-11
patterns

conceptual view 5-14
positional 5-1, 5-4
string 5-1, 5-3

period as placeholder 5-3
positional patterns 5-1

absolute 5-4
relative 5-5

 Index X-21

 Index

parsing (continued)
positional patterns (continued)

variable 5-8
selecting words 5-1
source string 5-1
special case 5-12
steps 5-12
string patterns 5-1

literal string patterns 5-3
variable string patterns 5-8

summary of instructions 5-9
templates

in ARG instruction 3-3
in PARSE instruction 3-20
in PULL instruction 3-25

treatment of blanks 5-2
UPPER, use of 5-9
variable patterns

positional 5-8
string 5-8

with DBCS characters 5-12
word parsing

conceptual view 5-15
description and examples 5-1

passing address of environment block to REXX
routines 12-4, 14-39

patterns in parsing
combined with parsing into words 5-7
conceptual view 5-14
positional 5-1, 5-4
string 5-1, 5-3

period
as placeholder in parsing 5-3
causing substitution in variable names 2-18
in numbers 6-2

permanent command destination change 3-1
portability of compiled REXX programs 1-3
POS function

description 4-27
example 4-27

position
last occurrence of a string 4-24
of character using INDEX 4-23

positional patterns
absolute 5-4
description 5-1
relative 5-5
variable 5-8

powers of ten in numbers 2-7
precedence of operators 2-13
precision of arithmetic 6-3
prefix

as used in examples in book xviii, 4-41, 10-1
defined in user profile, obtaining 4-76
operators 2-11, 2-13
options in TRACE 3-33

preloading a REXX exec 16-5
primary data stack 14-72
primary language in UPT 4-80
primary messages flag 14-18
PROCEDURE instruction

description 3-23
example 3-24

profile
See also user profile
transaction program 2-28
user 4-67

programming
interface, common 1-1
restrictions 2-1

programming services
description 12-1
function packages 12-32
general considerations for calling routines 12-3
IKJCT441 (variable access) 12-46
IRXEXCOM (variable access) 12-46
IRXHLT (Halt condition) 12-71
IRXIC (trace and execution control) 12-57
IRXLIN (LINESIZE function) 12-79
IRXRLT (get result) 12-60
IRXSAY (SAY instruction) 12-68
IRXSUBCM (host command environment

table) 12-53
IRXTXT text retrieval 12-73
passing address of environment block to

routines 12-4
summary of 8-2
writing external functions and subroutines 12-32

programs
APPC/MVS transaction 2-25
attaching 2-30
linking to 2-30
retrieving lines with SOURCELINE 4-29
transaction 2-25

PROMPT function 4-67
protecting variables 3-23
pseudo random number function of RANDOM 4-28
pseudonym files 2-28
pseudonyms 2-28
PULL instruction

description 3-25
example 3-26

PULL option of PARSE instruction 3-21
purpose

SAA 1-1
PUSH instruction

description 3-26
example 3-26

X-22 OS/390 V2R8.0 TSO/E REXX Reference

 Index

Q
QBUF command 10-31
QELEM command 10-33
QSTACK command 10-35
query

data set information 4-49
existence of host command environment 10-36
number of buffers on data stack 10-31
number of data stacks 10-35
number of elements on data stack 10-33

querying TRACE setting 4-34
queue

See external, data queue
QUEUE instruction

description 3-27
example 3-27

QUEUED function
description 4-27
example 4-27

R
RACF

level installed 4-78
status of 4-79

RANDOM function
description 4-28
example 4-28

random number function of RANDOM 4-28
RC (return code)

not set during interactive debug 11-2
set by commands 2-21
set to 0 if commands inhibited 3-33
special variable 7-5, 9-2

reading
from the data stack 3-25

reads from input file 14-16
reason codes

for IRXINIT routine 15-12
set by LISTDSI 4-54

recovery ESTAE 14-18
recursive call 3-6
reentrant environment 14-18, 15-1
relative positional patterns 5-5
remainder

description 6-1, 6-6
operator 2-11

RENTRANT flag 14-18
reordering data with TRANSLATE function 4-34
repeating a string with COPIES 4-13
repetitive loops

altering flow 3-17
controlled repetitive loops 3-9
exiting 3-16
simple DO group 3-8

repetitive loops (continued)
simple repetitive loops 3-8

replaceable routines 13-1, 13-6, 16-1
data stack 16-32
exec load 16-5
host command environment 16-28
input/output (I/O) 16-18
message identifier 16-43
storage management 16-38
user ID 16-40

request (shared variable) block (SHVBLOCK) 12-49
reservation of keywords 9-1
reserved command names 9-3
restoring variables 3-12
restrictions

embedded blanks in numbers 2-7
first character of variable name 2-17
in programming 2-1
maximum length of results 2-10

restrictions on values for language processor
environments 14-45

REstructured eXtended eXecutor (REXX) Language
See REXX

REstructured eXtended eXecutor language (REXX)
built-in functions 4-1
description xvii
keyword instructions 3-1

RESULT
set by RETURN instruction 3-6, 3-27
special variable 9-2

results
length of 2-10

Resume Typing (RT) immediate command 10-36,
12-57

retrieving
argument strings with ARG 3-3
arguments with ARG function 4-8
lines with SOURCELINE 4-29

return
code

-3 2-23, 16-30
abend setting 2-23
as set by commands 2-21
setting on exit 3-12

string
setting on exit 3-12

RETURN instruction
description 3-27

returning control from REXX program 3-27
REVERSE function

description 4-28
example 4-28

REXX
program portability 1-3

REXX exec identifier 2-2

 Index X-23

 Index

REXX external entry points 14-64
alternate names 14-64
IRXEX 12-13
IRXEXC 12-46
IRXEXCOM 12-46
IRXEXEC 12-13
IRXHLT 12-71
IRXIC 12-57
IRXINIT 15-1
IRXINOUT 16-18
IRXINT 15-1
IRXIO 16-18
IRXJCL 12-10
IRXLD 16-5
IRXLIN 12-79
IRXLOAD 16-5
IRXMID 16-43
IRXMSGID 16-43
IRXRLT 12-60
IRXSAY 12-68
IRXSTK 16-32
IRXSUB 12-53
IRXSUBCM 12-53
IRXTERM 15-17
IRXTERMA B-1
IRXTMA B-1
IRXTRM 15-17
IRXTXT 12-73
IRXUID 16-40

REXX processing in different address spaces 8-1
REXX vector of external entry points 14-64
RIGHT function

description 4-29
example 4-29

rounding
description 6-3
using a character string as a number 2-7

routines
See also functions
See also subroutines
exit 16-2, 16-44
for customizing services 13-1
for programming services 12-1
general considerations for TSO/E REXX 12-3
replaceable 16-1

RT (Resume Typing) immediate command 10-36,
12-57

running off the end of a program 3-13

S
SAA

CPI Communications calls 2-25
general description 1-3
purpose 1-1
solution 1-1

SAA (continued)
supported environments 1-1

SAA REXX 1-3
SAMPLIB

pseudonym files 2-28
samples for parameters modules 14-41

SAY instruction
description 3-28
displaying data 3-28
example 3-28

SBCS strings A-1
scientific notation 6-9
search order

controlling for REXX execs 14-19
for external functions 4-3
for external subroutines 4-3
for functions 4-3
for subroutines 3-5
load libraries 4-4
SYSEXEC 14-19, 14-22
SYSPROC 14-19, 14-22

searching a string for a phrase 4-21
SECLABEL (security label) 4-60
secondary data stack 14-72
secondary language in UPT 4-80
seconds calculated from midnight 4-33
seconds of CPU time used 4-78
SELECT instruction

description 3-28
example 3-29

selecting a default with ABBREV function 4-7
semicolons

implied 2-9
omission of 3-1
within a clause 2-3

sequence numbers in data set 2-2, 16-6
sequence, collating using XRANGE 4-39
service units used (system resource manager) 4-79
SETLANG function 4-70
shared variable (request) block (SHVBLOCK) 12-49
sharing data stack between environments 14-69
sharing subpools 14-18
shift-in (SI) characters A-2, A-7
shift-out (SO) characters A-2, A-7
SHVBLOCK request block 12-49
SIGL

set by CALL instruction 3-6
set by SIGNAL instruction 3-30
special variable 7-6, 9-2

example 7-6
SIGN function

description 4-29
example 4-29

SIGNAL instruction
description 3-29
example 3-30

X-24 OS/390 V2R8.0 TSO/E REXX Reference

 Index

SIGNAL instruction (continued)
execution of in subroutines 3-6

significant digits in arithmetic 6-3
simple

repetitive loops 3-8
symbols 2-17

single stepping
See interactive debug

SMF system identification 4-60
solicited message table

change current size C-3
definition C-3
determine current size 4-81

solicited messages
definition 4-44
determining whether displayed 4-81
processing during console session C-3
retrieving 4-42
size of message table 4-81
stored in message table C-3

solution, SAA 1-1
source

of program and retrieval of information 3-21
string 5-1

SOURCE option of PARSE instruction 3-21
SOURCELINE function

description 4-29
example 4-29

SPACE function
description 4-30
example 4-30

spacing, formatting, SPACE function 4-30
special

characters and example 2-8
parsing case 5-12
variables

RC 2-21, 7-5, 9-2
RESULT 3-6, 3-27, 9-2
SIGL 3-6, 7-6, 9-2

SPSHARE flag 14-18
STACKRT field (module name table) 14-23
status of Data Facility Hierarchical Storage Manager

(DFHSM) 4-78
status of RACF 4-79
stem of a variable

assignment to 2-19
description 2-18
used in DROP instruction 3-12
used in PROCEDURE instruction 3-23

step completion code 12-11, 12-13
stepping through programs

See interactive debug
steps in parsing 5-12
storage

change value in specific storage address 4-72
limit, implementation maximum 2-1

storage (continued)
management replaceable routine 16-38
managing 16-38
obtain value in specific storage address 4-72

STORAGE function 4-72
restricting use of 14-18

storage management replaceable routine 16-38
STORFL flag 14-18
storing REXX execs 2-1, 14-52
strict comparison 2-12
strictly equal operator 2-12
strictly greater than operator 2-12
strictly greater than or equal operator 2-13
strictly less than operator 2-12
strictly less than or equal operator 2-13
strictly not equal operator 2-12
strictly not greater than operator 2-13
strictly not less than operator 2-13
string

and symbols in DBCS A-2
as literal constant 2-4
as name of function 2-4
as name of subroutine 3-4
binary specification of 2-6
centering using CENTER function 4-11
centering using CENTRE function 4-11
comparison of 2-12
concatenation of 2-11
copying using COPIES 4-13
DBCS A-1
DBCS-only A-2
deleting part, DELSTR function 4-18
description 2-4
extracting words with SUBWORD 4-31
finding a phrase in 4-21
finding character position 4-23
hexadecimal specification of 2-5
interpretation of 3-14
length of 2-10
mixed SBCS/DBCS A-2
mixed, validation A-3
null 2-4, 2-10
patterns

description 5-1
literal 5-3
variable 5-8

quotation marks in 2-4
repeating using COPIES 4-13
SBCS A-1
verifying contents of 4-37

STRIP function
description 4-30
example 4-30

structure and syntax 2-2
SUBCOM command 10-36

 Index X-25

 Index

subexpression 2-10
subkeyword 2-16
subpool number 14-14
subpools, sharing 14-18
subroutines

calling of 3-4
definition 4-1
external, search order 4-3
forcing built-in or external reference 3-5
naming of 3-4
passing back values from 3-27
providing in function packages 12-32
return from 3-27
use of labels 3-4
variables in 3-23
writing external 12-32

subsidiary list 3-12, 3-24
substitution

in expressions 2-10
in variable names 2-18

SUBSTR function
description 4-31
example 4-31

substring, extracting with SUBSTR function 4-31
subtraction

description 6-4
operator 2-11

SUBWORD function
description 4-31
example 4-31

summary
parsing instructions 5-9

symbol
assigning values to 2-16
classifying 2-17
compound 2-18
constant 2-17
DBCS validation A-3
DBCS-only A-2
description 2-6
implementation maximum 2-7
mixed DBCS A-2
simple 2-17
uppercase translation 2-6
use of 2-16
valid names 2-7

SYMBOL function
description 4-31
example 4-32

symbolic system name (MVSVAR function) 4-61
symbols and strings in DBCS A-2
SYMDEF (argument of MVSVAR function) 4-61
syntax

diagrams xviii
error

traceback after 3-35
trapping with SIGNAL instruction 7-1

syntax (continued)
general 2-2

syntax checking
See TRACE instruction

SYNTAX condition of SIGNAL instruction 7-2, 7-5
SYSAPPCLU (argument of MVSVAR function) 4-59
SYSCLONE (argument of MVSVAR function) 4-61
SYSCPUS function 4-73
SYSDFP (argument of MVSVAR function) 4-59
SYSDSN function 4-74
SYSEXEC file 2-1, 14-52

controlling search of 14-19
storing REXX execs 2-1

SYSMVS (argument of MVSVAR function) 4-59
SYSNAME (argument of MVSVAR function) 4-60
SYSOPSYS (argument of MVSVAR function) 4-60
SYSPKFL flag 14-17
SYSPLEX (argument of MVSVAR function) 4-61
SYSPROC file 2-1, 14-52

controlling search of 14-19
SYSSECLAB (argument of MVSVAR function) 4-60
SYSSMFID (argument of MVSVAR function) 4-60
SYSSMS (argument of MVSVAR function) 4-60
system files

storing REXX execs 14-52
SYSEXEC 14-52
SYSPROC 14-52

system function packages 12-38
IRXEFMVS 12-39
IRXEFPCK 12-39
provided by products 12-39
TSO/E-supplied 12-39

system information, determining
APPC/MVS logical unit (LU) name 4-59
CPU time used 4-78
DFSMS indicator 4-60
JES name and level 4-78
JES network node name 4-79
level of base control program (BCP) 4-59
level of MVS/DFP 4-59
MVS symbolic name 4-61
MVS sysplex name 4-61
MVS system symbol 4-61
name of system (SYSNAME) 4-60
OS/390 name, level, etc. 4-60
RACF level installed 4-78
RACF status 4-79
security label (SECLABEL) 4-60
SMF system identification 4-60
SRM service units used 4-79
status of DFHSM 4-78
terminal ID of current session 4-79
TSO/E level installed 4-79

system resource manager (SRM), number of service
units used 4-79

X-26 OS/390 V2R8.0 TSO/E REXX Reference

 Index

system symbol (MVSVAR function) 4-61
system-supplied routines

IKJCT441 12-46
IRXEXCOM 12-46
IRXEXEC 12-9
IRXHLT 12-71
IRXIC 12-57
IRXINIT (initialization) 15-1
IRXINOUT 16-18
IRXJCL 12-9
IRXLIN 12-79
IRXLOAD 16-5
IRXMSGID 16-43
IRXRLT 12-60
IRXSAY 12-68
IRXSTK 16-32
IRXSUBCM 12-53
IRXTERM 15-17
IRXTERMA B-1
IRXTXT 12-73
IRXUID 16-40

Systems Application Architecture (SAA)
CPI Communications calls 2-25

SYSTSIN ddname 14-21
SYSTSPRT ddname 14-21
SYSVAR function 4-76

T
tail 2-18
TE (Trace End) immediate command 10-38, 11-3,

12-57
template

definition 5-1
list

ARG instruction 3-3
PARSE instruction 3-20

parsing
definition 5-1
general description 5-1
in ARG instruction 3-3
in PARSE instruction 3-20
in PULL instruction 3-26

PULL instruction 3-25
temporary command destination change 3-1
ten, powers of 6-8
terminal ID of current session 4-79
terminal information, determining

DBCS supported 4-79
Katakana supported 4-80
lines available on terminal screen 4-76
width of terminal screen 4-76

terminals
finding number of lines with SYSVAR 4-76
finding width with LINESIZE 4-25
finding width with SYSVAR 4-76

terminals (continued)
reading from with PULL 3-25
writing to with SAY 3-28

terminating a language processor environment 15-17,
B-1

termination routine (IRXTERM) 14-5, 15-17
user-written TMP 14-6

termination routine (IRXTERMA) B-1
terms and data 2-10
testing

abbreviations with ABBREV function 4-7
variable initialization 4-31

text formatting
See formatting
See word

text retrieval routine IRXTXT 12-73
THEN

as free standing clause 3-1
following IF clause 3-13
following WHEN clause 3-28

TIME function
description 4-32
example 4-33
implementation maximum 4-33

tips, tracing 3-34
TMP

language processor environments for
user-written 14-6

user-written 14-6
TO phrase of DO instruction 3-7
token for PARSE SOURCE 14-12
tokens

binary strings 2-6
description 2-4
hexadecimal strings 2-5
literal strings 2-4
numbers 2-7
operator characters 2-8
special characters 2-8
symbols 2-6

trace
tags 3-34

trace and execution control (IRXIC routine) 12-57
Trace End (TE) immediate command 10-38, 11-1,

12-57
TRACE function

description 4-34
example 4-34

TRACE instruction
See also interactive debug
alphabetic character word options 3-32
description 3-31
example 3-34

TRACE setting
altering with TRACE function 4-34
altering with TRACE instruction 3-31

 Index X-27

 Index

TRACE setting (continued)
querying 4-34

Trace Start (TS) immediate command 10-39, 11-1,
12-57

traceback, on syntax error 3-35
tracing

action saved during subroutine calls 3-6
by interactive debug 11-1
data identifiers 3-34
execution of programs 3-31
external control of 11-3
looping programs 11-3
tips 3-34

tracing flags
- 3-35
+++ 3-35
>.> 3-35
>>> 3-35
>C> 3-35
>F> 3-35
>L> 3-35
>O> 3-35
>P> 3-35
>V> 3-35

trailing
blank removed using STRIP function 4-30
zeros 6-4

transaction program
APPC/MVS 2-25
including pseudonyms 2-28
profiles for 2-28
writing 2-25

TRANSLATE function
description 4-34
example 4-34

translation
See also uppercase translation
with TRANSLATE function 4-34
with UPPER instruction 3-35

trap command output 4-63
trap conditions

explanation 7-1
how to trap 7-1
information about trapped condition 4-12
using CONDITION function 4-12

trapname
description 7-3

TRUNC function
description 4-35
example 4-35

truncating numbers 4-35
TS (Trace Start) immediate command 10-39, 11-3,

12-57
TSO host command environment 2-23
TSO/E address space

host command environments 2-23

TSO/E address space (continued)
initialization of language processor

environment 14-5
overview of running an exec 8-8
writing execs for 8-6

TSO/E environment service 8-1, 8-9
TSO/E external functions

GETMSG 4-42
LISTDSI 4-49
MSG 4-57
MVSVAR 4-58
OUTTRAP 4-63
PROMPT 4-67
SETLANG 4-70
STORAGE 4-72
SYSCPUS 4-73
SYSDSN 4-74
SYSVAR 4-76

TSO/E profile
See user profile

TSO/E REXX commands 10-1
DELSTACK 10-2
DROPBUF 10-3
EXECIO 10-4
EXECUTIL 10-19
immediate commands

HE 10-26
HI 10-27
HT 10-27
RT 10-36
TE 10-38
TS 10-39

MAKEBUF 10-28
NEWSTACK 10-30
QBUF 10-31
QELEM 10-33
QSTACK 10-35
SUBCOM 10-36
valid in non-TSO/E 8-4
valid in TSO/E 8-6

TSOFL flag 14-8, 14-15
type of data checking with DATATYPE 4-14
types of function packages 12-38
types of language processor environments 13-5, 14-8
typing data

See SAY instruction

U
unassigning variables 3-12
unconditionally leaving your program 3-12
underflow, arithmetic 6-10
uninitialized variable 2-17
unpacking a string

with B2X 4-11
with C2X 4-14

X-28 OS/390 V2R8.0 TSO/E REXX Reference

 Index

unsolicited message table
change current size C-3
definition C-3
determine current size 4-81

unsolicited messages
definition 4-44
determining whether displayed 4-81
processing during console session C-3
retrieving 4-42
size of message table 4-81
stored in message table C-3

UNTIL phrase of DO instruction 3-7
unusual change in flow of control 7-1
UPPER

in parsing 5-9
instruction

description 3-35
example 3-35

option of PARSE instruction 3-20
uppercase translation

during ARG instruction 3-3
during PULL instruction 3-25
of symbols 2-6
with PARSE UPPER 3-20
with TRANSLATE function 4-34
with UPPER instruction 3-35

user function packages 12-38
user ID

as used in examples in book xviii, 4-41, 10-1
for current session 4-76
replaceable routine 16-40

user information, determining
logon procedure for session 4-76
prefix defined in user profile 4-76
primary language 4-80
secondary language 4-80
user ID for session 4-76

user profile
obtain prefix defined in 4-76
prompting considerations 4-67
prompting from interactive commands 4-67

user-written TMP
language processor environments for 14-6
running REXX execs 14-6

USERID function
description 4-35

USERPKFL flag 14-17
users, identifying 4-35

V
VALUE function

description 4-36
example 4-36

value of variable, getting with VALUE 4-36

VALUE option of PARSE instruction 3-23
values used to initialize language processor

environment 14-34
VAR option of PARSE instruction 3-23
variable

compound 2-18
controlling loops 3-9
description 2-16
direct interface to 12-46
dropping of 3-12
exposing to caller 3-23
external collections 4-36
getting value with VALUE 4-36
global 4-36
in internal functions 3-23
in subroutines 3-23
names 2-7
new level of 3-23
parsing of 3-23
patterns, parsing with

positional 5-8
string 5-8

positional patterns 5-8
reference 5-8
resetting of 3-12
set by GETMSG 4-43, D-1
setting new value 2-16
SIGL 7-6
simple 2-17
special

RC 2-21, 7-5, 9-2
RESULT 3-27, 9-2
SIGL 3-6, 7-6, 9-2

string patterns, parsing with 5-8
testing for initialization 4-31
translation to uppercase 3-35
valid names 2-16

variable access (IRXEXCOM) 12-46
variables

set by LISTDSI 4-51
with the LISTDSI function 4-51

vector of external entry points 14-64
VERIFY function

description 4-37
example 4-37

verifying contents of a string 4-37
VERSION option of PARSE instruction 3-23
virtual lookaside facility

See VLF
VLF

compression of REXX execs 14-54

W
WHEN clause

See SELECT instruction

 Index X-29

 Index

WHILE phrase of DO instruction 3-7
whole numbers

checking with DATATYPE 4-14
description 2-7, 6-10

word
alphabetic character options in TRACE 3-32
counting in a string 4-38
deleting from a string 4-18
extracting from a string 4-31, 4-37
finding in a string 4-21
finding length of 4-38
in parsing 5-1
locating in a string 4-37
parsing

conceptual view 5-15
description and examples 5-1

WORD function
description 4-37
example 4-37

word processing
See formatting

WORDINDEX function
description 4-37
example 4-37

WORDLENGTH function
description 4-38
example 4-38

WORDPOS function
description 4-38
example 4-38

WORDS function
description 4-38
example 4-38

work block extension 14-61
writes to output file 14-16
writing

to the stack
with PUSH 3-26
with QUEUE 3-27

writing external functions and subroutines 12-32
writing REXX execs

for MVS operator activities C-1
for non-TSO/E 8-4
for TSO/E 8-6

X
X2B function

description 4-39
example 4-39

X2C function
description 4-40
example 4-40

X2D function
description 4-40
example 4-40

X2D function (continued)
implementation maximum 4-41

XOR, logical 2-13
XORing character strings together 4-10
XRANGE function

description 4-39
example 4-39

Z
zeros

added on the left 4-29
removal with STRIP function 4-30

X-30 OS/390 V2R8.0 TSO/E REXX Reference

Communicating Your Comments to IBM

OS/390
TSO/E REXX Reference

Publication No. SC28-1975-03

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX (United States and Canada): 1+914+432-9405
– FAX (Other countries): Your International Access Code+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBMLink (United States customers only): IBMUSM10(MHVRCFS)
– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.ibm.com/s390/os390/

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

OS/390
TSO/E REXX Reference

Publication No. SC28-1975-03

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC28-1975-03 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SC28-1975-03

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC28-1975-ð3

	Contents
	Figures
	About This Book
	Who Should Read This Book
	How to Use This Book
	How to Read the Syntax Diagrams

	Where to Find More Information

	Summary of Changes
	Changes to This Book for OS/390 Version 2 Release 4

	Chapter 1. Introduction
	What the SAA Solution Is
	Supported Environments
	Common Programming Interface

	Benefits of Using a Compiler
	Improved Performance
	Reduced System Load
	Protection for Source Code and Programs
	Improved Productivity and Quality
	Portability of Compiled Programs
	SAA Compliance Checking

	Chapter 2. REXX General Concepts
	Structure and General Syntax
	Characters
	Comments
	Tokens
	Implied Semicolons
	Continuations

	Expressions and Operators
	Expressions
	Operators
	String Concatenation
	Arithmetic
	Comparison
	Logical (Boolean)

	Parentheses and Operator Precedence

	Clauses and Instructions
	Null Clauses
	Labels
	Instructions
	Assignments
	Keyword Instructions
	Commands

	Assignments and Symbols
	Constant Symbols
	Simple Symbols
	Compound Symbols
	Stems

	Commands to External Environments
	Environment
	Commands
	Host Commands and Host Command Environments
	The TSO Host Command Environment
	The CONSOLE Host Command Environment
	The ISPEXEC and ISREDIT Host Command Environments
	The CPICOMM, LU62, and APPCMVS Host Command Environments
	Pseudonym Files
	Transaction Program Profiles
	Sample Transaction Programs

	The MVS Host Command Environment
	Host Command Environments for Linking to and Attaching Programs
	The LINK and ATTACH Host Command Environments
	The LINKMVS and ATTCHMVS Host Command Environments
	The LINKPGM and ATTCHPGM Host Command Environments

	Chapter 3. Keyword Instructions
	ADDRESS
	ARG
	CALL
	DO
	Simple DO Group
	Repetitive DO Loops
	Simple Repetitive Loops
	Controlled Repetitive Loops

	Conditional Phrases (WHILE and UNTIL)

	DROP
	EXIT
	IF
	INTERPRET
	ITERATE
	LEAVE
	NOP
	NUMERIC
	OPTIONS
	PARSE
	PROCEDURE
	PULL
	PUSH
	QUEUE
	RETURN
	SAY
	SELECT
	SIGNAL
	TRACE
	Alphabetic Character (Word) Options
	Prefix Options
	Numeric Options
	Tracing Tips

	A Typical Example
	Format of TRACE Output

	UPPER

	Chapter 4. Functions
	Syntax
	Functions and Subroutines
	Search Order
	Errors During Execution

	Built-in Functions
	ABBREV (Abbreviation)
	ABS (Absolute Value)
	ADDRESS
	ARG (Argument)
	BITAND (Bit by Bit AND)
	BITOR (Bit by Bit OR)
	BITXOR (Bit by Bit Exclusive OR)
	B2X (Binary to Hexadecimal)
	CENTER/CENTRE
	COMPARE
	CONDITION
	COPIES
	C2D (Character to Decimal)
	C2X (Character to Hexadecimal)
	DATATYPE
	DATE
	DBCS (Double-Byte Character Set Functions)
	DELSTR (Delete String)
	DELWORD (Delete Word)
	DIGITS
	D2C (Decimal to Character)
	D2X (Decimal to Hexadecimal)
	ERRORTEXT
	EXTERNALS
	FIND
	FORM
	FORMAT
	FUZZ
	GETMSG
	INDEX
	INSERT
	JUSTIFY
	LASTPOS (Last Position)
	LEFT
	LENGTH
	LINESIZE
	LISTDSI
	MAX (Maximum)
	MIN (Minimum)
	MSG
	MVSVAR
	OUTTRAP
	OVERLAY
	POS (Position)
	PROMPT
	QUEUED
	RANDOM
	REVERSE
	RIGHT
	SETLANG
	SIGN
	SOURCELINE
	SPACE
	STORAGE
	STRIP
	SUBSTR (Substring)
	SUBWORD
	SYMBOL
	SYSCPUS
	SYSDSN
	SYSVAR
	TIME
	TRACE
	TRANSLATE
	TRUNC (Truncate)
	USERID
	VALUE
	VERIFY
	WORD
	WORDINDEX
	WORDLENGTH
	WORDPOS (Word Position)
	WORDS
	XRANGE (Hexadecimal Range)
	X2B (Hexadecimal to Binary)
	X2C (Hexadecimal to Character)
	X2D (Hexadecimal to Decimal)

	TSO/E External Functions
	GETMSG
	Overview of Using GETMSG During a Console Session
	Using the Command and Response Token (CART) and Mask

	LISTDSI
	MSG
	MVSVAR
	OUTTRAP
	PROMPT
	SETLANG
	STORAGE
	SYSCPUS
	SYSDSN
	SYSVAR

	Chapter 5. Parsing
	Simple Templates for Parsing into Words
	The Period as a Placeholder
	Templates Containing String Patterns
	Templates Containing Positional (Numeric) Patterns
	Combining Patterns and Parsing Into Words

	Parsing with Variable Patterns
	Using UPPER
	Parsing Instructions Summary
	Parsing Instructions Examples
	Advanced Topics in Parsing
	Parsing Multiple Strings
	Combining String and Positional Patterns: A Special Case
	Parsing with DBCS Characters
	Details of Steps in Parsing

	Chapter 6. Numbers and Arithmetic
	Introduction
	Definition
	Numbers
	Precision
	Arithmetic Operators
	Arithmetic Operation Rules—Basic Operators
	Addition and Subtraction
	Multiplication
	Division
	Basic Operator Examples

	Arithmetic Operation Rules—Additional Operators
	Power
	Integer Division
	Remainder
	Additional Operator Examples

	Numeric Comparisons
	Exponential Notation
	Numeric Information
	Whole Numbers
	Numbers Used Directly by REXX
	Errors

	Chapter 7. Conditions and Condition Traps
	Action Taken When a Condition Is Not Trapped
	Action Taken When a Condition Is Trapped
	Condition Information
	Descriptive Strings

	Special Variables
	The Special Variable RC
	The Special Variable SIGL

	Chapter 8. Using REXX in Different Address Spaces
	Additional REXX Support
	TSO/E REXX Programming Services
	TSO/E REXX Customizing Services

	Writing Execs That Run in Non-TSO/E Address Spaces
	Running an Exec in a Non-TSO/E Address Space
	Writing Execs That Run in the TSO/E Address Space
	Running an Exec in the TSO/E Address Space
	Summary of Writing Execs for Different Address Spaces

	Chapter 9. Reserved Keywords, Special Variables, and Command Names
	Reserved Keywords
	Special Variables
	Reserved Command Names

	Chapter 10. TSO/E REXX Commands
	DELSTACK
	DROPBUF
	EXECIO
	EXECUTIL
	HE
	HI
	HT
	Immediate Commands
	MAKEBUF
	NEWSTACK
	QBUF
	QELEM
	QSTACK
	RT
	SUBCOM
	TE
	TS

	Chapter 11. Debug Aids
	Interactive Debugging of Programs
	Interrupting Execution and Controlling Tracing
	Interrupting Exec Processing
	Considerations for Interrupting Exec Processing
	Using the HE Immediate Command to Halt an Exec

	Starting and Stopping Tracing

	Chapter 12. TSO/E REXX Programming Services
	General Considerations for Calling TSO/E REXX Routines
	Parameter Lists for TSO/E REXX Routines
	Specifying the Address of the Environment Block
	Using the Environment Block Address Parameter
	Using the Environment Block for Reentrant Environments

	Return Codes for TSO/E REXX Routines

	Exec Processing Routines – IRXJCL and IRXEXEC
	The IRXJCL Routine
	Using IRXJCL to Run a REXX Exec in MVS Batch
	Invoking IRXJCL From a REXX Exec or a Program
	Return Codes

	The IRXEXEC Routine
	Entry Specifications
	Parameters
	The Exec Block (EXECBLK)
	Format of Argument List
	The In-Storage Control Block (INSTBLK)
	The Evaluation Block (EVALBLOCK)
	How IRXEXEC Returns Information About Syntax Errors
	Return Specifications
	Return Codes

	External Functions and Subroutines, and Function Packages
	Interface for Writing External Function and Subroutine Code
	Entry Specifications
	Parameters
	Argument List
	Evaluation Block
	Return Specifications
	Return Codes

	Function Packages
	Directory for Function Packages
	Specifying Directory Names in the Function Package Table
	Programming Considerations

	Variable Access Routine – IRXEXCOM
	Entry Specifications
	Parameters
	The Shared Variable (Request) Block - SHVBLOCK
	Function Codes (SHVCODE)

	Return Specifications
	Return Codes

	Maintain Entries in the Host Command Environment Table – IRXSUBCM
	Entry Specifications
	Parameters
	Functions
	Format of a Host Command Environment Table Entry

	Return Specifications
	Return Codes

	Trace and Execution Control Routine – IRXIC
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Get Result Routine – IRXRLT
	Entry Specifications
	Parameters
	Functions
	Return Specifications
	Return Codes

	SAY Instruction Routine – IRXSAY
	Entry Specifications
	Parameters
	Functions
	Return Specifications
	Return Codes

	Halt Condition Routine – IRXHLT
	Entry Specifications
	Parameters
	Functions
	Return Specifications
	Return Codes

	Text Retrieval Routine – IRXTXT
	Entry Specifications
	Parameters
	Functions and Text Units
	Return Specifications
	Return Codes

	LINESIZE Function Routine – IRXLIN
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Chapter 13. TSO/E REXX Customizing Services
	Flow of REXX Exec Processing
	Initialization and Termination of a Language Processor Environment
	Types Of Language Processor Environments

	Loading and Freeing a REXX Exec
	Processing of the REXX Exec

	Overview of Replaceable Routines
	Exit Routines

	Chapter 14. Language Processor Environments
	Overview of Language Processor Environments
	Using the Environment Block
	When Environments are Automatically Initialized in TSO/E
	Initializing Environments for User-Written TMPs

	When Environments are Automatically Initialized in MVS
	Types of Environments – Integrated and Not Integrated Into TSO/E
	Characteristics of a Language Processor Environment
	Flags and Corresponding Masks
	Module Name Table
	Relationship of Fields in Module Name Table to Types of Environments

	Host Command Environment Table
	Function Package Table
	Values Provided in the Three Default Parameters Modules
	How IRXINIT Determines What Values to Use for the Environment
	Values IRXINIT Uses to Initialize Environments

	Chains of Environments and How Environments Are Located
	Locating a Language Processor Environment

	Changing the Default Values for Initializing an Environment
	Providing Your Own Parameters Modules
	Changing Values for ISPF
	Changing Values for TSO/E
	Changing Values for TSO/E and ISPF
	Changing Values for Non-TSO/E

	Considerations for Providing Parameters Modules

	Specifying Values for Different Environments
	Parameters You Cannot Change
	Parameters You Can Use in Any Language Processor Environment
	Parameters You Can Use for Environments That Are Integrated Into TSO/E
	Parameters You Can Use for Environments That Are Not Integrated Into TSO/E
	Flag Settings for Environments Initialized for TSO/E and ISPF
	Using SYSPROC and SYSEXEC for REXX Execs
	Compressing REXX Execs

	Control Blocks Created for a Language Processor Environment
	Format of the Environment Block (ENVBLOCK)
	Format of the Parameter Block (PARMBLOCK)
	Format of the Work Block Extension
	Format of the REXX Vector of External Entry Points

	Changing the Maximum Number of Environments in an Address Space
	Using the Data Stack in Different Environments

	Chapter 15. Initialization and Termination Routines
	Initialization Routine – IRXINIT
	Entry Specifications
	Parameters
	Specifying How REXX Obtains Storage in the Environment
	How IRXINIT Determines What Values to Use for the Environment
	Parameters Module and In-Storage Parameter List
	Specifying Values for the New Environment
	Return Specifications
	Output Parameters
	Return Codes

	Termination Routine – IRXTERM
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Chapter 16. Replaceable Routines and Exits
	Replaceable Routines
	General Considerations
	Using the Environment Block Address
	Installing Replaceable Routines

	Exec Load Routine
	Entry Specifications
	Parameters
	Functions You Can Specify for Parameter 1

	Format of the Exec Block
	Loading Execs Using an Extended Exec Name

	Format of the In-Storage Control Block
	Return Specifications
	Return Codes

	Input/Output Routine
	Entry Specifications
	Parameters
	Functions Supported for the I/O Routine
	Buffer and Buffer Length Parameters
	Line Number Parameter
	Data Set Information Block
	Return Specifications
	Return Codes

	Host Command Environment Routine
	Entry Specifications
	Parameters
	Error Recovery
	Return Specifications
	Return Codes

	Data Stack Routine
	Entry Specifications
	Parameters
	Functions Supported for the Data Stack Routine
	Return Specifications
	Return Codes

	Storage Management Routine
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	User ID Routine
	Entry Specifications
	Parameters
	Functions Supported for the User ID Routine
	Return Specifications
	Return Codes

	Message Identifier Routine
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	REXX Exit Routines
	Exits for Language Processor Environment Initialization and Termination
	Exec Initialization and Termination Exits
	Exec Processing (IRXEXEC) Exit Routine
	Attention Handling Exit Routine

	Appendix A. Double-Byte Character Set (DBCS) Support
	General Description
	Enabling DBCS Data Operations and Symbol Use
	Symbols and Strings
	DBCS-Only Symbols and Mixed SBCS/DBCS Symbols
	DBCS-Only Strings and Mixed SBCS/DBCS Strings

	Validation
	DBCS Symbol Validation
	Mixed String Validation

	Using DBCS Symbols as Variable Names or Labels
	Instruction Examples
	PARSE
	PUSH and QUEUE
	SAY and TRACE
	UPPER

	DBCS Function Handling
	Built-in Function Examples
	ABBREV
	COMPARE
	COPIES
	DATATYPE
	FIND
	INDEX, POS, and LASTPOS
	INSERT and OVERLAY
	JUSTIFY
	LEFT, RIGHT, and CENTER
	LENGTH
	REVERSE
	SPACE
	STRIP
	SUBSTR and DELSTR
	SUBWORD and DELWORD
	TRANSLATE
	VERIFY
	WORD, WORDINDEX, and WORDLENGTH
	WORDS
	WORDPOS

	DBCS Processing Functions
	Counting Option

	Function Descriptions
	DBADJUST
	DBBRACKET
	DBCENTER
	DBCJUSTIFY
	DBLEFT
	DBRIGHT
	DBRLEFT
	DBRRIGHT
	DBTODBCS
	DBTOSBCS
	DBUNBRACKET
	DBVALIDATE
	DBWIDTH

	Appendix B. IRXTERMA Routine
	Entry Specifications
	Parameters
	Return Specifications
	Return Codes

	Appendix C. Writing REXX Execs to Perform MVS Operator Activities
	Activating a Console Session and Issuing MVS Commands
	Using the CONSOLE Host Command Environment
	Processing Messages During a Console Session
	Using the CART to Associate Commands and Their Responses
	Considerations for Multiple Applications
	Example of Determining Results From Commands in One Exec

	Appendix D. Additional Variables That GETMSG Sets
	Variables GETMSG Sets For the Entire Message
	Variables GETMSG Sets For Each Line of Message Text

	Appendix E. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Related Publications

	Index

